Circulating Biomarkers for Tumor Angiogenesis: Where Are We?

Page: [2361 - 2380] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: In recent years, several anti-angiogenic drugs have been developed and their addition to standard treatment has been associated with clinical benefits. However, the response to anti-angiogenic therapy is characterized by considerable variability. In this context, the development of dynamic non-invasive biomarkers would be helpful to elucidate the emergence of anti-angiogenic resistance as well as to correctly address the treatment.

Objectives: The purpose of this review is to describe current reports on circulating diagnostic and prognostic biomarkers related to angiogenesis. We further discuss how this non-invasive strategy could improve the monitoring of tumor treatment and help clinical strategy.

Results: We discuss the latest evidence in the literature regarding circulating anti-angiogenic markers. Besides growth factor proteins, different circulating miRNAs could exert a pro- or anti-angiogenic activity so as to represent suitable candidates for a non-invasive strategy. Recent reports indicate that tumor-derived exosomes, which are small membrane vesicles abundant in biological fluids, also have an impact on vascular remodeling.

Conclusion: Numerous circulating biomarkers related to angiogenesis have been recently identified. Their use will allow identifying patients who are more likely to benefit from a specific anti-angiogenic treatment, as well as detecting those who will develop resistance and/or adverse effects. Nonetheless, further studies are required to elucidate the role of these biomarkers in clinical settings.

Keywords: Biomarkers, tumor angiogenesis, exosomes, micro-RNAs, proteins, anti-angiogenic therapy.

[1]
Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
[http://dx.doi.org/10.1038/nrd2115] [PMID: 17396134]
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[3]
Hashimoto, T.; Shibasaki, F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr., 2015, 3, 33.
[http://dx.doi.org/10.3389/fped.2015.00033] [PMID: 25964891]
[4]
Mashreghi, M.; Azarpara, H.; Bazaz, M.R.; Jafari, A.; Masoudifar, A.; Mirzaei, H.; Jaafari, M.R. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J. Cell. Physiol., 2018, 233(4), 2949-2965.
[http://dx.doi.org/10.1002/jcp.26049] [PMID: 28608549]
[5]
Todorova, D.; Simoncini, S.; Lacroix, R.; Sabatier, F.; Dignat-George, F. Extracellular vesicles in angiogenesis. Circ. Res., 2017, 120(10), 1658-1673.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.309681] [PMID: 28495996]
[6]
Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[7]
Petrovic, khiN. Targeting angiogenesis in cancer treatments: where do we stand? J. Pharm. Pharm. Sci., 2016, 19(2), 226-238.
[http://dx.doi.org/10.18433/J30033] [PMID: 27518172]
[8]
Russo, A.E.; Priolo, D.; Antonelli, G.; Libra, M.; McCubrey, J.A.; Ferraù, F. Bevacizumab in the treatment of NSCLC: patient selection and perspectives. Lung Cancer (Auckl.), 2017, 8, 259-269.
[http://dx.doi.org/10.2147/LCTT.S110306] [PMID: 29276417]
[9]
Raphael, J.; Chan, K.; Karim, S.; Kerbel, R.; Lam, H.; Santos, K.D.; Saluja, R.; Verma, S. Antiangiogenic therapy in advanced non-small-cell lung cancer: a meta-analysis of phase III randomized trials. Clin. Lung Cancer, 2017, 18(4), 345-353.e5.
[http://dx.doi.org/10.1016/j.cllc.2017.01.004] [PMID: 28188101]
[10]
Loupakis, F.; Cremolini, C.; Fioravanti, A.; Orlandi, P.; Salvatore, L.; Masi, G.; Di Desidero, T.; Canu, B.; Schirripa, M.; Frumento, P.; Di Paolo, A.; Danesi, R.; Falcone, A.; Bocci, G. Pharmacodynamic and pharmacogenetic angiogenesis-related markers of first-line FOLFOXIRI plus bevacizumab schedule in metastatic colorectal cancer. Br. J. Cancer, 2011, 104(8), 1262-1269.
[http://dx.doi.org/10.1038/bjc.2011.85] [PMID: 21407216]
[11]
Gressett, S.M.; Shah, S.R. Intricacies of bevacizumab-induced toxicities and their management. Ann. Pharmacother., 2009, 43(3), 490-501.
[http://dx.doi.org/10.1345/aph.1L426] [PMID: 19261963]
[12]
Ciombor, K.K.; Berlin, J. Aflibercept--a decoy VEGF receptor. Curr. Oncol. Rep., 2014, 16(2), 368.
[http://dx.doi.org/10.1007/s11912-013-0368-7] [PMID: 24445500]
[13]
Fala, L. Cyramza (Ramucirumab) approved for the treatment of advanced gastric cancer and metastatic non-smallcell lung cancer. Am. Health Drug Benefits, 2015, 8(Spec Feature), 49-53.
[PMID: 26629266]
[14]
Paplomata, E.; Zelnak, A.; O’Regan, R. Everolimus: side effect profile and management of toxicities in breast cancer. Breast Cancer Res. Treat., 2013, 140(3), 453-462.
[http://dx.doi.org/10.1007/s10549-013-2630-y] [PMID: 23907751]
[15]
Vazakidou, M.E.; Magkouta, S.; Moschos, C.; Psallidas, I.; Pappas, A.; Psarra, K.; Kalomenidis, I. Temsirolimus targets multiple hallmarks of cancer to impede mesothelioma growth in vivo. Respirology, 2015, 20(8), 1263-1271.
[http://dx.doi.org/10.1111/resp.12604] [PMID: 26245309]
[16]
Dinney, C.P.; Bielenberg, D.R.; Perrotte, P.; Reich, R.; Eve, B.Y.; Bucana, C.D.; Fidler, I.J. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Res., 1998, 58(4), 808-814.
[PMID: 9485039]
[17]
Singh, R.K.; Gutman, M.; Bucana, C.D.; Sanchez, R.; Llansa, N.; Fidler, I.J. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl. Acad. Sci. USA, 1995, 92(10), 4562-4566.
[http://dx.doi.org/10.1073/pnas.92.10.4562] [PMID: 7753843]
[18]
Escudier, B.; Bellmunt, J.; Négrier, S.; Bajetta, E.; Melichar, B.; Bracarda, S.; Ravaud, A.; Golding, S.; Jethwa, S.; Sneller, V. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol., 2010, 28(13), 2144-2150.
[http://dx.doi.org/10.1200/JCO.2009.26.7849] [PMID: 20368553]
[19]
Grignol, V.P.; Olencki, T.; Relekar, K.; Taylor, C.; Kibler, A.; Kefauver, C.; Wei, L.; Walker, M.J.; Chen, H.X.; Kendra, K.; Carson, W.E., III A phase 2 trial of bevacizumab and high-dose interferon alpha 2B in metastatic melanoma. J. Immunother., 2011, 34(6), 509-515.
[http://dx.doi.org/10.1097/CJI.0b013e31821dcefd] [PMID: 21654521]
[20]
Tageja, N. Lenalidomide - current understanding of mechanistic properties. Anticancer. Agents Med. Chem., 2011, 11(3), 315-326.
[http://dx.doi.org/10.2174/187152011795347487] [PMID: 21426296]
[21]
Yu, J.P.; Sun, S.P.; Sun, Z.Q.; Ni, X.C.; Wang, J.; Li, Y.; Hu, L.J.; Li, D.Q. Clinical trial of thalidomide combined with radiotherapy in patients with esophageal cancer. World J. Gastroenterol., 2014, 20(17), 5098-5103.
[http://dx.doi.org/10.3748/wjg.v20.i17.5098] [PMID: 24803825]
[22]
van der Graaf, W.T.; Blay, J.Y.; Chawla, S.P.; Kim, D.W.; Bui-Nguyen, B.; Casali, P.G.; Schöffski, P.; Aglietta, M.; Staddon, A.P.; Beppu, Y.; Le Cesne, A.; Gelderblom, H.; Judson, I.R.; Araki, N.; Ouali, M.; Marreaud, S.; Hodge, R.; Dewji, M.R.; Coens, C.; Demetri, G.D.; Fletcher, C.D.; Dei Tos, A.P.; Hohenberger, P. EORTC Soft tissue and bone sarcoma group. PALETTE study group. Pazopanib for metastttic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet, 2012, 379(9829), 1879-1886.
[http://dx.doi.org/10.1016/S0140-6736(12)60651-5] [PMID: 22595799]
[23]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[24]
Motzer, R.J.; Escudier, B.; Gannon, A.; Figlin, R.A. Sunitinib: ten years of successful clinical use and study in advanced renal cell carcinoma. Oncologist, 2017, 22(1), 41-52.
[http://dx.doi.org/10.1634/theoncologist.2016-0197] [PMID: 27807302]
[25]
Valle, J.W.; Faivre, S.; Hubner, R.A.; Grande, E.; Raymond, E. Practical management of sunitinib toxicities in the treatment of pancreatic neuroendocrine tumors. Cancer Treat. Rev., 2014, 40(10), 1230-1238.
[http://dx.doi.org/10.1016/j.ctrv.2014.09.001] [PMID: 25283354]
[26]
Berry, V.; Basson, L.; Bogart, E.; Mir, O.; Blay, J.Y.; Italiano, A.; Bertucci, F.; Chevreau, C.; Clisant-Delaine, S.; Liegl-Antzager, B.; Tresch-Bruneel, E.; Wallet, J.; Taieb, S.; Decoupigny, E.; Le Cesne, A.; Brodowicz, T.; Penel, N. REGOSARC: Regorafenib versus placebo in doxorubicin-refractory soft-tissue sarcoma-A quality-adjusted time without symptoms of progression or toxicity analysis. Cancer, 2017, 123(12), 2294-2302.
[http://dx.doi.org/10.1002/cncr.30661] [PMID: 28295221]
[27]
Zhao, Y.; Adjei, A.A. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist, 2015, 20(6), 660-673.
[http://dx.doi.org/10.1634/theoncologist.2014-0465] [PMID: 26001391]
[28]
Gordon, M.S.; Robert, F.; Matei, D.; Mendelson, D.S.; Goldman, J.W.; Chiorean, E.G.; Strother, R.M.; Seon, B.K.; Figg, W.D.; Peer, C.J.; Alvarez, D.; Adams, B.J.; Theuer, C.P.; Rosen, L.S. An open-label phase Ib dose-escalation study of TRC105 (anti-endoglin antibody) with bevacizumab in patients with advanced cancer. Clin. Cancer Res., 2014, 20(23), 5918-5926.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1143] [PMID: 25261556]
[29]
Ahluwalia, M.S.; Rogers, L.R.; Chaudhary, R.T.; Newton, H.B.; Seon, B.K.; Jivani, M.A.; Adams, B.J.; Shazer, R.L.; Theuer, C.P. A Phase 2 trial of TRC105 with bevacizumab for bevacizumab refractory glioblastoma. Journal of Clinical Oncology., 2016, 34(Suppl. 15), 2035-2035.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.2035]
[30]
Dorff, T.B.; Longmate, J.A.; Pal, S.K.; Stadler, W.M.; Fishman, M.N.; Vaishampayan, U.N.; Rao, A.; Pinksi, J.K.; Hu, J.S.; Quinn, D.I.; Lara, P.N., Jr Bevacizumab alone or in combination with TRC105 for patients with refractory metastatic renal cell cancer. Cancer, 2017, 123(23), 4566-4573.
[http://dx.doi.org/10.1002/cncr.30942] [PMID: 28832978]
[31]
Ballas, M.S.; Chachoua, A. Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC. OncoTargets Ther., 2011, 4, 43-58.
[http://dx.doi.org/10.2147/OTT.S18155] [PMID: 21691577]
[32]
Welti, J.; Loges, S.; Dimmeler, S.; Carmeliet, P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Invest., 2013, 123(8), 3190-3200.
[http://dx.doi.org/10.1172/JCI70212] [PMID: 23908119]
[33]
Kopetz, S.; Hoff, P.M.; Morris, J.S.; Wolff, R.A.; Eng, C.; Glover, K.Y.; Adinin, R.; Overman, M.J.; Valero, V.; Wen, S.; Lieu, C.; Yan, S.; Tran, H.T.; Ellis, L.M.; Abbruzzese, J.L.; Heymach, J.V. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J. Clin. Oncol., 2010, 28(3), 453-459.
[http://dx.doi.org/10.1200/JCO.2009.24.8252] [PMID: 20008624]
[34]
Clarke, J.M.; Hurwitz, H.I. Understanding and targeting resistance to anti-angiogenic therapies. J. Gastrointest. Oncol., 2013, 4(3), 253-263.https://dx.doi.org/10.3978%2Fj.issn.2078-6891.2013.036
[PMID: 23997938]
[35]
Qian, C.N.; Tan, M.H.; Yang, J.P.; Cao, Y. Revisiting tumor angiogenesis: vessel co-option, vessel remodeling, and cancer cell-derived vasculature formation. Chin. J. Cancer, 2016, 35, 10.
[http://dx.doi.org/10.1186/s40880-015-0070-2] [PMID: 26747273]
[36]
Donnem, T.; Hu, J.; Ferguson, M.; Adighibe, O.; Snell, C.; Harris, A.L.; Gatter, K.C.; Pezzella, F. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med., 2013, 2(4), 427-436.
[http://dx.doi.org/10.1002/cam4.105] [PMID: 24156015]
[37]
Viglietto, G.; Maglione, D.; Rambaldi, M.; Cerutti, J.; Romano, A.; Trapasso, F.; Fedele, M.; Ippolito, P.; Chiappetta, G.; Botti, G. Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (PlGF) associated with malignancy in human thyroid tumors and cell lines. Oncogene, 1995, 11(8), 1569-1579.
[PMID: 7478581]
[38]
Wei, L.H.; Kuo, M.L.; Chen, C.A.; Chou, C.H.; Lai, K.B.; Lee, C.N.; Hsieh, C.Y. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene, 2003, 22(10), 1517-1527.
[http://dx.doi.org/10.1038/sj.onc.1206226] [PMID: 12629515]
[39]
Jahangiri, A.; Aghi, M.K. Biomarkers predicting tumor response and evasion to anti-angiogenic therapy. Biochim. Biophys. Acta, 2012, 1825(1), 86-100.
[http://dx.doi.org/10.1016/j.bbcan.2011.10.004] [PMID: 22067555]
[40]
Goede, V.; Coutelle, O.; Neuneier, J.; Reinacher-Schick, A.; Schnell, R.; Koslowsky, T.C.; Weihrauch, M.R.; Cremer, B.; Kashkar, H.; Odenthal, M.; Augustin, H.G.; Schmiegel, W.; Hallek, M.; Hacker, U.T. Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Br. J. Cancer, 2010, 103(9), 1407-1414.
[http://dx.doi.org/10.1038/sj.bjc.6605925] [PMID: 20924372]
[41]
Burrows, F.J.; Derbyshire, E.J.; Tazzari, P.L.; Amlot, P.; Gazdar, A.F.; King, S.W.; Letarte, M.; Vitetta, E.S.; Thorpe, P.E. Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin. Cancer Res., 1995, 1(12), 1623-1634.
[PMID: 9815965]
[42]
Cho, W.C. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int. J. Biochem. Cell Biol., 2010, 42(8), 1273-1281.
[http://dx.doi.org/10.1016/j.biocel.2009.12.014] [PMID: 20026422]
[43]
Zhou, F.; Zhou, Y.; Dong, J.; Tan, W. Circulating endothelial cells and their subsets: novel biomarkers for cancer. Biomarkers Med., 2017, 11(8), 665-676.
[http://dx.doi.org/10.2217/bmm-2017-0143] [PMID: 28597689]
[44]
Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.; Nitadori-Hoshino, A.; Hoffman, C.; Badal, K.; Garcia, B.A.; Callahan, M.K.; Yuan, J.; Martins, V.R.; Skog, J.; Kaplan, R.N.; Brady, M.S.; Wolchok, J.D.; Chapman, P.B.; Kang, Y.; Bromberg, J.; Lyden, D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med., 2012, 18(6), 883-891.
[http://dx.doi.org/10.1038/nm.2753] [PMID: 22635005]
[45]
Burstein, H.J.; Chen, Y.H.; Parker, L.M.; Savoie, J.; Younger, J.; Kuter, I.; Ryan, P.D.; Garber, J.E.; Chen, H.; Campos, S.M.; Shulman, L.N.; Harris, L.N.; Gelman, R.; Winer, E.P. VEGF as a marker for outcome among advanced breast cancer patients receiving anti-VEGF therapy with bevacizumab and vinorelbine chemotherapy. Clin. Cancer Res., 2008, 14(23), 7871-7877.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0593] [PMID: 19047116]
[46]
Hanrahan, E.O.; Ryan, A.J.; Mann, H.; Kennedy, S.J.; Langmuir, P.; Natale, R.B.; Herbst, R.S.; Johnson, B.E.; Heymach, J.V. Baseline vascular endothelial growth factor concentration as a potential predictive marker of benefit from vandetanib in non-small cell lung cancer. Clin. Cancer Res., 2009, 15(10), 3600-3609.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2568] [PMID: 19447868]
[47]
Rini, B.I.; Michaelson, M.D.; Rosenberg, J.E.; Bukowski, R.M.; Sosman, J.A.; Stadler, W.M.; Hutson, T.E.; Margolin, K.; Harmon, C.S.; DePrimo, S.E.; Kim, S.T.; Chen, I.; George, D.J. Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J. Clin. Oncol., 2008, 26(22), 3743-3748.
[http://dx.doi.org/10.1200/JCO.2007.15.5416] [PMID: 18669461]
[48]
Willett, C.G.; Duda, D.G.; di Tomaso, E.; Boucher, Y.; Ancukiewicz, M.; Sahani, D.V.; Lahdenranta, J.; Chung, D.C.; Fischman, A.J.; Lauwers, G.Y.; Shellito, P.; Czito, B.G.; Wong, T.Z.; Paulson, E.; Poleski, M.; Vujaskovic, Z.; Bentley, R.; Chen, H.X.; Clark, J.W.; Jain, R.K. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J. Clin. Oncol., 2009, 27(18), 3020-3026.
[http://dx.doi.org/10.1200/JCO.2008.21.1771] [PMID: 19470921]
[49]
Vasudev, N.S.; Reynolds, A.R. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis, 2014, 17(3), 471-494.
[http://dx.doi.org/10.1007/s10456-014-9420-y] [PMID: 24482243]
[50]
Dowlati, A.; Gray, R.; Sandler, A.B.; Schiller, J.H.; Johnson, D.H. Cell adhesion molecules, vascular endothelial growth factor, and basic fibroblast growth factor in patients with non-small cell lung cancer treated with chemotherapy with or without bevacizumab--an Eastern Cooperative Oncology Group Study. Clin. Cancer Res., 2008, 14(5), 1407-1412.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1154] [PMID: 18316562]
[51]
Hirashima, Y.; Yamada, Y.; Matsubara, J.; Takahari, D.; Okita, N.; Takashima, A.; Kato, K.; Hamaguchi, T.; Shirao, K.; Shimada, Y.; Taniguchi, H.; Shimoda, T. Impact of vascular endothelial growth factor receptor 1, 2, and 3 expression on the outcome of patients with gastric cancer. Cancer Sci., 2009, 100(2), 310-315.
[http://dx.doi.org/10.1111/j.1349-7006.2008.01020.x] [PMID: 19068081]
[52]
Paule, B.; Bastien, L.; Deslandes, E.; Cussenot, O.; Podgorniak, M.P.; Allory, Y.; Naïmi, B.; Porcher, R.; de La Taille, A.; Menashi, S.; Calvo, F.; Mourah, S. Soluble isoforms of vascular endothelial growth factor are predictors of response to sunitinib in metastatic renal cell carcinomas. PLoS One, 2010, 5(5)e10715
[http://dx.doi.org/10.1371/journal.pone.0010715] [PMID: 20502715]
[53]
Rangwala, F.; Bendell, J.C.; Kozloff, M.F.; Arrowood, C.C.; Dellinger, A.; Meadows, J.; Tourt-Uhlig, S.; Murphy, J.; Meadows, K.L.; Starr, A.; Broderick, S.; Brady, J.C.; Cushman, S.M.; Morse, M.A.; Uronis, H.E.; Hsu, S.D.; Zafar, S.Y.; Wallace, J.; Starodub, A.N.; Strickler, J.H.; Pang, H.; Nixon, A.B.; Hurwitz, H.I.; Phase, I. Phase I study of capecitabine, oxaliplatin, bevacizumab, and everolimus in advanced solid tumors. Invest. New Drugs, 2014, 32(4), 700-709.
[http://dx.doi.org/10.1007/s10637-014-0089-2] [PMID: 24711126]
[54]
Kelly, R.J.; Rajan, A.; Force, J.; Lopez-Chavez, A.; Keen, C.; Cao, L.; Yu, Y.; Choyke, P.; Turkbey, B.; Raffeld, M.; Xi, L.; Steinberg, S.M.; Wright, J.J.; Kummar, S.; Gutierrez, M.; Giaccone, G. Evaluation of KRAS mutations, angiogenic biomarkers, and DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib. Clin. Cancer Res., 2011, 17(5), 1190-1199.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2331] [PMID: 21224376]
[55]
Fiedler, W.; Mesters, R.; Heuser, M.; Ehninger, G.; Berdel, W.E.; Zirrgiebel, U.; Robertson, J.D.; Puchalski, T.A.; Collins, B.; Jürgensmeier, J.M.; Serve, H. An open-label, Phase I study of cediranib (RECENTIN) in patients with acute myeloid leukemia. Leuk. Res., 2010, 34(2), 196-202.
[http://dx.doi.org/10.1016/j.leukres.2009.07.020] [PMID: 19674789]
[56]
Norden-Zfoni, A.; Desai, J.; Manola, J.; Beaudry, P.; Force, J.; Maki, R.; Folkman, J.; Bello, C.; Baum, C.; DePrimo, S.E.; Shalinsky, D.R.; Demetri, G.D.; Heymach, J.V. Blood-based biomarkers of SU11248 activity and clinical outcome in patients with metastatic imatinib-resistant gastrointestinal stromal tumor. Clin. Cancer Res., 2007, 13(9), 2643-2650.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0919] [PMID: 17473195]
[57]
Pircher, A.; Hilbe, W.; Heidegger, I.; Drevs, J.; Tichelli, A.; Medinger, M. Biomarkers in tumor angiogenesis and anti-angiogenic therapy. Int. J. Mol. Sci., 2011, 12(10), 7077-7099.
[http://dx.doi.org/10.3390/ijms12107077] [PMID: 22072937]
[58]
Deprimo, S.E.; Bello, C.L.; Smeraglia, J.; Baum, C.M.; Spinella, D.; Rini, B.I.; Michaelson, M.D.; Motzer, R.J. Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins. J. Transl. Med., 2007, 5, 32.
[http://dx.doi.org/10.1186/1479-5876-5-32] [PMID: 17605814]
[59]
Duda, D.G.; Willett, C.G.; Ancukiewicz, M.; di Tomaso, E.; Shah, M.; Czito, B.G.; Bentley, R.; Poleski, M.; Lauwers, G.Y.; Carroll, M.; Tyler, D.; Mantyh, C.; Shellito, P.; Clark, J.W.; Jain, R.K. Plasma soluble VEGFR-1 is a potential dual biomarker of response and toxicity for bevacizumab with chemoradiation in locally advanced rectal cancer. Oncologist, 2010, 15(6), 577-583.
[http://dx.doi.org/10.1634/theoncologist.2010-0029] [PMID: 20484123]
[60]
Meyerhardt, J.A.; Ancukiewicz, M.; Abrams, T.A.; Schrag, D.; Enzinger, P.C.; Chan, J.A.; Kulke, M.H.; Wolpin, B.M.; Goldstein, M.; Blaszkowsky, L.; Zhu, A.X.; Elliott, M.; Regan, E.; Jain, R.K.; Duda, D.G. Phase I study of cetuximab, irinotecan, and vandetanib (ZD6474) as therapy for patients with previously treated metastastic colorectal cancer. PLoS One, 2012, 7(6)e38231
[http://dx.doi.org/10.1371/journal.pone.0038231] [PMID: 22701615]
[61]
Batchelor, T.T.; Duda, D.G.; di Tomaso, E.; Ancukiewicz, M.; Plotkin, S.R.; Gerstner, E.; Eichler, A.F.; Drappatz, J.; Hochberg, F.H.; Benner, T.; Louis, D.N.; Cohen, K.S.; Chea, H.; Exarhopoulos, A.; Loeffler, J.S.; Moses, M.A.; Ivy, P.; Sorensen, A.G.; Wen, P.Y.; Jain, R.K. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol., 2010, 28(17), 2817-2823.
[http://dx.doi.org/10.1200/JCO.2009.26.3988] [PMID: 20458050]
[62]
Zhu, A.X.; Sahani, D.V.; Duda, D.G.; di Tomaso, E.; Ancukiewicz, M.; Catalano, O.A.; Sindhwani, V.; Blaszkowsky, L.S.; Yoon, S.S.; Lahdenranta, J.; Bhargava, P.; Meyerhardt, J.; Clark, J.W.; Kwak, E.L.; Hezel, A.F.; Miksad, R.; Abrams, T.A.; Enzinger, P.C.; Fuchs, C.S.; Ryan, D.P.; Jain, R.K. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J. Clin. Oncol., 2009, 27(18), 3027-3035.
[http://dx.doi.org/10.1200/JCO.2008.20.9908] [PMID: 19470923]
[63]
Addison, C.L.; Ding, K.; Seymour, L.; Zhao, H.; Laurie, S.A.; Shepherd, F.A.; Goss, G.D.; Bradbury, P.A. Analysis of serum protein levels of angiogenic factors and their soluble receptors as markers of response to cediranib in the NCIC CTG BR.24 clinical trial. Lung Cancer, 2015, 90(2), 288-295.
[http://dx.doi.org/10.1016/j.lungcan.2015.09.004] [PMID: 26415995]
[64]
Daly, S.; Kubasiak, J.C.; Rinewalt, D.; Pithadia, R.; Basu, S.; Fhied, C.; Lobato, G.C.; Seder, C.W.; Hong, E.; Warren, W.H.; Chmielewski, G.; Liptay, M.J.; Bonomi, P.; Borgia, J.A. Circulating angiogenesis biomarkers are associated with disease progression in lung adenocarcinoma. Ann. Thorac. Surg., 2014, 98(6), 1968-1975.
[http://dx.doi.org/10.1016/j.athoracsur.2014.06.071] [PMID: 25301368]
[65]
Harmon, C.S.; DePrimo, S.E.; Raymond, E.; Cheng, A.L.; Boucher, E.; Douillard, J.Y.; Lim, H.Y.; Kim, J.S.; Lechuga, M.J.; Lanzalone, S.; Lin, X.; Faivre, S. Mechanism-related circulating proteins as biomarkers for clinical outcome in patients with unresectable hepatocellular carcinoma receiving sunitinib. J. Transl. Med., 2011, 25, 9-120.
[66]
Tabernero, J.; Hozak, R.R.; Yoshino, T.; Cohn, A.L.; Obermannova, R.; Bodoky, G.; Garcia-Carbonero, R.; Ciuleanu, T.E.; Portnoy, D.C.; Prausová, J.; Muro, K.; Siegel, R.W.; Konrad, R.J.; Ouyang, H.; Melemed, S.A.; Ferry, D.; Nasroulah, F.; Van Cutsem, E. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. Ann. Oncol., 2018, 29(3), 602-609.
[http://dx.doi.org/10.1093/annonc/mdx767] [PMID: 29228087]
[67]
Persico, M.G.; Vincenti, V.; DiPalma, T. Structure, expression and receptor-binding properties of placenta growth factor (PlGF). Curr. Top. Microbiol. Immunol., 1999, 237, 31-40.
[http://dx.doi.org/10.1007/978-3-642-59953-8_2] [PMID: 9893344]
[68]
Parr, C.; Watkins, G.; Boulton, M.; Cai, J.; Jiang, W.G. Placenta growth factor is over-expressed and has prognostic value in human breast cancer. Eur. J. Cancer, 2005, 41(18), 2819-2827.
[http://dx.doi.org/10.1016/j.ejca.2005.07.022] [PMID: 16275058]
[69]
Zhang, L.; Chen, J.; Ke, Y.; Mansel, R.E.; Jiang, W.G. Expression of Placenta growth factor (PlGF) in non-small cell lung cancer (NSCLC) and the clinical and prognostic significance. World J. Surg. Oncol., 2005, 3, 68.
[http://dx.doi.org/10.1186/1477-7819-3-68] [PMID: 16223445]
[70]
Wei, S.C.; Tsao, P.N.; Yu, S.C.; Shun, C.T.; Tsai-Wu, J.J.; Wu, C.H.; Su, Y.N.; Hsieh, F.J.; Wong, J.M. Placenta growth factor expression is correlated with survival of patients with colorectal cancer. Gut, 2005, 54(5), 666-672.
[http://dx.doi.org/10.1136/gut.2004.050831] [PMID: 15831913]
[71]
Matsumoto, K.; Suzuki, K.; Koike, H.; Okamura, K.; Tsuchiya, K.; Uchida, T.; Takezawa, Y.; Kobayashi, M.; Yamanaka, H. Prognostic significance of plasma placental growth factor levels in renal cell cancer: an association with clinical characteristics and vascular endothelial growth factor levels. Anticancer Res., 2003, 23(6D), 4953-4958.
[http://dx.doi.org/10.1016/S0022-5347(18)38960-2] [PMID: 14981951]
[72]
Sowter, H.M.; Corps, A.N.; Evans, A.L.; Clark, D.E.; Charnock-Jones, D.S.; Smith, S.K. Expression and localization of the vascular endothelial growth factor family in ovarian epithelial tumors. Lab. Invest., 1997, 77(6), 607-614.
[PMID: 9426398]
[73]
Batchelor, T.T.; Sorensen, A.G.; di Tomaso, E.; Zhang, W.T.; Duda, D.G.; Cohen, K.S.; Kozak, K.R.; Cahill, D.P.; Chen, P.J.; Zhu, M.; Ancukiewicz, M.; Mrugala, M.M.; Plotkin, S.; Drappatz, J.; Louis, D.N.; Ivy, P.; Scadden, D.T.; Benner, T.; Loeffler, J.S.; Wen, P.Y.; Jain, R.K. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 2007, 11(1), 83-95.
[http://dx.doi.org/10.1016/j.ccr.2006.11.021] [PMID: 17222792]
[74]
Bass, M.B.; Sherman, S.I.; Schlumberger, M.J.; Davis, M.T.; Kivman, L.; Khoo, H.M.; Notari, K.H.; Peach, M.; Hei, Y.J.; Patterson, S.D. Biomarkers as predictors of response to treatment with motesanib in patients with progressive advanced thyroid cancer. J. Clin. Endocrinol. Metab., 2010, 95(11), 5018-5027.
[http://dx.doi.org/10.1210/jc.2010-0947] [PMID: 20739388]
[75]
Nikolinakos, P.G.; Altorki, N.; Yankelevitz, D.; Tran, H.T.; Yan, S.; Rajagopalan, D.; Bordogna, W.; Ottesen, L.H.; Heymach, J.V. Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Res., 2010, 70(6), 2171-2179.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2533] [PMID: 20215520]
[76]
Porta, C.; Paglino, C.; De Amici, M.; Quaglini, S.; Sacchi, L.; Imarisio, I.; Canipari, C. Predictive value of baseline serum vascular endothelial growth factor and neutrophil gelatinase-associated lipocalin in advanced kidney cancer patients receiving sunitinib. Kidney Int., 2010, 77(9), 809-815.
[http://dx.doi.org/10.1038/ki.2009.552] [PMID: 20147887]
[77]
Perez-Gracia, J.L.; Prior, C.; Guillén-Grima, F.; Segura, V.; Gonzalez, A.; Panizo, A.; Melero, I.; Grande-Pulido, E.; Gurpide, A.; Gil-Bazo, I.; Calvo, A. Identification of TNF-alpha and MMP-9 as potential baseline predictive serum markers of sunitinib activity in patients with renal cell carcinoma using a human cytokine array. Br. J. Cancer, 2009, 101(11), 1876-1883.
[http://dx.doi.org/10.1038/sj.bjc.6605409] [PMID: 19904265]
[78]
Wang, J.M.; Kumar, S.; Pye, D.; van Agthoven, A.J.; Krupinski, J.; Hunter, R.D. A monoclonal antibody detects heterogeneity in vascular endothelium of tumours and normal tissues. Int. J. Cancer, 1993, 54(3), 363-370.
[http://dx.doi.org/10.1002/ijc.2910540303] [PMID: 8509210]
[79]
Fonsatti, E.; Jekunen, A.P.; Kairemo, K.J.; Coral, S.; Snellman, M.; Nicotra, M.R.; Natali, P.G.; Altomonte, M.; Maio, M. Endoglin is a suitable target for efficient imaging of solid tumors: in vivo evidence in a canine mammary carcinoma model. Clin. Cancer Res., 2000, 6(5), 2037-2043.
[PMID: 10815930]
[80]
Di Paolo, V.; Russo, I.; Boldrini, R.; Ravà, L.; Pezzullo, M.; Benedetti, M.C.; Galardi, A.; Colletti, M.; Rota, R.; Orlando, D.; Crocoli, A.; Peinado, H.; Milano, G.M.; Di Giannatale, A. Evaluation of Endoglin (CD105) expression in pediatric rhabdomyosarcoma. BMC Cancer, 2018, 18(1), 31.
[http://dx.doi.org/10.1186/s12885-017-3947-4] [PMID: 29304781]
[81]
Takahashi, N.; Kawanishi-Tabata, R.; Haba, A.; Tabata, M.; Haruta, Y.; Tsai, H.; Seon, B.K. Association of serum endoglin with metastasis in patients with colorectal, breast, and other solid tumors, and suppressive effect of chemotherapy on the serum endoglin. Clin. Cancer Res., 2001, 7(3), 524-532.
[PMID: 11297243]
[82]
Calabrò, L.; Fonsatti, E.; Bellomo, G.; Alonci, A.; Colizzi, F.; Sigalotti, L.; Altomonte, M.; Musolino, C.; Maio, M. Differential levels of soluble endoglin (CD105) in myeloid malignancies. J. Cell. Physiol., 2003, 194(2), 171-175.
[http://dx.doi.org/10.1002/jcp.10200] [PMID: 12494455]
[83]
Glade Bender, J.L.; Lee, A.; Reid, J.M.; Baruchel, S.; Roberts, T.; Voss, S.D.; Wu, B.; Ahern, C.H.; Ingle, A.M.; Harris, P.; Weigel, B.J.; Blaney, S.M. Phase I pharmacokinetic and pharmacodynamic study of pazopanib in children with soft tissue sarcoma and other refractory solid tumors: a children’s oncology group phase I consortium report. J. Clin. Oncol., 2013, 31(24), 3034-3043.
[http://dx.doi.org/10.1200/JCO.2012.47.0914] [PMID: 23857966]
[84]
Chen, N.; Wang, J.; Hu, Y.; Cui, B.; Li, W.; Xu, G.; Liu, L.; Liu, S. MicroRNA-410 reduces the expression of vascular endothelial growth factor and inhibits oxygen-induced retinal neovascularization. PLoS One, 2014, 9(4)e95665
[http://dx.doi.org/10.1371/journal.pone.0095665] [PMID: 24777200]
[85]
Wang, J.; Ye, H.; Zhang, D.; Cheng, K.; Hu, Y.; Yu, X.; Lu, L.; Hu, J.; Zuo, C.; Qian, B.; Yu, Y.; Liu, S.; Liu, G.; Mao, C.; Liu, S. Cancer-derived circulating microRNAs promote tumor angiogenesis by entering dendritic cells to degrade highly complementary microRNAs. Theranostics, 2017, 7(6), 1407-1421.
[http://dx.doi.org/10.7150/thno.18262] [PMID: 28529626]
[86]
Wang, J.; Ye, H.; Zhang, D.; Hu, Y.; Yu, X.; Wang, L.; Zuo, C.; Yu, Y.; Xu, G.; Liu, S. MicroRNA-410-5p as a potential serum biomarker for the diagnosis of prostate cancer. Cancer Cell Int., 2016, 16, 12.
[http://dx.doi.org/10.1186/s12935-016-0285-6] [PMID: 26900347]
[87]
Chou, Y.T.; Lin, H.H.; Lien, Y.C.; Wang, Y.H.; Hong, C.F.; Kao, Y.R.; Lin, S.C.; Chang, Y.C.; Lin, S.Y.; Chen, S.J.; Chen, H.C.; Yeh, S.D.; Wu, C.W. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res., 2010, 70(21), 8822-8831.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0638] [PMID: 20978205]
[88]
Stinson, S.; Lackner, M.R.; Adai, A.T.; Yu, N.; Kim, H.J.; O’Brien, C.; Spoerke, J.; Jhunjhunwala, S.; Boyd, Z.; Januario, T.; Newman, R.J.; Yue, P.; Bourgon, R.; Modrusan, Z.; Stern, H.M.; Warming, S.; de Sauvage, F.J.; Amler, L.; Yeh, R.F.; Dornan, D. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci. Signal., 2011, 4(177), ra41.
[http://dx.doi.org/10.1126/scisignal.2001538] [PMID: 21673316]
[89]
Teixeira, A.L.; Dias, F.; Ferreira, M.; Gomes, M.; Santos, J.I.; Lobo, F.; Maurício, J.; Machado, J.C.; Medeiros, R. Combined influence of EGF+61G>A and TGFB+869T>C functional polymorphisms in renal cell carcinoma progression and overall survival: the link to plasma circulating MiR-7 and MiR-221/222 expression. PLoS One, 2015, 10(4)e0103258
[http://dx.doi.org/10.1371/journal.pone.0103258] [PMID: 25909813]
[90]
Yang, F.; Wang, W.; Zhou, C.; Xi, W.; Yuan, L.; Chen, X.; Li, Y.; Yang, A.; Zhang, J.; Wang, T. MiR-221/222 promote human glioma cell invasion and angiogenesis by targeting TIMP2. Tumour Biol., 2015, 36(5), 3763-3773.
[http://dx.doi.org/10.1007/s13277-014-3017-3] [PMID: 25731730]
[91]
Liu, Q.; Liao, F.; Wu, H.; Cai, T.; Yang, L.; Fang, J. Different expression of miR-29b and VEGFA in glioma. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1927-1932.
[http://dx.doi.org/10.3109/21691401.2015.1111237] [PMID: 26620922]
[92]
Ulivi, P.; Canale, M.; Passardi, A.; Marisi, G.; Valgiusti, M.; Frassineti, G.L.; Calistri, D.; Amadori, D.; Scarpi, E. Circulating plasma levels of miR-20b, miR-29b and miR-155 as predictors of bevacizumab efficacy in patients with metastatic colorectal cancer. Int. J. Mol. Sci., 2018, 19(1)E307
[http://dx.doi.org/10.3390/ijms19010307] [PMID: 29361687]
[93]
Fish, J.E.; Santoro, M.M.; Morton, S.U.; Yu, S.; Yeh, R.F.; Wythe, J.D.; Ivey, K.N.; Bruneau, B.G.; Stainier, D.Y.; Srivastava, D. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell, 2008, 15(2), 272-284.
[http://dx.doi.org/10.1016/j.devcel.2008.07.008] [PMID: 18694566]
[94]
Hansen, T.F.; Carlsen, A.L.; Heegaard, N.H.; Sørensen, F.B.; Jakobsen, A. Changes in circulating microRNA-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer. Br. J. Cancer, 2015, 112(4), 624-629.
[http://dx.doi.org/10.1038/bjc.2014.652] [PMID: 25584492]
[95]
Triozzi, P.L.; Achberger, S.; Aldrich, W.; Singh, A.D.; Grane, R.; Borden, E.C. The association of blood angioregulatory microRNA levels with circulating endothelial cells and angiogenic proteins in patients receiving dacarbazine and interferon. J. Transl. Med., 2012, 10, 241.
[http://dx.doi.org/10.1186/1479-5876-10-241] [PMID: 23217102]
[96]
Davidoff, A.M.; Ng, C.Y.; Brown, P.; Leary, M.A.; Spurbeck, W.W.; Zhou, J.; Horwitz, E.; Vanin, E.F.; Nienhuis, A.W. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin. Cancer Res., 2001, 7(9), 2870-2879.
[PMID: 11555605]
[97]
Dome, B.; Timar, J.; Dobos, J.; Meszaros, L.; Raso, E.; Paku, S.; Kenessey, I.; Ostoros, G.; Magyar, M.; Ladanyi, A.; Bogos, K.; Tovari, J. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res., 2006, 66(14), 7341-7347.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4654] [PMID: 16849585]
[98]
Ziebart, T.; Blatt, S.; Günther, C.; Völxen, N.; Pabst, A.; Sagheb, K.; Kühl, S.; Lambrecht, T. Significance of endothelial progenitor cells (EPC) for tumorigenesis of head and neck squamous cell carcinoma (HNSCC): possible marker of tumor progression and neovascularization? Clin. Oral Investig., 2016, 20(8), 2293-2300.
[http://dx.doi.org/10.1007/s00784-016-1785-4] [PMID: 26993659]
[99]
Paprocka, M.; Kieda, C.; Kantor, A.; Bielawska-Pohl, A.; Dus, D.; Czekanski, A.; Heimrath, J. Increased endothelial progenitor cell number in early Stage of endometrial cancer. Int. J. Gynecol. Cancer, 2017, 27(5), 947-952.
[http://dx.doi.org/10.1097/IGC.0000000000000961] [PMID: 28498245]
[100]
Ha, X.; Zhao, M.; Zhao, H.; Peng, J.; Deng, Z.; Dong, J.; Yang, X.; Zhao, Y.; Ju, J. Identification and clinical significance of circulating endothelial progenitor cells in gastric cancer. Biomarkers, 2013, 18(6), 487-492.
[http://dx.doi.org/10.3109/1354750X.2013.810666] [PMID: 23837664]
[101]
Bhaskar, A.; Gupta, R.; Kumar, L.; Sharma, A.; Sharma, M.C.; Kalaivani, M.; Thakur, S.C. Circulating endothelial progenitor cells as potential prognostic biomarker in multiple myeloma. Leuk. Lymphoma, 2012, 53(4), 635-640.
[http://dx.doi.org/10.3109/10428194.2011.628880] [PMID: 21973309]
[102]
Nowak, K.; Rafat, N.; Belle, S.; Weiss, C.; Hanusch, C.; Hohenberger, P.; Beck, G.Ch. Circulating endothelial progenitor cells are increased in human lung cancer and correlate with stage of disease. Eur. J. Cardiothorac. Surg., 2010, 37(4), 758-763.
[http://dx.doi.org/10.1016/j.ejcts.2009.10.002] [PMID: 19896859]
[103]
Su, Y.; Zheng, L.; Wang, Q.; Li, W.; Cai, Z.; Xiong, S.; Bao, J. Quantity and clinical relevance of circulating endothelial progenitor cells in human ovarian cancer. J. Exp. Clin. Cancer Res., 2010, 29, 27.
[http://dx.doi.org/10.1186/1756-9966-29-27] [PMID: 20334653]
[104]
Gu, W.; Sun, W.; Guo, C.; Yan, Y.; Liu, M.; Yao, X.; Yang, B.; Zheng, J. Culture and characterization of circulating endothelial progenitor cells in patients with renal cell carcinoma. J. Urol., 2015, 194(1), 214-222.
[http://dx.doi.org/10.1016/j.juro.2015.01.100] [PMID: 25659661]
[105]
Yang, B.; Gu, W.; Peng, B.; Xu, Y.; Liu, M.; Che, J.; Geng, J.; Zheng, J. High level of circulating endothelial progenitor cells positively correlates with serum vascular endothelial growth factor in patients with renal cell carcinoma. J. Urol., 2012, 188(6), 2055-2061.
[http://dx.doi.org/10.1016/j.juro.2012.08.039] [PMID: 23088990]
[106]
Chou, C.P.; Jiang, S.S.; Pan, H.B.; Yen, Y.C.; Tseng, H.H.; Hung, Y.T.; Wang, S.H.; Chen, Y.L.; Chen, Y.W. Endothelial cell colony forming units derived from malignant breast diseases are resistant to tumor necrosis factor-α-induced apoptosis. Sci. Rep., 2016, 24(6), 37450.
[http://dx.doi.org/10.1038/srep37450]
[107]
Rhone, P.; Ruszkowska-Ciastek, B.; Celmer, M.; Brkic, A.; Bielawski, K.; Boinska, J.; Zarychta, E.; Rosc, D. Increased number of endothelial progenitors in peripheral blood as a possible early marker of tumour growth in post-menopausal breast cancer patients. J. Physiol. Pharmacol., 2017, 68(1), 139-148.
[PMID: 28456778]
[108]
Li, Y.; Liu, J.; Zhao, Z.; Wen, L.; Li, H.; Ren, J.; Liu, H. Correlation between circulating endothelial progenitor cells and serum carcinoembryonic antigen level in colorectal cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(3), 307-312.
[http://dx.doi.org/10.1093/abbs/gmx147] [PMID: 29377980]
[109]
Kuo, Y.H.; Lin, C.H.; Shau, W.Y.; Chen, T.J.; Yang, S.H.; Huang, S.M.; Hsu, C.; Lu, Y.S.; Cheng, A.L. Dynamics of circulating endothelial cells and endothelial progenitor cells in breast cancer patients receiving cytotoxic chemotherapy. BMC Cancer, 2012, 12, 620.
[http://dx.doi.org/10.1186/1471-2407-12-620] [PMID: 23268621]
[110]
Corsini, E.; Ciusani, E.; Gaviani, P.; Silvani, A.; Canazza, A.; Bernardi, G.; Calatozzolo, C.; DiMeco, F.; Salmaggi, A. Decrease in circulating endothelial progenitor cells in treated glioma patients. J. Neurooncol., 2012, 108(1), 123-129.
[http://dx.doi.org/10.1007/s11060-012-0805-8] [PMID: 22350374]
[111]
Gruenwald, V.; Beutel, G.; Schuch-Jantsch, S.; Reuter, C.; Ivanyi, P.; Ganser, A.; Haubitz, M. Circulating endothelial cells are an early predictor in renal cell carcinoma for tumor response to sunitinib. BMC Cancer, 2010, 31, 10-695.
[http://dx.doi.org/10.1186/1471-2407-10-695]
[112]
Sudo, K.; Sato, K.; Sakamoto, S.; Hasegawa, Y.; Asano, M.; Okuda, Y.; Takeda, M.; Sano, M.; Watanabe, H.; Shioya, T.; Ito, H. Association between endothelial progenitor cells and treatment response in non-squamous non-small cell lung cancer treated with bevacizumab. Anticancer Res., 2017, 37(10), 5565-5571.
[http://dx.doi.org/10.21873/anticanres.11989] [PMID: 28982871]
[113]
Kalathil, S.G.; Lugade, A.A.; Iyer, R.; Miller, A.; Thanavala, Y. Endothelial progenitor cell number and ERK phosphorylation serve as predictive and prognostic biomarkers in advanced hepatocellular carcinoma patients treated with sorafenib. OncoImmunology, 2016, 5(10)e1226718
[http://dx.doi.org/10.1080/2162402X.2016.1226718] [PMID: 27853648]
[114]
Mathivanan, S.; Ji, H.; Simpson, R.J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics, 2010, 73(10), 1907-1920.
[http://dx.doi.org/10.1016/j.jprot.2010.06.006] [PMID: 20601276]
[115]
Al-Nedawi, K.; Meehan, B.; Kerbel, R.S.; Allison, A.C.; Rak, J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc. Natl. Acad. Sci. USA, 2009, 106(10), 3794-3799.
[http://dx.doi.org/10.1073/pnas.0804543106] [PMID: 19234131]
[116]
Ghayad, S.E.; Rammal, G.; Ghamloush, F.; Basma, H.; Nasr, R.; Diab-Assaf, M.; Chelala, C.; Saab, R. Exosomes derived from embryonal and alveolar rhabdomyosarcoma carry differential miRNA cargo and promote invasion of recipient fibroblasts. Sci. Rep., 2016, 6, 37088.
[http://dx.doi.org/10.1038/srep37088] [PMID: 27853183]
[117]
Li, X.J.; Ren, Z.J.; Tang, J.H.; Yu, Q. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer. Cell. Physiol. Biochem., 2017, 44(5), 1741-1748.
[http://dx.doi.org/10.1159/000485780] [PMID: 29216623]
[118]
Yamada, N.; Tsujimura, N.; Kumazaki, M.; Shinohara, H.; Taniguchi, K.; Nakagawa, Y.; Naoe, T.; Akao, Y. Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochim. Biophys. Acta, 2014, 1839(11), 1256-1272.
[http://dx.doi.org/10.1016/j.bbagrm.2014.09.002] [PMID: 25218966]
[119]
Fong, M.Y.; Zhou, W.; Liu, L.; Alontaga, A.Y.; Chandra, M.; Ashby, J.; Chow, A.; O’Connor, S.T.; Li, S.; Chin, A.R.; Somlo, G.; Palomares, M.; Li, Z.; Tremblay, J.R.; Tsuyada, A.; Sun, G.; Reid, M.A.; Wu, X.; Swiderski, P.; Ren, X.; Shi, Y.; Kong, M.; Zhong, W.; Chen, Y.; Wang, S.E. Breast-cancer-secreted miR-122 reprograms glucose metabolism in Exosomal microRNAs in cancer metabolism premetastatic niche to promote metastasis. Nat. Cell Biol., 2015, 17, 183-194.
[http://dx.doi.org/10.1038/ncb3094] [PMID: 25621950]
[120]
Liu, Y.; Luo, F.; Wang, B.; Li, H.; Xu, Y.; Liu, X.; Shi, L.; Lu, X.; Xu, W.; Lu, L.; Qin, Y.; Xiang, Q.; Liu, Q. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett., 2016, 370(1), 125-135.
[http://dx.doi.org/10.1016/j.canlet.2015.10.011] [PMID: 26525579]
[121]
Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.; Chin, A.R.; Yen, Y.; Wang, Y.; Marcusson, E.G.; Chu, P.; Wu, J.; Wu, X.; Li, A.X.; Li, Z.; Gao, H.; Ren, X.; Boldin, M.P.; Lin, P.C.; Wang, S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014, 25(4), 501-515.
[http://dx.doi.org/10.1016/j.ccr.2014.03.007] [PMID: 24735924]
[122]
Cui, H.; Seubert, B.; Stahl, E.; Dietz, H.; Reuning, U.; Moreno-Leon, L.; Ilie, M.; Hofman, P.; Nagase, H.; Mari, B.; Krüger, A. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene, 2015, 34(28), 3640-3650.
[http://dx.doi.org/10.1038/onc.2014.300] [PMID: 25263437]
[123]
Jung, K.O.; Youn, H.; Lee, C.H.; Kang, K.W.; Chung, J.K. Visualization of exosome-mediated miR-210 transfer from hypoxic tumor cells. Oncotarget, 2017, 8(6), 9899-9910.
[http://dx.doi.org/10.18632/oncotarget.14247] [PMID: 28038441]
[124]
Umezu, T.; Tadokoro, H.; Azuma, K.; Yoshizawa, S.; Ohyashiki, K.; Ohyashiki, J.H. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood, 2014, 124(25), 3748-3757.
[http://dx.doi.org/10.1182/blood-2014-05-576116] [PMID: 25320245]
[125]
Sruthi, T.V.; Edatt, L.; Raji, G.R.; Kunhiraman, H.; Shankar, S.S.; Shankar, V.; Ramachandran, V.; Poyyakkara, A.; Kumar, S.V.B. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. J. Cell. Physiol., 2018, 233(4), 3498-3514.
[http://dx.doi.org/10.1002/jcp.26202] [PMID: 28929578]
[126]
Luan, Y.; Zuo, L.; Zhang, S.; Wang, G.; Peng, T. MicroRNA-126 acts as a tumor suppressor in glioma cells by targeting insulin receptor substrate 1 (IRS-1). Int. J. Clin. Exp. Pathol., 2015, 8(9), 10345-10354.
[PMID: 26617742]
[127]
Chen, H.; Li, L.; Wang, S.; Lei, Y.; Ge, Q.; Lv, N.; Zhou, X.; Chen, C. Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget, 2014, 5(23), 11873-11885.
[http://dx.doi.org/10.18632/oncotarget.2662] [PMID: 25428912]
[128]
Grimolizzi, F.; Monaco, F.; Leoni, F.; Bracci, M.; Staffolani, S.; Bersaglieri, C.; Gaetani, S.; Valentino, M.; Amati, M.; Rubini, C.; Saccucci, F.; Neuzil, J.; Tomasetti, M.; Santarelli, L. Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci. Rep., 2017, 7(1), 15277.
[http://dx.doi.org/10.1038/s41598-017-15475-6] [PMID: 29127370]
[129]
van Dommelen, S.M.; Vader, P.; Lakhal, S.; Kooijmans, S.A.; van Solinge, W.W.; Wood, M.J.; Schiffelers, R.M. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J. Control. Release, 2012, 161(2), 635-644.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.021] [PMID: 22138068]
[130]
Wang, J.; De Veirman, K.; Faict, S.; Frassanito, M.A.; Ribatti, D.; Vacca, A.; Menu, E. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J. Pathol., 2016, 239(2), 162-173.
[http://dx.doi.org/10.1002/path.4712] [PMID: 26956697]
[131]
Taraboletti, G.; D’Ascenzo, S.; Borsotti, P.; Giavazzi, R.; Pavan, A.; Dolo, V. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am. J. Pathol., 2002, 160(2), 673-680.
[http://dx.doi.org/10.1016/S0002-9440(10)64887-0] [PMID: 11839588]
[132]
Ekström, E.J.; Bergenfelz, C.; von Bülow, V.; Serifler, F.; Carlemalm, E.; Jönsson, G.; Andersson, T.; Leandersson, K. WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol. Cancer, 2014, 13, 88.
[http://dx.doi.org/10.1186/1476-4598-13-88] [PMID: 24766647]
[133]
Gangoda, L.; Liem, M.; Ang, C.S.; Keerthikumar, S.; Adda, C.G.; Parker, B.S.; Mathivanan, S. Proteomic profiling of exosomes secreted by breast cancer cells with varying metastatic potential. Proteomics, 2017, 17(23-24), 23-24.
[http://dx.doi.org/10.1002/pmic.201600370] [PMID: 29115712]
[134]
DeRita, R.M.; Zerlanko, B.; Singh, A.; Lu, H.; Iozzo, R.V.; Benovic, J.L.; Languino, L.R. c-Src, insulin-like growth factor I receptor, G-protein-coupled receptor kinases and focal adhesion kinase are enriched into prostate cancer cell exosomes. J. Cell. Biochem., 2017, 118(1), 66-73.
[http://dx.doi.org/10.1002/jcb.25611] [PMID: 27232975]
[135]
Tang, M.K.S.; Yue, P.Y.K.; Ip, P.P.; Huang, R.L.; Lai, H.C.; Cheung, A.N.Y.; Tse, K.Y.; Ngan, H.Y.S.; Wong, A.S.T. Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat. Commun., 2018, 119(1), 2270.
[136]
Mahabeleshwar, G.H.; Chen, J.; Feng, W.; Somanath, P.R.; Razorenova, O.V.; Byzova, T.V. Integrin affinity modulation in angiogenesis. Cell Cycle, 2008, 7(3), 335-347.
[http://dx.doi.org/10.4161/cc.7.3.5234] [PMID: 18287811]
[137]
Kawakami, K.; Fujita, Y.; Kato, T.; Mizutani, K.; Kameyama, K.; Tsumoto, H.; Miura, Y.; Deguchi, T.; Ito, M. Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. Int. J. Oncol., 2015, 47(1), 384-390.
[http://dx.doi.org/10.3892/ijo.2015.3011] [PMID: 25997717]
[138]
Fedele, C.; Singh, A.; Zerlanko, B.J.; Iozzo, R.V.; Languino, L.R. The αvβ6 integrin is transferred intercellularly via exosomes. J. Biol. Chem., 2015, 290(8), 4545-4551.
[http://dx.doi.org/10.1074/jbc.C114.617662] [PMID: 25568317]
[139]
Singh, A.; Fedele, C.; Lu, H.; Nevalainen, M.T.; Keen, J.H.; Languino, L.R. Exosome-mediated transfer of αvβ3 integrin from tumorigenic to nontumorigenic cells promotes a migratory phenotype. Mol. Cancer Res., 2016, 14(11), 1136-1146.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0058] [PMID: 27439335]
[140]
Gesierich, S.; Berezovskiy, I.; Ryschich, E.; Zöller, M. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res., 2006, 15. 66(14), 7083-7094.
[141]
Rinn, J.L.; Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem., 2012, 81, 145-166.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[142]
Sun, Z.; Yang, S.; Zhou, Q.; Wang, G.; Song, J.; Li, Z.; Zhang, Z.; Xu, J.; Xia, K.; Chang, Y.; Liu, J.; Yuan, W. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol. Cancer, 2018, 17(1), 82.
[http://dx.doi.org/10.1186/s12943-018-0831-z] [PMID: 29678180]
[143]
Nakamura, K.; Martin, K.C.; Jackson, J.K.; Beppu, K.; Woo, C.W.; Thiele, C.J. Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res., 2006, 66(8), 4249-4255.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2789] [PMID: 16618748]
[144]
Conigliaro, A.; Costa, V.; Lo Dico, A.; Saieva, L.; Buccheri, S.; Dieli, F.; Manno, M.; Raccosta, S.; Mancone, C.; Tripodi, M.; De Leo, G.; Alessandro, R. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer, 2015, 14, 155.
[http://dx.doi.org/10.1186/s12943-015-0426-x] [PMID: 26272696]
[145]
Grange, C.; Tapparo, M.; Collino, F.; Vitillo, L.; Damasco, C.; Deregibus, M.C.; Tetta, C.; Bussolati, B.; Camussi, G. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res., 2011, 171(15), 5346-5356.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0241] [PMID: 21670082]