A Fluorescent g-C3N4 Nanosensor for Detection of Dichromate Ions

Page: [593 - 601] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Dichromate (Cr2O7 2-) ion is one of the carcinogenic and toxic spices in environment which can easily contaminate the environment due to its high solubility in water. Therefore, a lot of attention has been focused on the detection of Cr2O7 2- with high sensitivity and selectivity.

Methods: In present work, nitrogen-rich precursor was used for synthesizing graphitic carbon nitride (g-C3N4) nanostructures through hydrothermal oxidation of g-C3N4 nanosheets. The prepared nanostructures show two distinct fluorescence emissions centered at 368 and 450 nm which are highly sensitive toward Cr2O7 2- ions.

Results: The as-prepared g-C3N4 was characterized by several techniques such as Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and fluorescence emission spectra. The XRD pattern of prepared nanostructures illustrated two diffraction patterns (at 13.4° and 27.6°) indicating tri-s-tri-azine-based structures. The g-C3N4 exhibited good selectivity and sensitivity toward Cr2O7 2- among other anions. According to titration test, the detection limit and stern-volmer constant (Ksv) were calculated as 40 nM and 0.13×106 M-1, respectively. The investigation of quenching mechanism shows that Cr2O7 2- may form hydrogen bonding with surface groups of g-C3N4 (such as NH2, OH and COOH) resulted in more fluorescence quenching in comparison with the pure inner filter effect.

Conclusion: The g-C3N4 nanostructures were successfully synthesized through the hydrothermal oxidation. The as-prepared g-C3N4 can be used as a highly sensitive fluorescent probe for the selective determination of Cr2O7 2 ion among other anions. The quenching mechanism was experimentally studied. According to reliable responses in real sample tests, it can be proposed that g-C3N4 nanostructure is a suitable sensitive nanosensor for detection of Cr2O7 2 ions in aqueous media.

Keywords: Cr2O7 2-, fluorescence, g-C3N4, nanostructure, quench, sensor.

Graphical Abstract

[1]
Patnaik, S.; Martha, S.; Acharya, S.; Parida, K.M. An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications. Inorg. Chem. Front., 2016, 3, 336-347.
[http://dx.doi.org/10.1039/C5QI00255A]
[2]
Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci., 2017, 391(Part B), 72-123.
[3]
Tian, J.; Liu, Q.; Asiri, A.M.; Sun, X.; He, Y. Ultrathin graphitic C3N4 nanofibers: Hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe3+. Sens. Actuators B Chem., 2015, 216, 453-460.
[http://dx.doi.org/10.1016/j.snb.2015.04.075]
[4]
Zhou, L.; Wang, L.; Zhang, J.; Lei, J.; Liu, Y. The preparation, and applications of g-C3N4/TiO2 heterojunction catalysts—a review. Res. Chem. Intermed., 2017, 43, 2081-2101.
[http://dx.doi.org/10.1007/s11164-016-2748-8]
[5]
Wang, A.; Wang, C.; Fu, L.; Wong-Ng, W.; Lan, Y. Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs. Nano-Micro Lett., 2017, 9(4), 47-68.
[http://dx.doi.org/10.1007/s40820-017-0148-2] [PMID: 30393742]
[6]
Wang, Z.; Guan, W.; Sun, Y.; Dong, F.; Zhou, Y.; Ho, W-K. Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity. Nanoscale, 2015, 7(6), 2471-2479.
[http://dx.doi.org/10.1039/C4NR05732E] [PMID: 25567239]
[7]
Xiao, J.; Xie, Y.; Nawaz, F.; Jin, S.; Duan, F.; Li, M.; Cao, H. Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: A potential sunlight/O3/g-C3N4 method for efficient water decontamination. Appl. Catal. B, 2016, 181, 420-428.
[http://dx.doi.org/10.1016/j.apcatb.2015.08.020]
[8]
Li, J.; Wang, H.; Guo, Z.; Wang, Y.; Ma, H.; Ren, X.; Du, B.; Wei, Q. A “turn-off” fluorescent biosensor for the detection of mercury (II) based on graphite carbon nitride. Talanta, 2017, 162, 46-51.
[http://dx.doi.org/10.1016/j.talanta.2016.09.066] [PMID: 27837856]
[9]
Dong, Y.; Wang, Q.; Wu, H.; Chen, Y.; Lu, C.H.; Chi, Y.; Yang, H.H. Graphitic Carbon Nitride Materials: Sensing, Imaging and Therapy. Small, 2016, 12(39), 5376-5393.
[http://dx.doi.org/10.1002/smll.201602056] [PMID: 27611869]
[10]
Chen, P.; Wang, F.; Zhang, Q.; Su, Y.; Shen, L.; Yao, K.; Chen, Z.F.; Liu, Y.; Cai, Z.; Lv, W.; Liu, G. Photocatalytic degradation of clofibric acid by g-C3N4/P25 composites under simulated sunlight irradiation: The significant effects of reactive species. Chemosphere, 2017, 172, 193-200.
[http://dx.doi.org/10.1016/j.chemosphere.2017.01.015] [PMID: 28068571]
[11]
Gao, J.; Zhou, Y.; Li, Z.; Yan, S.; Wang, N.; Zou, Z. High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale, 2012, 4(12), 3687-3692.
[http://dx.doi.org/10.1039/c2nr30777d] [PMID: 22595859]
[12]
Jin, Z.; Zhang, Q.; Yuan, S.; Ohno, T. Synthesis high specific surface area nanotube g-C3N4 with two-step condensation treatment of melamine to enhance photocatalysis properties. Rsc. Adv, 2015, 5, 4026-4029.
[http://dx.doi.org/10.1039/C4RA13355B]
[13]
Kwon, K.; Sa, Y.J.; Cheon, J.Y.; Joo, S.H. Ordered mesoporous carbon nitrides with graphitic frameworks as metal-free, highly durable, methanol-tolerant oxygen reduction catalysts in an acidic medium. Langmuir, 2012, 28(1), 991-996.
[http://dx.doi.org/10.1021/la204130e] [PMID: 22122162]
[14]
Li, H.; Wang, L.; Liu, Y.; Lei, J.; Zhang, J. Mesoporous graphitic carbon nitride materials: Synthesis and modifications. Res. Chem. Intermed., 2016, 42, 3979-3998.
[http://dx.doi.org/10.1007/s11164-015-2294-9]
[15]
Li, Y.; Fang, L.; Jin, R.; Yang, Y.; Fang, X.; Xing, Y.; Song, S. Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles. Nanoscale, 2015, 7(2), 758-764.
[http://dx.doi.org/10.1039/C4NR06565D] [PMID: 25501328]
[16]
Du, X.; Zou, G.; Wang, Z.; Wang, X. A scalable chemical route to soluble acidified graphitic carbon nitride: an ideal precursor for isolated ultrathin g-C3N4 nanosheets. Nanoscale, 2015, 7(19), 8701-8706.
[http://dx.doi.org/10.1039/C5NR00665A] [PMID: 25913280]
[17]
Tian, J.; Liu, Q.; Ge, C.; Xing, Z.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale, 2013, 5(19), 8921-8924.
[http://dx.doi.org/10.1039/c3nr02031b] [PMID: 23934305]
[18]
Cai, X.; He, J.; Chen, L.; Chen, K.; Li, Y.; Zhang, K.; Jin, Z.; Liu, J.; Wang, C.; Wang, X.; Kong, L.; Liu, J. A 2D-g-C3N4 nanosheet as an eco-friendly adsorbent for various environmental pollutants in water. Chemosphere, 2017, 171, 192-201.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.073] [PMID: 28024204]
[19]
Zhang, X-L.; Zheng, C.; Guo, S-S.; Li, J.; Yang, H-H.; Chen, G. Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite. Anal. Chem., 2014, 86(7), 3426-3434.
[http://dx.doi.org/10.1021/ac500336f] [PMID: 24655132]
[20]
Wu, Y.; Tao, L.; Zhao, J.; Yue, X.; Deng, W.; Li, Y.; Wang, C. TiO2/g-C3N4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation. Res. Chem. Intermed., 2016, 42, 3609-3624.
[http://dx.doi.org/10.1007/s11164-015-2234-8]
[21]
Zhang, Z.; Huang, J.; Zhang, M.; Yuan, Q.; Dong, B. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal. B, 2015, 163, 298-305.
[http://dx.doi.org/10.1016/j.apcatb.2014.08.013]
[22]
Yu, H.; He, Y.; Li, W.; Duan, T. Graphitic carbon nitride nanosheets-enhanced chemiluminescence of luminol for sensitive detection of 2,4,6-trinitrotoluene. Sens. Actuators B Chem., 2015, 220, 516-521.
[http://dx.doi.org/10.1016/j.snb.2015.05.102]
[23]
Xu, J.; Wang, G.; Fan, J.; Liu, B.; Cao, S.; Yu, J. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. J. Power Sources, 2015, 274, 77-84.
[http://dx.doi.org/10.1016/j.jpowsour.2014.10.033]
[24]
Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: a review. Nanoscale, 2015, 7(1), 15-37.
[http://dx.doi.org/10.1039/C4NR03008G] [PMID: 25407808]
[25]
Yin, H.; Sun, B.; Dong, L.; Li, B.; Zhou, Y.; Ai, S. A signal “on” photoelectrochemical biosensor for assay of protein kinase activity and its inhibitor based on graphite-like carbon nitride, Phos-tag and alkaline phosphatase. Biosens. Bioelectron., 2015, 64, 462-468.
[http://dx.doi.org/10.1016/j.bios.2014.09.070] [PMID: 25286353]
[26]
Wang, B.; Ye, C.; Zhong, X.; Chai, Y.; Chen, S.; Yuan, R. Electrochemical Biosensor for Organophosphate Pesticides and Huperzine-A Detection Based on Pd Wormlike Nanochains/Graphitic Carbon Nitride Nanocomposites and Acetylcholinesterase. Electroanalysis, 2015, 28, 304-311.
[http://dx.doi.org/10.1002/elan.201500339]
[27]
Gu, Y.; Yan, X.; Liu, W.; Li, C.; Chen, R.; Tang, L.; Zhang, Z.; Yang, M. Biomimetic sensor based on copper-poly(cysteine) film for the determination of metronidazole. Electrochim. Acta, 2015, 152, 108-116.
[http://dx.doi.org/10.1016/j.electacta.2014.11.097]
[28]
Chen, L.; Zeng, X.; Ferhan, A.R.; Chi, Y.; Kim, D-H.; Chen, G. Signal-on electrochemiluminescent aptasensors based on target controlled permeable films. Chem. Commun. (Camb.), 2015, 51(6), 1035-1038.
[http://dx.doi.org/10.1039/C4CC07699K] [PMID: 25434590]
[29]
Guo, X.; Wang, Y.; Wu, F.; Ni, Y.; Kokot, S. Preparation of protonated, two-dimensional graphitic carbon nitride nanosheets by exfoliation, and their application as a fluorescent probe for trace analysis of copper(II). Mikrochim. Acta, 2016, 183, 773-780.
[http://dx.doi.org/10.1007/s00604-015-1712-4]
[30]
Zhang, H.; Huang, Y.; Hu, S.; Huang, Q.; Wei, C.; Zhang, W.; Kang, L.; Huang, Z.; Hao, A. Fluorescent Probes for “OFF-ON” Sensitive and Selective Detection of Mercury Ions and L-cysteine Based on Graphitic Carbon Nitride Nanosheets. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 2093-2100.
[http://dx.doi.org/10.1039/C4TC02394C]
[31]
Rong, M.; Lin, L.; Song, X.; Wang, Y.; Zhong, Y.; Yan, J.; Feng, Y.; Zeng, X.; Chen, X. Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens. Bioelectron., 2015, 68, 210-217.
[http://dx.doi.org/10.1016/j.bios.2014.12.024] [PMID: 25574860]
[32]
Barman, S.; Sadhukhan, M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem., 2012, 22, 21832-21837.
[http://dx.doi.org/10.1039/c2jm35501a]
[33]
Boorboor Azimi, E.; Badiei, A.; Jafari, M.; Banitalebi Dehkordi, A.; Ghasemi, J.B.; Ziarani, G.M. Boron-doped graphitic carbon nitride as a novel fluorescent probe for mercury(ii) and iron(iii): A circuit logic gate mimic. New J. Chem., 2019, 43, 12087-12093.
[http://dx.doi.org/10.1039/C9NJ03127H]
[34]
Xu, Y.; Niu, X.; Zhang, H.; Xu, L.; Zhao, S.; Chen, H.; Chen, X. Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+ chemosensor. J. Agric. Food Chem., 2015, 63(6), 1747-1755.
[http://dx.doi.org/10.1021/jf505759z] [PMID: 25630354]
[35]
Rong, M.; Lin, L.; Song, X.; Zhao, T.; Zhong, Y.; Yan, J.; Wang, Y.; Chen, X. A label-free fluorescence sensing approach for selective and sensitive detection of 2,4,6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets. Anal. Chem., 2015, 87(2), 1288-1296.
[http://dx.doi.org/10.1021/ac5039913] [PMID: 25514848]
[36]
Karimi, M.; Badiei, A.; Mohammadi Ziarani, G. SBA-15 Functionalized with Naphthalene Derivative for Selective Optical Sensing of Cr2O7(2-) in Water. Anal. Sci., 2016, 32(5), 511-516.
[http://dx.doi.org/10.2116/analsci.32.511] [PMID: 27169649]
[37]
Hosseini, M.; Gupta, V.K.; Ganjali, M.R.; Rafiei-Sarmazdeh, Z.; Faridbod, F.; Goldooz, H.; Badiei, A.R.; Norouzi, P. A novel dichromate-sensitive fluorescent nano-chemosensor using new functionalized SBA-15. Anal. Chim. Acta, 2012, 715, 80-85.
[http://dx.doi.org/10.1016/j.aca.2011.12.021] [PMID: 22244170]
[38]
Afshani, J.; Badiei, A.; Karimi, M.; Lashgari, N.; Ziarani, G.M. A Single Fluorescent Sensor for Hg(2+) and Discriminately Detection of Cr(3+) and Cr(VI). J. Fluoresc., 2016, 26(1), 263-270.
[http://dx.doi.org/10.1007/s10895-015-1708-9] [PMID: 26518575]
[39]
Ayaz, A.; Khan, B.; Pichikannu, V. Fluorescence cadmium sulfide nanosensor for selective recognition of chromium ions in aqueous solution at wide pH range. Sens. Actuators B Chem., 2015, 221, 1055-1061.
[http://dx.doi.org/10.1016/j.snb.2015.07.035]
[40]
Dalavi, D.K.; Bhopate, D.P.; Bagawan, A.S.; Gore, A.H.; Desai, N.K.; Kamble, A.A.; Mahajan, P.G.; Kolekar, G.B.; Patil, S.R. Fluorescence quenching studies of CTAB stabilized perylene nanoparticles for the determination of Cr(VI) from environmental samples: Spectroscopic approach. Anal. Methods, 2014, 6, 6948-6955.
[http://dx.doi.org/10.1039/C4AY01027B]
[41]
Mohandoss, S.; Sivakamavalli, J.; Vaseeharan, B.; Stalin, T. Host-guest molecular recognition based fluorescence On-Off-On chemosensor for nanomolar level detection of Cu2+ and Cr2O72− ions: Application in XNOR logic gate and human lung cancer living cell imaging. Sens. Actuators B Chem., 2016, 234, 300-315.
[http://dx.doi.org/10.1016/j.snb.2016.04.148]
[42]
Shiravand, G.; Badiei, A.; Mohammadi Ziarani, G. Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sens. Actuators B Chem., 2017, 242, 244-252.
[http://dx.doi.org/10.1016/j.snb.2016.11.038]
[43]
Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem., 2008, 18, 4893-4908.
[http://dx.doi.org/10.1039/b800274f]
[44]
Li, H.J.; Sun, B.W.; Sui, L.; Qian, D.J.; Chen, M. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys., 2015, 17(5), 3309-3315.
[http://dx.doi.org/10.1039/C4CP05020G] [PMID: 25523639]
[45]
Rahbar, N.; Salehnezhad, Z.; Hatamie, A.; Babapour, A. Graphitic carbon nitride nanosheets as a fluorescent probe for chromium speciation. Mikrochim. Acta, 2018, 185(2), 101-109.
[http://dx.doi.org/10.1007/s00604-017-2615-3] [PMID: 29594607]
[46]
Chen, C.; Zhang, X.; Gao, P.; Hu, M. A water stable europium coordination polymer as fluorescent sensor for detecting Fe3+, CrO4 2-, and Cr2O7 2- ions. J. Solid State Chem., 2018, 258, 86-92.
[http://dx.doi.org/10.1016/j.jssc.2017.10.004]
[47]
Kan, W.Q.; Wen, S.Z. A fluorescent coordination polymer for selective sensing of hazardous nitrobenzene and dichromate anion. Dyes Pigments, 2017, 139, 372-380.
[http://dx.doi.org/10.1016/j.dyepig.2016.12.039]
[48]
Zheng, M.; Xie, Z.; Qu, D.; Li, D.; Du, P.; Jing, X.; Sun, Z. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl. Mater. Interfaces, 2013, 5(24), 13242-13247.
[http://dx.doi.org/10.1021/am4042355] [PMID: 24274643]
[49]
Karimi, M.; Badiei, A.; Mohammadi Ziarani, G. SBA-15 functionalized with naphthalene derivative for selective optical sensing of Cr2O72- in water. Anal. Sci., 2016, 32(5), 511-516.
[http://dx.doi.org/10.2116/analsci.32.511] [PMID: 27169649]
[50]
Chen, W.; Cao, F.; Zheng, W.; Tian, Y.; Xianyu, Y.; Xu, P.; Zhang, W.; Wang, Z.; Deng, K.; Jiang, X. Detection of the nanomolar level of total Cr[(iii) and (vi)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models. Nanoscale, 2015, 7(5), 2042-2049.
[http://dx.doi.org/10.1039/C4NR06726F] [PMID: 25553787]
[51]
Kumar, V.; Kumar, A.; Diwan, U.; Singh, M.K.; Upadhyay, K.K. Turn “Off-On” Fluorescent Recognition of Cu2+ and Cys in Aqueous Medium: Implementation of Molecular Logic Gate and Cell Imaging Studies. Bull. Chem. Soc. Jpn., 2016, 89, 754-761.
[http://dx.doi.org/10.1246/bcsj.20150427]
[52]
Li, F.M.; Liu, J.M.; Wang, X.X.; Lin, L.P.; Cai, W.L.; Lin, X.; Zeng, Y.N.; Li, Z.M.; Lin, S.Q. Non-aggregation based label free colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods. Sens. Actuators B Chem., 2011, 155, 817-822.
[http://dx.doi.org/10.1016/j.snb.2011.01.054]
[53]
Lashgari, N.; Badiei, A.; Mohammadi Ziarani, G. A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2O72−) in water. J. Phys. Chem. Solids, 2017, 103, 238-248.
[http://dx.doi.org/10.1016/j.jpcs.2016.11.021]
[54]
Chang, H.N.; Hou, S.X.; Hao, Z.C.; Cui, G.H. A one-dimensional Ag(I) coordination polymer as luminescent sensor for detecting Cr2O72− and exhibiting highly photodegradation capacities for methylene blue solution. Polyhedron, 2018, 141, 276-283.
[http://dx.doi.org/10.1016/j.poly.2017.11.014]
[55]
Chen, C.; Zhang, X.; Gao, P.; Hu, M. A water stable europium coordination polymer as fluorescent sensor for detecting Fe3+, CrO42-, and Cr2O72- ions. J. Solid State Chem., 2018, 258, 86-92.
[http://dx.doi.org/10.1016/j.jssc.2017.10.004]
[56]
Fan, K.; Bao, S-S.; Nie, W-X.; Liao, C-H.; Zheng, L-M. Iridium(III)-Based Metal-Organic Frameworks as Multiresponsive Luminescent Sensors for Fe3+, Cr2O72-, and ATP2- in Aqueous Media. Inorg. Chem., 2018, 57(3), 1079-1089.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02513] [PMID: 29363953]
[57]
Bian, W.; Wang, Y.; Yang, H.; Li, P.; Yu, Q.; Shuang, S.; Dong, C.; Choi, M.M.F. A fluorescent probe using the boron and nitrogen co-doped carbon dots for the detection of Hg2+ion in environmental water samples. Curr. Anal. Chem., 2017, 3, 242-249.
[http://dx.doi.org/10.2174/1573411012666160802152732]