Preparation and Characterization of FeCo2O4 Nanoparticles: A Robust and Reusable Nanocatalyst for the Synthesis of 3,4-Dihydropyrimidin- 2(1H)-thiones and Thiazolopyrimidines

Page: [637 - 646] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The present research describes a mild and efficient method for the synthesis of 3,4-dihydropyrimidine-2(1H)-thiones and thiazolopyrimidine via multi-component reactions using FeCo2O4 nanoparticles. It was found that FeCo2O4 nanoparticles act as a powerful and effective catalyst. The prepared catalyst was characterized by the various spectroscopic techniques.

Objective: The three-component reaction of thiourea, aromatic aldehydes and ethyl acetoacetate was catalyzed by FeCo2O4 nanoparticles. Next, the prepared 3,4-dihydropyrimidin-2(1H)-thiones were applied for the preparation of thiazolopyrimidines via the reactions of 3,4-dihydropyrimidine-2(1H)- thiones, chloroacetic acid, and aromatic aldehydes in the presence of FeCo2O4 nanoparticles.

Methods: The FeCo2O4 nanoparticles were synthesized by a facile one-step method and the structure determination of the catalyst has been done using spectral techniques.

Then, the prepared nanocatalyst was used in the synthesis of 3,4-dihydropyrimidin-2(1H)-thiones and thiazolopyrimidines under solvent-free conditions at 80°C.

Results: FeCo2O4 nanoparticles as a magnetic nanocatalyst were applied as a catalyst in the synthesis of some heterocyclic compounds in excellent yields and short reaction times. The average particle size of the catalyst is found to be 30-40 nm. The study on the reusability of the FeCo2O4 nanoparticles showed the recovered catalyst could be reused fifth consecutive times. We propose that FeCo2O4 nanoparticles act as a Lewis acid cause to increase electrophilicity of carbonyl groups of substrates and intermediates to promote the reactions.

Conclusion: The present research introduced various advantageous including excellent yields, short reaction times, simple workup procedure and recyclability of the FeCo2O4 NPs in order to the synthesis of 3,4-dihydropyrimidin-2(1H)-thiones and thiazolopyrimidines.

Keywords: Thiazolopyrimidine, Biginelli reaction, dihydropyrimidin-2(1H)-thione, solvent-free, FeCo2O4, nanoparticles.

Graphical Abstract

[1]
Chen, H.C.; Qiu, J.T.; Yang, F.L.; Liu, Y.C.; Chen, M.C.; Tsai, R.Y.; Yang, H.W.; Lin, C.Y.; Lin, C.C.; Wu, T.S. Magnetic-composite-modified polycrystalline silicon nanowire field-effect transistor for vascular endothelial growth factor detection and cancer diagnosis. Anal. Chem., 2014, 86, 9443-9450.
[2]
Radović, M.; Calatayud, M.P.; Goya, G.F.; Ibarra, M.R.; Antić, B.; Spasojević, V.; Nikolić, N.; Janković, D.; Mirković, M.; Vranješ-Đurić, S. Preparation and in vivo evaluation of multifunctional 90Y-labeled magnetic nanoparticles designed for cancer therapy. J. Biomed. Mater. Res. A, 2015, 103, 126-134.
[3]
Da Silva, E.P.; Sitta, D.L.; Fragal, V.H.; Cellet, T.S.; Mauricio, M.R.; Garcia, F.P.; Nakamura, C.V.; Guilherme, M.R.; Rubira, A.F.; Kunita, M.H. Covalent TiO2/pectin microspheres with Fe3O4 nanoparticles for magnetic field-modulated drug delivery. Int. J. Biol. Macromol., 2014, 67, 43-52.
[4]
Rui, F.; Bovenzi, M.; Prodi, A.; Fortina, A.B.; Romano, I.; Corradin, M.T.; Filon, F.L. Nickel, chromium and cobalt sensitization in a patch test population in north-eastern Italy. Contact Dermat., 2013, 68, 23-31.
[5]
Wee, T.L.; Sherman, B.D.; Gust, D.; Moore, A.L.; Moore, T.A.; Liu, Y.; Scaiano, J.C. Photochemical Synthesis of a Water Oxidation Catalyst Based on Cobalt Nanostructures. J. Am. Chem. Soc., 2011, 133, 16742-16745.
[6]
Zuo, X.; Niu, F.; Snavely, K.; Subramaniam, B.; Busch, D.H. Liquid phase oxidation of p-xylene to terephthalic acid at medium-high temperatures: Multiple benefits of CO2-expanded liquids. Green Chem., 2010, 12, 260-267.
[7]
Hawkins, M. Why We Need Cobalt. Applied earth science: Transactions of the institution of mining & metallurgy. Section, 2001. B 110, 2, 66-71.
[8]
Jahangiri, H.; Bennett, J.; Mahjoubi, P.; Wilson, K.; Gu, S. A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol., 2014, 4, 2210-2229.
[9]
Khodakov, A.Y.; Chu, W.; Fongarland, P. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev., 2007, 107(5), 1692-1744.
[10]
Hebrard, F.; Kalck, P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle. Chem. Rev., 2009, 109(9), 4272-4282.
[11]
(a)Weber, L. High-diversity combinatorial libraries. Curr. Opin. Chem. Biol., 2000, 4, 295-302.
(b)Montgomery, J. Nickel catalyzed cyclizations, couplings, and cycloadditions involving three reactive components. Acc. Chem. Res., 2000, 33, 467-473.
(c)Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39, 3168-3210.
(d)Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106, 17-89.
(e)Zhu, J. Recent developments in the isonitrile‐based multicomponent synthesis of heterocycles. Eur. J. Org. Chem., 2003, 2003, 1133-1144.
(f)Hulme, C.; Lee, Y. Emerging approaches for the syntheses of bicyclic imidazo[1,2-x]-heterocycles. Mol. Divers., 2008, 12, 1-15.
[12]
Mobinkhaledi, A.; Khajeh-Amiri, A.R. N-propylpiperazine sulfonic acid immobilized on Fe3O4 magnetic silica nanoparticles: An efficient and heterogeneous catalyst for the one-pot synthesis of 9H-xanthene or methylenediphenol derivatives under solvent-free conditions. React. Kinet. Mech. Catal., 2014, 112, 131-145.
[13]
(a)Mouradzadegun, A.; Mostafavi, M.S.; Ganjali, M.R. A novel sulfamic acid functionalized nano-catalyst on the basis of calix[4]resorcinarene for the green onepot synthesis of 2H-indazolo[2,1-b]phthalazine-triones under thermal solvent-free conditions. React. Kinet. Mech. Catal., 2018, 124, 741-755.
(b)Plunkett, M.; Ellman, J.A. Combinatorial chemistry and new drugs. Sci. Am., 1997, 276, 68-73.
(c)Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science, 2000, 287, 1964-1968.
[14]
Biginelli, P. Ueber Aldehyduramide des Acetessigäthers. Chem. Ber., 1891, 24, 1317-1319.
[15]
Makaev, F.; Styngach, E.; Muntyanu, V.; Pogrebnoi, S. New catalysts of Biginelli reaction. Russ. J. Org. Chem., 2007, 43, 1512-1515.
[16]
Hussain, M.M.M.; Bhat, K.I.; Revanasiddappab, B.C.; Bharathi, D.R. Synthesis and biological evaluation of some novel 2-mercapto pyrimidines. Int. J. Pharm. Pharm. Sci., 2013, 2, 471-473.
[17]
Mohamed, M.S.; Awad, S.M.; Zohny, Y.M.; Mohamed, Z.M. New thiopyrimidine derivatives of expected antiinflammatory activity. Pharmacophore, 2012, 3(1), 62-75.
[18]
Nag, S.; Pathak, R.; Kumar, M.; Shukla, P.K.; Batra, S. Synthesis and antibacterial evaluation of ureides of Baylis–Hillman derivatives. Bioorg. Med. Chem., 2006, 16, 3824-3828.
[19]
Hoffmann, H.H.; Kunz, A.; Simon, V.A.; Palese, P.; Shaw, M.L. Broad-spectrum antiviral that interferes with de novopyrimidine biosynthesis. Proc. Natl. Acad. Sci. USA, 2011, 14, 5777-5782.
[20]
Clercq, E.D.; Holý, A. Acyclic nucleoside phosphonates: A key class of antiviral drugs. Nat. Rev. Drug Discov., 2005, 4, 928-940.
[21]
Trivedi, A.R.; Dodiya, D.K.; Ravat, N.R.; Shah, V.H. Synthesis and biological evaluation of some new pyrimidines via a novel chalcone series. ARKIVOC, 2008, 2008, 131-141.
[22]
Trivedi, A.R.; Siddiqui, A.B.; Shah, V.H. Design, synthesis, characterization and antitubercular activity of some 2-heterocycle-substituted phenothiazines. ARKIVOC, 2008, 2008, 210-217.
[23]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M.S. Synthesis of 2,4,6-trisubstituted pyrimidines as antimalarial agents. Bioorg. Med. Chem., 2005, 13, 4645-4650.
[24]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Sinha, S.; Chauhan, P.M.S. A small library of trisubstituted pyrimidines as antimalarial and antitubercular agents. Bioorg. Med. Chem. Lett., 2005, 15, 5218-5221.
[25]
Sondhi, S.M.; Dinodia, M.; Rani, R.; Shukla, R.; Raghubir, R. Synthesis, anti-inflammatory and analgesic activity evaluation of some pyrimidine derivatives. Indian J. Chem., 2009, 49b, 273-281.
[26]
EL-gazzar. A.B.A.; Hussein, H.A.R.; Hafez, H.N. Synthesis and biological evaluation of thieno[2,3-d]pyrimidine derivatives for anti-inflammatory, analgesic and ulcerogenic activity. Acta Pharm., 2007, 57, 395-411.
[27]
Majeed, J.; Shaharyar, M. Synthesis and in vivo diuretic activity of some novel pyrimidine derivatives. J. Enzyme Inhib. Med. Chem., 2011, 26(6), 819-826.
[28]
Morris, G.W.; Iams, T.A.; Slepchenko, K.G.; McKee, E.E. Origin of pyrimidine deoxyribonucleotide pools in perfused rat heart: Implications for γ′-azido-γ′-deoxythymidine-dependent cardiotoxicity. Biochem. J., 2009, 422, 513-520.
[29]
Reading, S.A.; Earley, S.; Waldron, B.J.; Welsh, D.G.; Brayden, J.E. TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral arteries. Am. J. Physiol. Heart Circ. Physiol., 2005, 288, H2055-H2061.
[30]
Jain, K.S.; Chitre, T.S.; Miniyar, P.B.; Kathiravan, M.K.; Bendre, V.S.; Veer, V.S.; Shahane, S.R.; Shishoo, J. Biological and medicinal significance of pyrimidines. Curr. Sci., 2006, 90(6), 793-803.
[31]
Mishra, R.; Tomar, I. The molecule of diverse biological and medicinal importance. IJPSR 2, 2011. 4, 758-771.
[32]
Abu-Hashem, A.A.; El-Shehry, M.F.; Badria, F.A. Design and synthesis of novel thiophene- carbohydrazide, thienopyrazole and thienopyrimidine derivatives as antioxidant and antitumor agents. Acta Pharm., 2010, 60, 311-323.
[33]
Padmaja, A.; Payani, T.; Reddy, G.D. Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives. Eur. J. Med. Chem., 2009, 449(11), 4557-4566.
[34]
Sabitha, G.; Reddy, G.S.; Reddy, K.K.; Yadav, B.; Vanadium, J.S. Vanadium(III) chloride catalyzed Biginelli condensation: Solution phase library generation of dihydropyrimidin-(2H)-ones. Tetrahedron Lett., 2003, 44, 6497-6499.
[35]
Hui, X.; Yan-Guang, W. A rapid and efficient Biginelli reaction catalyzed by zinc triflate. Chin. J. Chem., 2003, 21, 327-331.
[36]
Reilly, B.C.O.; Atwal, K.S. Synthesis of substituted 1,2,3,4-tetrahydro-6-methyl-2-oxo-5-pyrimidinecarboxylic acid esters. Heterocycles, 1987, 26, 1185-1188.
[37]
García-Valverde, M.; Torroba, T. Sulfur-nitrogen heterocycles. Molecule, 2005, 10, 318-320.
[38]
Geist, J.G.; Lauw, S.; Illarinova, V.; Fischer, M.; Gwawert, T.; Rohdich, F.; Eisenreich, W.; Kaiser, J.; Groll, M.; Scheurer, C. Thiazolopyrimidine inhibitors of 2-methylerythritol 2,4-cyclodiphosphate synthase (IspF) from Mycobacterium tuberculosis and Plasmodium falciparum. ChemMedChem, 2010, 5, 1092-1101.
[39]
Amr, A.E.G.; Maigali, S.S.; Abdulla, M.M. Synthesis, and analgesic and antiparkinsonian activities of thiopyrimidine, pyrane, pyrazoline, and thiazolopyrimidine derivatives from 2-chloro- 6-ethoxy-4-acetylpyridine. Monatsh. Chem., 2008, 139, 1409-1415.
[40]
Branstetter, B.J.; Breitenbucher, J.G.; Lebsack, A.D.; Xiao, W. Thiazolopyrimidine modulators of TRPV1. WO2008005303, January 01, 2008.
[41]
Flefel, E.E.; Salama, M.A.; El-Shahat, M.; El-Hashash, M.A.; El-Farargy, A.F. A novel synthesis of some new pyrimidine and thiazolopyrimidine derivatives for anticancer evaluation. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182, 1739-1756.
[42]
Hammam, A.G.; Sharaf, M.A.; Abdel Hafez, N.A. Synthesis and anti-cancer activity of pyridine and thiazolopyrimidine derivatives using ethylpiperidone as a synthon. Indian J. Chem., 2001, 40B, 213-221.
[43]
Said, M.; Abouzid, K.; Mouneer, A.; Ahmedy, A.; Osman, A.M. Synthesis and biological evaluation of new thiazolopyrimidines. Arch. Pharm. Res., 2004, 27, 471-477.
[44]
Linder, W.; Brandes, W. Pesticidal thiazolopyrimidine derivatives. U.S. Patent 4,996,208, February 26, 1991.
[45]
Duval, R.; Kolb, S.; Braud, E.; Genest, D.; Garbay, C. Rapid discovery of triazolobenzylidenethiazolopyrimidines (TBTP) as CDC25 phosphatase inhibitors by parallel click chemistry and in situ screening. J. Comb. Chem., 2009, 11, 947-950.
[46]
Kolb, S.; Mondésert, O.; Goddard, M.L.; Jullien, D.; Villoutreix, B.O.; Ducommun, B.; Garbay, C.; Braud, E. Development of novel thiazolopyrimidines as CDC25B phosphatase inhibitors. ChemMedChem, 2009, 4, 633-648.
[47]
Zhi, H.; Chen, L.; Zhang, L.; Liu, S.; Wan, D.C.C.; Lin, H.; Hu, C. Design, synthesis, and biological evaluation of 5H-thiazolo[3,2-a]pyrimidine derivatives as a new type of acetylcholinesterase inhibitors. ARKIVOC, 2008, xiii, 266-277.
[48]
Rashad, A.E.; Shamroukh, A.H.; Abdel-Megeid, R.E.; El-Sayed, W.A. Synthesis, reactions and antimicrobial evaluation of some polycondensedthieno-pyrimidine derivatives. Synth. Commun., 2010, 40, 1149-1160.
[49]
El-Emary, T.I.; Abdel-Mohsen, S.A. Synthesis and antimicrobial activity of some new 1,3-diphenylpyrazoles bearing pyrimidine, pyrimidinethione, thiazolopyrimidine, triazolopyrimidine, thio- and alkylthiotriazolopyrimidinone moieties at the 4-position. Phosphorus Sulfur Silicon Relat. Elem., 2006, 181, 2459-2474.
[50]
Maddila, S.; Damu, G.L.V.; Oseghe, E.O.; Abafe, O.A.; Venakata, R.C.; Lavanya, P. Synthesis and biological studies of novel biphenyl-3,5-dihydro-2H-thiazolo-pyrimidines derivatives. J. Korean Chem. Soc., 2012, 56, 334-340.
[51]
Baxter, A.; Cooper, A.; Kinchin, E.; Moakes, K.; Unitt, J.; Wallace, A. Hit-to-lead studies: The discovery of potent, orally bioavailable thiazolopyrimidine CXCR2 receptor antagonists. Bioorg. Med. Chem. Lett., 2006, 16, 960-963.
[52]
Youssefi, M.S.K.; Ahmed, R.A.; Abbady, M.S.; Abdel-Mohsen, S.A.; Omar, A.A. Reactions of 4-(2-aminothiazole-4-yl)-3-methyl-5-oxo-1-phenyl-2-pyrazoline. Synthesis of thiazolo[3,2-a]pyrimidine and imidazo[2,1-b]thiazole derivatives. Monatsh. Chem., 2008, 139, 553-559.
[53]
Nagarajaiah, H.; Khazi, I.M.; Begum, N.S. Synthesis, characterization and biological evaluation of thiazolopyrimidine derivatives. J. Chem. Sci., 2012, 124(4), 847-855.
[54]
Azam, F.; Alkskas, A.I.; Ahmed, A.M. Synthesis of some urea and thiourea derivatives of 3-phenyl/ethyl-2-thioxo-2,3-dihydrothiazolo[4,5-d]pyrimidine and their antagonistic effects on haloperidol-induced catalepsy and oxidative stress in mice. Eur. J. Med. Chem., 2009, 44, 3889-3897.
[55]
Mohamed, S.F.; Flefel, E.M.; Amr, A.E.; El-Shafy, D.N.A. Anti-HSV-1 activity and mechanism of action of some new synthesized substituted pyrimidine, thiopyrimidine and thiazolopyrimidine derivatives. Eur. J. Med. Chem., 2010, 45, 1494-1501.
[56]
Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B.; Abdollahi-Basr, M.H. Rapid and efficient one-pot synthesis of 3,4-dihydroquinoxalin-2-amine derivatives catalyzed by Co3O4@SiO2 core-shell nanoparticles under ultrasound irradiation. Comb. Chem. High Throughput Screen., 2016, 19, 592-601.
[57]
Ghasemzadeh, M.A.; Abdollahi-Basir, M.H.; Babaei, M. Fe3O4@SiO2-NH2 core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno[2,3-b]pyridines in aqueous ethanol media. Green Chem. Lett. Rev., 2015, 8, 40-49.
[58]
Safaei-ghomi, J.; Eshteghal, F.; Ghasemzadeh, M.A. Solvent-free synthesis of dihydropyrano[3,2-c]chromene and biscoumarin derivatives using magnesium oxide nanoparticles as a recyclable catalyst. Acta Chim. Slov., 2014, 61, 703-708.
[59]
Ghasemzadeh, M.A. Synthesis and characterization of Fe3O4@SiO2 NPs as an effective catalyst for the synthesis of tetrahydrobenzo[a]xanthen-11-ones. Acta Chim. Slov., 2015, 62, 977-985.
[60]
Selvapriya, R.; Alagar, M. Eparation and structural, morphological and electrochemical characteristics of spinel FeCo2O4 nanostructures with enhanced supercapacitance activity. Int. J. Tech. Res. App., 2016, 37, 12-15.
[61]
Yu, Y.; Liu, D.; Liu, C.; Luo, G. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst. Bioorg. Med. Chem. Lett., 2007, 17(12), 3508-3510.
[62]
Javad, S.G.; Raheleh, T.; Abolfazl, Z. A green synthesis of 3,4-dihydropyrimidine-2(1H)-one/thione derivatives using nanosilica-supported tin(II) chloride as a heterogeneous nanocatalyst. Monatsh. Chem., 2013, 144, 1865-1870.
[63]
Mobinikhaledi, A.; Zendehdel, M.; Hamidi Nasab, M.; Bodaghi Fard, M.A. An efficient synthesis of some novel bicyclic thiazolopyrimidine derivatives. Heterocycl. Commun., 2009, 15, 451-458.
[64]
Khabazzadeh, H.; Saidi, K.; Sheibani, H. Microwave-assisted synthesis of dihydropyrimidin-2(1H)-ones using graphite supported lanthanum chloride as a mild and efficient catalyst. Bioorg. Med. Chem. Lett., 2008, 18, 278-280.
[65]
Bandgar, B.P.; Kamble, V.T.; Bavikar, S.N.; Dhavane, A. Sodium tetrafluoroborate as a new and highly efficient catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones. J. Chin. Chem. Soc., 2007, 54, 263-266.
[66]
Bigi, F.; Carloni, S.; Frullanti, B.; Maggi, R.; Sartori, G. A revision of the Bigineili reaction under solid acid catalysis. solvent-free synthesis of dihydropyrimidines over montmorilionite KSF. Tetrahedron Lett., 1999, 40, 3465-3468.
[67]
Hu, E.H.; Sidler, D.R.; Dolling, U-H. Unprecedented catalytic three component one-pot condensation reaction: An efficient synthesis of 5-alkoxycarbonyl- 4-aryl-3,4-dihydropyrimidin-2(1H)-ones. J. Org. Chem., 1998, 63, 3454-3457.
[68]
Liu, C.; Jide, W.; Li, Y. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-(thio)ones using strontium(II) nitrate as a catalyst. J. Mol. Catal. Chem., 2006, 258, 367-370.
[69]
Ranu, B.C.; Hajra, A.; Jana, U. Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: An improved procedure for the Biginelli reaction. J. Org. Chem., 2000, 65, 6270-6272.
[70]
Liu, C.J.; Wang, J.D. Copper(II) sulfamate: An efficient catalyst for the one-pot synthesis of 3,4-dihydropyrimidine-2(1H)-ones and thiones. Molecules, 2009, 14, 763-770.