Nanoscience & Nanotechnology-Asia

Author(s): Somrita Ghosh and Aritra Acharyya*

DOI: 10.2174/2210681208666180813123035

Multiple Quantum Barrier Nano-avalanche Photodiodes - Part II: Excess Noise Characteristics

Page: [185 - 191] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Excess noise characteristics of Multiple Quantum Barrier (MQB) nanoscale avalanche photodiodes (APDs) based on Si~3C-SiC heterostructures have been studied in this part of the paper. The multiplication gain and Excess Noise Factor (ENF) of the MQB APDs have been calculated by varying the number of Quantum Barriers (QBs).

Methods: The numerically calculated ENF values of MQB APDs have been compared with the ENF of Si flat conventional APDs of similar dimensions and it is observed that the use of QBs leads to significant reduction in ENF of the APDs under similar biasing and illumination conditions.

Results: The enhanced ratio of hole to electron ionization rates in MQB structures as compared to the bulk Si APD structure has been found to be the primary cause of improvement in the noise performance of the MQB nano-APDs.

Conclusion: Finally, the numerically calculated ENF of Si flat APD has been compared with the experimentally measured ENF of a commercially available Si APD and those are found to be in good agreement; this comparison validates the simulation methodology adopted by the authors in this paper.

Keywords: Avalanche photodiodes, excess noise factor, multiplication gain, multiple quantum barrier (MQB), Si~3C-SiC heterostructures, Excess Noise Factor (ENF).

Graphical Abstract

[1]
McIntyre, R.J. Multiplication noise in uniform avalanche diodes. IEEE Trans. Electron Dev., 1966, 13, 164-168.
[2]
Othman, M.A.; Taib, S.N.; Husain, M.N.; Napiah, Z.A.F.M. Reviews on avalanche photodiode for optical communication technology. ARPN J. Eng. Appl. Sci., 2004, 9(1), 35-44.
[3]
Teich, M.C.; Matsuo, K.; Saleh, B.E.A. Excess noise factors for conventional and supperlattice avalanche photodiodes and photomultiplier tube. IEEE J. Quantum Electron., 1996, 22(8), 1184-1193.
[4]
Brennan, K.F.; Haralson, J. Superlattice and multiquantum well avalanche photodetectors: Physics, concepts and performance. Superlattices Microstruct., 2000, 28(2), 77-104.
[5]
Acharyya, A.; Ghosh, S. Dark current reduction in nano-avalanche photodiodes by incorporating multiple quantum barriers. Int. J. Electron., 2017, 104(12), 1957-1973.
[6]
Ghosh, S.; Charyya, A. Multiple quantum barrier nano-avalanche photodiodes – Part I: Spectral response. Nanosci. Nanotechnol. Asia, 2019. [EPub ahead of Print].
[7]
Arthur, J.R. Molecular beam epitaxy. Surf. Sci., 2002, 500(1-3), 189-217.
[8]
Vyas, H.P.; Gutmann, R.J.; Borrego, J.M. Effect of hole versus electron photocurrent on microwave-optical interactions in Impatt oscillators. IEEE Trans. Electron Dev., 1979, 26(3), 232-234.
[9]
Capasso, F.; Tsang, W.T.; Williams, G.F. Staircase solid-state photomultiplier and avalanche photodiodes with enhanced ionization rates ratio. IEEE Trans. Electron Dev., 1983, 30(4), 381-390.
[10]
Grant, W.N. Electron and hole ionization rates in epitaxial Silicon. Solid-State Electron., 1973, 16, 1189-1203.
[11]
Bellotti, E.; Nilsson, H.E.; Brennan, K.F.; Ruden, P.P. Ensemble Monte Carlo calculation of hole transport in bulk 3C-SiC. J. Appl. Phys., 1999, 85(6), 3211-3217.
[12]
Mickevicius, R.; Zhao, J.H. Monte Carlo study of electron transport in SiC. J. Appl. Phys., 1998, 83(6), 3161-3167.
[13]
Chin, R.; Holonyak, N.; Stillman, G.E.; Tang, J.Y.; Hess, K. Impact ionisation in multilayered heterojunction structures. Electron. Lett., 1980, 16(12), 467-468.
[14]
Shichuo, H.; Kolbas, R.M.; Holonyak, N.; Dupuis, R.D.; Dapkus, P.D. Carrier collection in a semiconductor quantum well. Solid State Commun., 1978, 27, 1029-1032.
[15]
Holonyak, N.; Kolbas, R.M.; Dupuis, R.D.; Dapkus, P.D. Quantum-well heterostructure lasers. IEEE J. Quantum Electron., 1980, 16, 170-186.
[16]
van Vliet, K.M.; Friedmann, A.; Rucker, L.M. Theory of carrier multiplication and noise in avalanche devices - Part II: Two-carrier processes. IEEE Trans. Electron Dev., 1979, 26, 752-764.
[17]
Rajkanan, K.; Singh, R.; Shewchun, J. Absorption coefficient of silicon for solar cell calculations. Solid-State Electron., 1979, 22(9), 793-795.
[18]
Spitzer, W.; Fan, H.Y. Infrared absorption in n-type silicon. Phys. Rev., 1957, 108(2), 268-271.
[19]
Hara, H.; Nishi, Y. Free Carrier absorption in p-type silicon. J. Phys. Soc. Jpn., 1966, 21(6), 1222.
[20]
Solangi, A.; Chaudry, M.I. Absorption coefficient of beta--SiC grown by chemical vapor deposition. J. Mater. Res., 1992, 7, 539-541.
[21]
Mukherjee, K.; Das, N.R. Absorption coefficient in a MQW intersubband photodetector with non-uniform doping density & layer distribution. Prog. Electromagn. Res. M, 2014, 38, 193-201.
[22]
Manasreh, O. Semiconductor Heterojunctions and Nanostructures; McGraw-Hill: New York, 2005, pp. 210-216.
[23]
Canali, C.; Ottaviani, G.; Quaranta, A.A. Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids, 1971, 32, 1707-1720.
[24]
Electronic archive: New semiconductor materials, characteristics and properties: Available from http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC/index.html (Accessed on: December 3, 2017).
[25]
Zeghbroeck, B.V. Principles of Semiconductor Devices; Colorado Press: USA, 2011.
[26]
May, C.P. Impact ionization rate calculations for device simulation; ETH, Eidgenössische Technische Hochschule Zürich, Integrated Systems Laboratory. , 2005.
[27]
Yan-Kun, D.; Xin, Q.; Hai-Bo, J.; Mao-Sheng, C.; Zahid, U.; Zhi-Ling, H. First principle study of the electronic properties of 3C-SiC doped with different amounts of Ni. Chin. Phys. Lett., 2012, 29(7), 077701-1-4.
[28]
Technical information; Characteristics and use of Si APD (Avalanche Photodiode): Available from. http://neutron.physics.ucsb.edu/docs/Characteristics_and_use_of_SI_APD.pdf (Accessed on: December 3, 2017).