Hsp70 Escort Protein: More Than a Regulator of Mitochondrial Hsp70

Page: [64 - 73] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Hsp70 members occupy a central role in proteostasis and are found in different eukaryotic cellular compartments. The mitochondrial Hsp70/J-protein machinery performs multiple functions vital for the proper functioning of the mitochondria, including forming part of the import motor that transports proteins from the cytosol into the matrix and inner membrane, and subsequently folds these proteins in the mitochondria. However, unlike other Hsp70s, mitochondrial Hsp70 (mtHsp70) has the propensity to self-aggregate, accumulating as insoluble aggregates. The self-aggregation of mtHsp70 is caused by both interdomain and intramolecular communication within the ATPase and linker domains. Since mtHsp70 is unable to fold itself into an active conformation, it requires an Hsp70 escort protein (Hep) to both inhibit self-aggregation and promote the correct folding. Hep1 orthologues are present in the mitochondria of many eukaryotic cells but are absent in prokaryotes. Hep1 proteins are relatively small and contain a highly conserved zinc-finger domain with one tetracysteine motif that is essential for binding zinc ions and maintaining the function and solubility of the protein. The zinc-finger domain lies towards the C-terminus of Hep1 proteins, with very little conservation outside of this domain. Other than maintaining mtHsp70 in a functional state, Hep1 proteins play a variety of other roles in the cell and have been proposed to function as both chaperones and co-chaperones. The cellular localisation and some of the functions are often speculative and are not common to all Hep1 proteins analysed to date.

Keywords: Molecular chaperones, Hsp70 escort protein, mitochondrial Hsp70, self-aggregation, zinc finger domain, mitochondria.

Graphical Abstract

[1]
Daugaard, M.; Rohde, M.; Jäättelä, M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett., 2007, 581(19), 3702-3710.
[2]
Tomala, K.; Korona, R. Molecular chaperones and selection against mutations. Biol. Direct, 2008, 3, 5.
[3]
Frydman, J. Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu. Rev. Biochem., 2001, 70, 603-647.
[4]
Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanisms. Cell. Mol. Life Sci., 2005, 62(6), 670-684.
[5]
Zhu, X.; Zhao, X.; Burkholder, W.F.; Gragerov, A.; Ogata, C.M.; Gottesman, M.E.; Hendrickson, W.A. Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 1996, 272(5268), 1606-1614.
[6]
Kampinga, H.H.; Craig, E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol., 2010, 11(8), 579-592.
[7]
Regev-Rudzki, N.; Gabriel, K.; Bursać, D. The evolution and function of co-chaperones in mitochondria. Subcell. Biochem., 2015, 78, 201-217.
[8]
Fan, C.Y.; Lee, S.; Cyr, D.M. Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones, 2003, 8(4), 309-316.
[9]
Langer, T.; Lu, C.; Echols, H.; Flanagan, J.; Hayer, M.K.; Hartl, F.U. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, 1992, 356(6371), 683-689.
[10]
Pellecchia, M.; Szyperski, T.; Wall, D.; Georgopoulos, C.; Wüthrich, K. NMR structure of the J-domain and the Gly/ Phe-rich region of the Escherichia coli DNAJ chaperone. J. Mol. Biol., 1996, 260(2), 236-250.
[11]
Cheetham, M.E.; Caplan, A.J. Structure, function and evolution of DNAJ: Conservation and adaptation of chaperone function. Cell Stress Chaperones, 1998, 3(1), 28-36.
[12]
Kampinga, H.H.; Hageman, J.; Vos, M.J.; Kubota, H.; Tanguay, R.M.; Bruford, E.A.; Cheetham, M.E.; Chen, B.; Hightower, L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones, 2009, 14(1), 105-111.
[13]
Hennessy, F.; Nicoll, W.S.; Zimmermann, R.; Cheetham, M.E.; Blatch, G.L. ‘Not all J domains are created equal: Implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci., 2005, 14(7), 1697-1709.
[14]
Botha, M.; Pesce, E.R.; Blatch, G.L. The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: Regulating chaperone power in the parasite and the host. Int. J. Biochem. Cell Biol., 2007, 39(10), 1781-1803.
[15]
Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol., 2001, 2(5), 339-349.
[16]
Young, J.C.; Moarefi, I.; Hartl, F.U. Hsp90: A specialized but essential protein-folding tool. J. Cell Biol., 2003, 154(2), 267-273.
[17]
Neupert, W.; Brunner, M. The protein import motor of mitochondria. Nat. Rev. Mol. Cell Biol., 2002, 3(8), 555-565.
[18]
Bolender, N.; Sickmann, A.; Wagner, R.; Meisinger, C.; Pfanner, N. Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep., 2008, 9(1), 42-49.
[19]
Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell, 2009, 138(4), 628-644.
[20]
Kang, P.J.; Ostermann, J.; Shilling, J.; Neupert, N.; Craig, E.A.; Pfanner, N. Requirement of hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature, 1990, 348(6297), 137-146.
[21]
Matouschek, A.; Pfanner, N.; Voos, W. Protein unfolding by mitochondria. The Hsp70 import motor. EMBO Rep., 2000, 1(5), 404-410.
[22]
Feldmann, D.E.; Frydman, J. Protein folding in vivo: The importance of molecular chaperones. Curr. Opin. Struct. Biol., 2000, 10(1), 26-33.
[23]
Hohfeld, J. Regulation of the heat shock conjugate Hsc70 in the mammalian cell: The characterization of the antiapoptotic protein BAG-1 provides novel insights. Biol. Chem., 2001, 379(3), 269-274.
[24]
Wagner, I.; Arlt, H.; van Dyck, L.; Langer, T.; Neupert, N. Molecular chaperones cooperate with PIM1 protease in degradation of misfolded proteins in mitochondria. EMBO J., 1994, 13(21), 5135-5145.
[25]
Craig, E.A.; Kramer, J.; Kosic-Smithers, J. SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc. Natl. Acad. Sci. USA, 1987, 84(12), 4156-4160.
[26]
Voisine, C.; Cheng, Y.C.; Ohlson, M.; Schilke, B.; Hoff, K.; Beinert, H.; Marszalek, J.; Craig, E.A. Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 2001, 98(4), 1483-1488.
[27]
Yoneda, T.; Benedetti, C.; Urano, F.; Clark, S.G.; Harding, H.P.; Ron, D. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J. Cell Sci., 2004, 117(18), 4055-4066.
[28]
Falah, M.; Gupta, R.S. Cloning of the hsp70 (dnaK) genes from Rhizobium meliloti and Pseudomonas cepacia: Phylogenetic analyses of mitochondrial origin based on a highly conserved protein sequence. J. Bacteriol., 1994, 176(24), 7748-7753.
[29]
Tschopp, F.; Charrière, F.; Schneider, A. In vivo study in Trypanosoma brucei links mitochondrial transfer RNA import to mitochondrial protein import. EMBO Rep., 2011, 12(8), 825-832.
[30]
Týč, J.; Klingbeil, M.M.; Lukeš, J. Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. MBio, 2015, 6(1), e02425-e02414.
[31]
Louw, C.A.; Ludewig, M.H.; Mayer, J.; Blatch, G.L. The Hsp70 chaperones of the Tritryps are characterized by unusual features and novel members. Parasitol. Int., 2010, 59(4), 497-505.
[32]
Craig, E.A.; Marszalek, J. A specialized mitochondrial molecular chaperone system: A role in formation of Fe/S centers. Cell. Mol. Life Sci., 2002, 59(10), 1658-1665.
[33]
Wadhwa, R.; Taira, K.; Kaul, S.C. An Hsp70 family chaperone, mortalin/mthsp70/PBP74/GRP75: What, when, and where? Cell Stress Chaperones, 2002, 7(3), 309-316.
[34]
Burbulla, L.F.; Schelling, C.; Kato, H.; Rapaport, D.; Woitalla, D.; Schiesling, C.; Schulte, C.; Sharma, M.; Illig, T.; Bauer, P.; Jung, S.; Nordheim, A.; Schöls, L.; Riess, O.; Krüger, R. Dissecting the role of the mitochondrial chaperone mortalin in Parkinson’s disease: Functional impact of disease-related variants on mitochondrial homeostasis. Hum. Mol. Genet., 2010, 19(22), 4437-4452.
[35]
Londono, C.; Osorio, C.; Gama, V.; Alzate, O. Mortalin, apoptosis, and neurodegeneration. Biomolecules, 2012, 2(1), 143-164.
[36]
D’Silva. P.D.; Schilke, B.; Walter, W.; Andrew, A.; Craig, E.A. J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 13839-13844.
[37]
Mokranjac, D.; Bourenkov, G.; Hell, K.; Neupert, W.; Groll, M. Structure and function of Tim14 and Tim16, the J and J-like components of the mitochondrial protein import motor. EMBO J., 2006, 25(19), 4675-4685.
[38]
Truscott, K.N.; Voos, W.; Frazier, A.E.; Lind, M.; Li, Y.; Geissler, A.; Dudek, J.; Müller, H.; Sickmann, A.; Meyer, H.E.; Meisinger, C.; Guiard, B.; Rehling, P.; Pfanner, N. A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. J. Cell Biol., 2003, 163(4), 707-713.
[39]
Horst, M.; Oppliger, W.; Rospert, S.; Schönfeld, H.J.; Schatz, G.; Azem, A. Sequential action of two hsp70 complexes during protein import into mitochondria. EMBO J., 1997, 16(8), 1842-1849.
[40]
Sichting, M.; Mokranjac, D.; Azem, A.; Neupert, W.; Hell, K. Maintenance of structure and function of mitochondrial Hsp70 chaperones requires the chaperone Hep1. EMBO J., 2005, 24(5), 1046-1056.
[41]
Yamamoto, H.; Momose, T.; Yatsukawa, Y.I.; Ohshima, C.; Ishikawa, D.; Sato, T. Identification of a novel member of yeast mitochondrial Hsp70-associated motor and chaperone proteins that facilitates protein translocation across the inner membrane. FEBS Lett., 2005, 579(2), 507-511.
[42]
Kluth, J.; Schmidt, A.; März, M.; Krupinska, K.; Lorbiecke, R. Arabidopsis zinc ribbon 3 is the ortholog of yeast mitochondrial HSP70 escort protein HEP1 and belongs to an ancient protein family in mitochondria and plastids. FEBS Lett., 2012, 586(19), 3071-3076.
[43]
Burri, L.; Vascotto, K.; Fredersdorf, S.; Tiedt, R.; Hall, M.N.; Lithgow, T. Zim17, a novel zinc finger protein essential for protein import into mitochondria. J. Biol. Chem., 2004, 279(48), 50243-50249.
[44]
Sanjuán Szklarz, L.K.; Guiard, B.; Rissler, M.; Wiedemann, N.; Kozjak, V.; Van Der Laan, M.; Lohaus, C.; Marcus, K.; Meyer, H.E.; Chacinska, A.; Pfanner, N.; Meisinger, C. Inactivation of the mitochondrial heat shock protein Zim17 leads to aggregation of matrix Hsp70s followed by pleiotropic effects on morphology and protein biogenesis. J. Mol. Biol., 2005, 351(1), 206-218.
[45]
Blamowska, M.; Sichting, M.; Mapa, K.; Mokranjac, D.; Neupert, W.; Hell, K. ATPase domain and interdomain linker play a key role in aggregation of mitochondrial Hsp70 chaperone Ssc1. J. Biol. Chem., 2010, 285(7), 4423-4431.
[46]
Vu, M.T.; Zhai, P.; Lee, J.; Guerra, C.; Liu, S.; Gustin, M.C.; Silberg, J.J. The DNLZ/HEP zinc-binding subdomain is critical for regulation of the mitochondrial chaperone HSPA9. Protein Sci., 2012, 21(2), 258-267.
[47]
Zhai, P.; Stanworth, C.; Liu, S.; Silberg, J.J. The human escort protein Hep binds to the ATPase domain of mitochondrial Hsp70 and regulates ATP hydrolysis. J. Biol. Chem., 2008, 283(38), 26098-26106.
[48]
Goswami, A.V.; Chittoor, B.; D’Silva, P. Understanding the functional interplay between mammalian mitochondrial Hsp70 chaperone machine components. J. Biol. Chem., 2010, 285(25), 19472-19482.
[49]
Willmund, F.; Dorn, K.V.; Schulz-Raffelt, M.; Schroda, M. The chloroplast DnaJ homolog CDJ1 of Chlamydomonas reinhardtii is part of a multichaperone complex containing HSP70B, CGE1, and HSP90C. Plant Physiol., 2008, 148(4), 2070-2082.
[50]
Dores-Silva, P.R.; Minari, K.; Ramos, C.H.I.; Barbosa, L.R.S.; Borges, J.C. Structural and stability studies of the human mtHsp70-escort protein 1: an essential mortalin co-chaperone. Int. J. Biol. Macromol., 2013, 56, 140-148.
[51]
Dores-Silva, P.R.; Beloti, L.L.; Minari, K.; Silva, S.M.O.; Barbosa, L.R.S.; Borges, J.C. Structural and functional studies of Hsp70-escort protein--Hep1--of Leishmania braziliensis. Int. J. Biol. Macromol., 2015, 79, 903-912.
[52]
Nyakundi, D.O.; Vuko, L.A.; Bentley, S.J.; Hoppe, H.; Blatch, G.L.; Boshoff, A. Plasmodium falciparum Hep1 is required to prevent the self aggregation of PfHsp70-3. PLoS One, 2016, 11(6), e0156446.
[53]
Baumann, F.; Milisav, I.; Neupert, W.; Herrmann, J.M. Ecm10, a novel hsp70 homolog in the mitochondrial matrix of the yeast Saccharomyces cerevisiae. FEBS Lett., 2000, 487(2), 307-312.
[54]
Momose, T.; Ohshima, C.; Maeda, M.; Endo, T. Structural basis of functional cooperation of Tim15/Zim17 with yeast mitochondrial Hsp70. EMBO Rep., 2007, 8(7), 664-670.
[55]
Zhai, P.; Vu, M.T.; Hoff, K.G.; Silberg, J.J. A conserved histidine in human DNLZ/HEP is required for stimulation of HSPA9 ATPase activity. Biochem. Biophys. Res. Commu., 2011, 408(4), 589-594.
[56]
Blamowska, M.; Neupert, W.; Hell, K. Biogenesis of the mitochondrial Hsp70 chaperone. J. Cell Biol., 2012, 199(1), 125-135.
[57]
Aprile, F.A.; Dhulesia, A.; Stengel, F.; Roodveldt, C.; Benesch, J.L.; Tortora, P.; Robinson, C.V.; Salvatella, X.; Dobson, C.M.; Cremades, N. Hsp70 oligomerization is mediated by an interaction between the interdomain linker and the substrate-binding domain. PLoS One, 2013, 8(6), e67961.
[58]
Jiang, J.; Prasad, K.; Lafer, E.M.; Sousa, R. Structural basis of interdomain communication in the Hsc70 chaperone. Mol. Cell, 2005, 20(4), 513-524.
[59]
Pareek, G.; Samaddar, M.; D’Silva, P. Primary sequence that determines the functional overlap between mitochondrial heat shock protein 70 Ssc1 and Ssc3 of Saccharomyces cerevisiae. J. Biol. Chem., 2011, 286(21), 19001-19013.
[60]
Diaz de la Loza Mdel, C.; Gallardo, M.; Garcia-Rubio, M.L.; Izquierdo, A.; Herrero, E.; Aguilera, A.; Wellinger, R.E. Zim17/Tim15 links mitochondrial iron-sulfur cluster biosynthesis to nuclear genome stability. Nucleic Acids Res., 2011, 39(14), 6002-6015.
[61]
Giaever, G.; Chu, A.M.; Ni, L.; Connelly, C.; Riles, L.; Véronneau, S.; Dow, S.; Lucau-Danila, A.; Anderson, K.; André, B.; Arkin, A.P.; Astromoff, A.; El-Bakkoury, M.; Bangham, R.; Benito, R.; Brachat, S.; Campanaro, S.; Curtiss, M.; Davis, K.; Deutschbauer, A.; Entian, K.D.; Flaherty, P.; Foury, F.; Garfinkel, D.J.; Gerstein, M.; Gotte, D.; Güldener, U.; Hegemann, J.H.; Hempel, S.; Herman, Z.; Jaramillo, D.F.; Kelly, D.E.; Kelly, S.L.; Kötter, P.; LaBonte, D.; Lamb, D.C.; Lan, N.; Liang, H.; Liao, H.; Liu, L.; Luo, C.; Lussier, M.; Mao, R.; Menard, P.; Ooi, S.L.; Revuelta, J.L.; Roberts, C.J.; Rose, M.; Ross-Macdonald, P.; Scherens, B.; Schimmack, G.; Shafer, B.; Shoemaker, D.D.; Sookhai-Mahadeo, S.; Storms, R.K.; Strathern, J.N.; Valle, G.; Voet, M.; Volckaert, G.; Wang, C.Y.; Ward, T.R.; Wilhelmy, J.; Winzeler, E.A.; Yang, Y.; Yen, G.; Youngman, E.; Yu, K.; Bussey, H.; Boeke, J.D.; Snyder, M.; Philippsen, P.; Davis, R.W.; Johnston, M. Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418(6896), 387-391.
[62]
Neupert, W. Protein import into the mitochondria. Annu. Rev. Biochem., 1997, 66, 893-917.
[63]
Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem., 2007, 76, 723-749.
[64]
Geissler, A.; Chacinska, A.; Truscott, K.N.; Wiedemann, N.; Brandner, K.; Sickmann, A.; Meyer, H.E.; Meisinger, C.; Pfanner, N.; Rehling, P. The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell, 2002, 111(4), 507-518.
[65]
Yamamoto, H.; Esaki, M.; Kanamori, T.; Tamura, Y.; Nishikawa, Si.; Endo, T. Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell, 2002, 111(4), 519-528.
[66]
Pfanner, N.; Truscott, K.N. Powering mitochondrial protein import. Nat. Struc. Biol., 2002, 9(4), 234-236.
[67]
Rassow, J.; Maarse, A.C.; Krainer, E.; Kübrich, M.; Müller, H.; Meijer, M.; Craig, E.A.; Pfanner, N. Mitochondrial protein import: Biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44. J. Cell Biol., 1994, 127(6), 1547-1556.
[68]
Kronidou, N.G.; Oppliger, W.; Bolliger, L.; Hannavy, K.; Glick, B.S.; Schatz, G.; Horst, M. Dynamic interaction between Isp45 and mitochondrial hsp70 in the protein import system of the yeast mitochondrial inner membrane. Proc. Natl. Acad. Sci. USA, 1994, 91(26), 12818-12822.
[69]
Hutu, D.P.; Guiard, B.; Chacinska, A.; Becker, D.; Pfanner, N.; Rehling, P.; van der Laan, M. Mitochondrial protein import motor: Differential role of Tim44 in the recruitment of Pam17 and J-complex to the presequence translocase. Mol. Biol. Cell, 2008, 19(6), 2642-2649.
[70]
Bohnert, M.; Pfanner, N.; van der Laan, M. A dynamic machinery for import of mitochondrial precursor proteins. FEBS Lett., 2007, 581(15), 2802-2810.
[71]
Li, Y.; Dudek, J.; Guiard, B.; Pfanner, N.; Rehling, P.; Voos, W. The presequence translocase-associated protein import motor of mitochondria. Pam16 functions in an antagonistic manner to Pam18. J. Biol. Chem., 2004, 279(36), 38047-38054.
[72]
D’Silva, P.R.; Schilke, B.; Walter, W.; Craig, E.A. Role of Pam16's degenerate J domain in protein import across the mitochondrial inner membrane. Proc. Natl. Acad. Sci. USA, 2005, 102(35), 12419-12424.
[73]
Mokranjac, D.; Sichting, M.; Neupert, W.; Hell, K. Tim14, a novel component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J., 2003, 22, 4945-4956.
[74]
Kozany, C.; Mokranjac, D.; Sichting, M.; Neupert, W.; Hell, K. The J domain-related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nat. Struc. Mol. Biol., 2004, 11, 234-241.
[75]
Lewrenz, I.; Rietzschel, N.; Guiard, B.; Lill, R.; van der Laan, M.; Voos, W. The functional interaction of mitochondrial Hsp70s with the escort protein Zim17 is critical for Fe/S biogenesis and substrate interaction at the inner membrane preprotein translocase. J. Biol. Chem., 2013, 288(43), 30931-30943.
[76]
Ciesielski, S.J.; Schilke, B.A.; Osipiuk, J.; Bigelow, L.; Mulligan, R.; Majewska, J.; Joachimiak, A.; Marszalek, J.; Craig, E.A.; Dutkiewicz, R. Interaction of J-protein co-chaperone Jac1 with Fe-S scaffold Isu is indispensable in vivo and conserved in evolution. J. Mol. Biol., 2012, 417(1-2), 1-12.
[77]
Dores-Silva, P.R.; Nishimura, L.S.; Kiraly, V.T.; Borges, J.C. Structural and functional studies of the Leishmania braziliensis mitochondrial Hsp70: Similarities and dissimilarities to human orthologues. Arch. Biochem. Biophys., 2017, 613, 43-52.
[78]
Martinez-Yamout, M.; Legge, G.B.; Zhang, O.; Wright, P.E.; Dyson, H.J. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DNAJ. J. Mol. Biol., 2000, 300(4), 805-818.
[79]
Tachibana, T.; Astumi, S.; Shioda, R.; Ueno, M.; Uritani, M.; Ushimaru, T. A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DNAJ homolog in Saccharomyces cerevisiae. J. Biol. Chem., 2002, 277(25), 22140-22146.
[80]
Endo, T.; Yamano, K.; Kawano, S. Structural insight into the mitochondrial protein import system. Biochim. Biophys. Acta, 2011, 1808(3), 955-970.
[81]
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acid Res.,, 2014, 42(Web Server issue), W252-W258.
[82]
Fraga, H.; Papaleo, E.; Vega, S.; Velazquez-Campoy, A.; Ventura, S. Zinc induced folding is essential for TIM15 activity as an mtHsp70 chaperone. Biochim. Biophys. Acta, 2013, 1830(1), 2139-2149.