Mini-Reviews in Organic Chemistry

Author(s): Nejib Hussein Mekni*

DOI: 10.2174/1570193X15666180626130042

Nucleophilic Vinyl/Allyl, CF3 and CF2α Perfluoroalkyl Groups Substitution and/or E1CB Elimination Reactions of Fluorine Atom(s) in Organofluorinated Compounds

Page: [453 - 462] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Direct substitution and elimination reactions of the fluorine atoms of difluoromethylene CF2α groups of nonspaced perfluoroalkyl chains, CF3 groups are very difficult to achieve. But, they become feasible with fluoro-alkenes, alkynes, imines or carbonyl derivatives, for which vinylic substitution and related carbanion-mediated pathways are available. In this review, we classify the major and unique fluorine substitution/elimination and rearrangement reactions and discuss their contribution to the synthesis of heterocyclic compounds.

Keywords: Fluorine elimination/substitution, perfluoroalkyl chain, trifluoromethyl, vinylic fluorine, allylic fluorine, organofluorinated compounds.

Graphical Abstract

[1]
Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. 2nd Ed.; Wiley-VCH: Weinheim, 2013; Maienfisch, P.; Hall, R.G. Chimia; , 2004, 58, p. 93-99.
[2]
Chambers, R.D. Organofluorine Chemistry: Fluorinated Alkenes and Reactive Intermediates; Springer: New York, 1997.
[3]
Zhang, X.; Wang, Z.; Chen, S.; Zhao, Z.; Yuan, W.; Wang, H.; Gao, X. Tuning the charge transport the charge transport property of naphthalene diimide derivatives by changing the substituted position of fluorine atom on molecular backbone. Chin. J. Chem., 2014, 32(10), 1057-1064.
[4]
Rybalova, T.V.; Bagryanskaya, I.Y. C-F…□, F…H. and F…F intermolecular interactions and F-aggregation: Role in crystal engineering of fluoroorganic compounds. J. Struct. Chem., 2009, 50(4), 741-753.
[5]
Dul, M.C.; Braibant, B.; Dourdain, S.; Pellet-Rostaing, S.; Bourgeois, D.; Meyer, D. Perfluoroalkyl vs. alkyl substituted malonamides: Supramolecular effects and consequences for extraction of metals. J. Fluor. Chem., 2017, 200, 59-65.
[6]
Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37, 320-330.
[7]
Zhang, X.J.; Lai, T.B.; Kong, R.Y.C. Biology of fluoro-organic compounds. Top. Curr. Chem., 2012, 308, 365-404.
[8]
Babudri, F.; Farinola, G.M.; Naso, F.; Ragni, R. Fluorinated organic materials for electronic and optoelectronic applications: The role of the fluorine atom. Chem. Commun., 2007, 10, 1003-1022.
[9]
Zhao, Z.H.; Jin, H.; Zhang, Y.X.; Shen, Z.H.; Zou, D.C.; Fan, X.H. Synthesis and properties of dendritic emitters with fluorinated starburst oxadiazole core and twisted carbazole dendrons. Macromolecules, 2011, 44(6), 1405-1413.
[10]
Xu, J.; Cole, D.C.; Chang, C.P.B.; Ayyad, R.; Asselin, M.; Hao, W.; Gibbons, J.; Jelinsky, S.A.; Saraf, K.A.; Park, K. Inhibition of the Signal Transducer and Activator of Transcription-3 (STAT3) signaling pathway by 4-Oxo-1-Phenyl-1,4-Dihydroquinoline-3-carboxylic acid esters. J. Med. Chem., 2008, 51(14), 4115-4121.
[11]
Yang, W.Y.; Marrone, S.A.; Minors, N.; Zorio, D.A.R.; Alabugin, I.V. Fine-tuning alkyne cycloadditions: Insights into photochemistry responsible for the double-strand DNA cleavage via structural perturbations in diaryl alkyne conjugates. Beilstein J. Org. Chem., 2011, 7, 813-823.
[12]
O’Leary, E.M.; Jones, D.J.; O’Donovan, F.P.; O’Sullivan, T.P. Synthesis of fluorinated oxygen- and sulfur-containing heteroatomics. J. Fluor. Chem., 2015, 176, 93-120.
[13]
Dunitz, J.D. Organic fluorine: Odd man out. ChemBioChem, 2004, 5(5), 614-621.
[14]
Welch, J.T.; Eswarakrishman, S. Fluorine in Bioorganic Chemistry; Wiley: New York, 1990.
[15]
Schmitt, E.; Bouvet, S.; Pegot, B.; Panossian, A.; Vors, J.P.; Pazenok, S.; Magnier, E.; Leroux, F.R. Fluoroalkyl amino reagents for the introduction of the fluoro(trifluoromethoxy)methyl group onto arenes and heterocycles. Org. Lett., 2017, 19(18), 4960-4963.
[16]
Filler, R.; Kobayashi, Y.; Yagupolskii, L.M. Organofluorine compounds in medicinal chemistry and biomedical applications; Elsevier: Amsterdam, 1993.
[17]
Mekni, N.; Baklouti, A. Synthesis of new 1-substituted 4-perfluoro-alkyl tetrazol-5-ones. J. Fluor. Chem., 2008, 129(11), 1073-1075.
[18]
Rondestvedt, C.S. Jr.; Thayer, G.L.Jr. Nucleophilic displacements on β-(Perfluoroalkyl)ethyl iodides. Synthesis of acrylates containing heteroatoms. J. Org. Chem., 1977, 42(16), 2680-2683.
[19]
Mekni, N.H. Synthesis of new bis(3-perfluoroalkyl-1H-pyrazole) polyoxyethylene. J. Fluor. Chem., 2014, 168, 75-80.
[20]
Mekni, N.; Hedhli, A.; Baklouti, A. F-alkylation of bis(allyl) polyoxyethylene ethers. J. Fluor. Chem., 2002, 114(1), 43-46.
[21]
Brace, N.O. Syntheses with perfluoroalkyl radicals from perfluoroalkyl iodides. A rapid survey of synthetic possibilities with emphasis on practical applications. Part one: Alkenes, alkynes and allylic compounds. J. Fluor. Chem., 1999, 93(1), 1-25.
[22]
Barata-Vallejo, S.; Yerien, D.E.; Postigo, A. Benign perfluoroalkylation of aniline derivatives through photoredox organocatalysis under visible-light irradiation. Eur. J. Org. Chem., 2015, 36, 7869-7875.
[23]
Leclerc, M.C.; Bayne, J.M.; Lee, G.M.; Gorelsky, S.I.; Vasiliu, M.; Korobkov, I.; Harrison, D.J.; Dixon, D.A.; Baker, R.T. Perfluoroalkyl Cobalt(III) Fluoride and Bis(perfluoroalkyl) Complexes: Catalytic fluorination and selective difluorocarbene formation. J. Am. Chem. Soc., 2015, 137(51), 16064-16073.
[24]
Barata-Vallejo, S.; Flesia, M.M.; Lantano, B.; Arguello, J.E.; Penenory, A.B.; Postigo, A. Heterogeneous photoinduced homolytic aromatic substitution of electron-rich arenes with perfluoroalkyl groups in water and aqueous media. A radical-iron reaction. Eur. J. Org. Chem., 2013, 5, 998-1008.
[25]
Muller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: Looking beyond intuitions. Science, 2007, 317(5846), 1881-1886.
[26]
Kirk, K.L. Fluorination in medicinal chemistry: Methods, strategies, and recent developments. Org. Process Res. Dev., 2008, 12(2), 305-321.
[27]
Jeschke, P.; Baston, E.; Leroux, F.R. α-Fluorinated ethers as “exotic” entity in medicinal chemistry. Mini Rev. Med. Chem., 2007, 7(10), 1027-1034.
[28]
Kirk, K.L. Fluorine in medicinal chemistry: Recent therapeutic applications of fluorinated small molecules. J. Fluor. Chem., 2006, 127(8), 1013-1029.
[29]
Park, B.K.; Kitteringham, N.R.; O’Neill, P.M. Metabolism of fluorine-containing drugs. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 443-470.
[30]
Leroux, F.R.; Manteau, B.; Vors, J.P.; Pazenok, S. Trifluoromethyl ethers-synthesis and properties of an unusual substituent. Beilstein J. Org. Chem., 2008, 4(13), 1-15.
[31]
Giornal, F.; Pazenok, S.; Rodefeld, L.; Lui, N.; Vors, J.P.; Leroux, F.R. Synthesis of diversely fluorinated pyrazoles as novel active agrochemical ingradients. J. Fluor. Chem., 2013, 152, 2-11.
[32]
Barata-Vallejo, S.; Postigo, A. Metal-mediated radical perfluoroalkylation of organic compounds. Coord. Chem. Rev., 2013, 257(21-22), 3051-3059.
[33]
Oka, N.; Murakami, R.; Kondo, T.; Wada, T. Stereocontrolled synthesis of dinucleoside phosphothiates using a fluorous tag. J. Fluor. Chem., 2013, 150, 85-91.
[34]
Geiger, S.D.; Xiao, J.; Shankar, A. Positive association between perfluoroalkyl chemicals and hyperuricemia in children. Am. J. Epidemiol., 2013, 177(11), 1255-1262.
[35]
Wang, Z.; Sun, T.; Chen, J.; Deng, H.; Shao, M.; Zhang, H.; Cao, W. Convient synthesis of perfluoroalkyl substituted 2-oxopyridine-fused 1,3-diazaheterocycles via a one-pot three-component reaction. Tetrahedron, 2013, 69(21), 4270-4275.
[36]
Wang, J.; Sanchez-Rosello, M.; Acena, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduction to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[37]
Vorob’ev, S.I. First- and second-generation perfluorocarbon emulsion. Pharm. Chem. J., 2009, 43(4), 209-218.
[38]
Furuya, T.; Machiya, K.; Fujioka, S.; Nakano, M.; Inagaki, K. Development of a novel acaricide, pyflubumide. J. Pestic. Sci., 2017, 42(3), 132-136.
[39]
Liu, C.; Cui, Z.; Yan, X.; Qi, Z.; Ji, M.; Li, X. Synthesis, fungicidal activity and mode of action of 4-phenyl-6-trifluoromethyl-2-aminopyrimidines against Botrytis cinerea. Molecules, 2016, 21(7), 828-843.
[40]
Sandmann, G. Bleaching activities of substituted pyrimidines and structure-activity comparison to related heterocyclic derivatives. Pestic. Biochem. Physiol., 2001, 70(2), 86-91.
[41]
Leroux, P. Chemical control of Botrytis and its resistance to chemical fungicides; Springer Neth, 2007, pp. 195-222.
[42]
Georgalas, I.; Ladas, I.; Tservakis, I.; Taliantzis, S.; Gotzaridis, E.; Papaconstantinou, D.; Koutsandrea, C. Perfluorocarbon liquids in vitreoretinal surgery: A review of applications and toxicity. Cutan. Ocul. Toxicol., 2011, 30(4), 251-262.
[43]
Kannan, K.; Tao, L.; Sinclair, E.; Pastva, S.D.; Jude, D.J.; Giesy, J.P. Perfluorinated compounds in aquatic organism at various trophic levels in great lakes food chain. Arch. Environ. Contam. Toxicol., 2005, 48(4), 559-566.
[44]
Banks, R.E.; Tatlow, J.C.; Smart, B.E. Organofluorine Chemistry: Principles and Commercial Applications; Plenum Press: New York, 1994.
[45]
Cambon, A.; Edwards, C.M.; Franke, R.P.; Lowe, K.C.; Reuter, P.; Rohlke, W.; Trabelsi, H.; Gambaretto, G.P.; Napoli, M.; Conte, L. Per(poly)fluorinated polyoxyethylated carbamates WO9749675. 1997.
[46]
Taxvig, C.; Rosenmai, A.K.; Vinggaard, A.M. Polyfluorinated alkyl phosphate ester surfactants-current knowledge and knowledge gaps. Basic Clin. Pharmacol. Toxicol., 2014, 115(1), 41-44.
[47]
Kissa, E. Fluorinated surfactants and repellents 2nd Ed, Surfactant science series 97. Marcel Dekker: New York. , 2001; p. pp. 640.
[48]
Taylor, C.K. Fluorinated surfactants in practice.Design and selection of performance surfactants: Annual surfactants review; Karsa, D., Ed.; John Wiley & Sons: New York, NY, 1999, pp. 271-316.
[49]
Kissa, E. Fluorinated surfactants: Synthesis-Properties-Applications (Surfactant science series 50); Marcel Dekker: New York, 1994, p. 469.
[50]
Wu, W.; Olesen, K.R.; Miner, A.R., II; Schneider, J.A. Blending vinyl acetate-ethylene and acrylic latexes to achieve targeted performance properties. JCT Coatingstech, 2008, 5(5), 44-52.
[51]
Hougham, G.; Cassidy, P.E.; Johns, K.; Davidson, T. Fluoropolymers 1: Synthesis in Topics in Applied Chemistry; Eds.; Kluwer Academic/Plenum Publishers: New York , 2002.
[52]
Amii, H.; Uneyama, K. C-F bond activation in organic synthesis. Chem. Rev., 2009, 109(5), 2119-2183.
[53]
Liu, C.; Zhang, B. Facile access to fluoroaromatic molecules by transition-metal-free C-F bond cleavage of polyfluoroarenes: An efficient, green, and sustainable protocol. Chem. Rec., 2016, 16(2), 667-687.
[54]
Chelucci, G. Synthesis and metal-catalyzed reactions of gem-dihalovinyl systems. Chem. Rev., 2012, 112(3), 1344-1462.
[55]
Furin, G.G.; Krysin, A.P.; Protsuk, N.I.; Lopyrev, V.A. Reaction of perfluoro(2-methylpent-2-ene) and perfluoro(5-azanon-4-ene) with primary amines containing a 2,6-di-tert-butylphenol fragment. Russ. J. Org. Chem., 2006, 42(10), 1429-1434.
[56]
Lecea, M.; Grassin, A.; Ferreiro-Mederos, L.; Choppin, S.; Urbano, A.; Carreno, M.C.; Colobert, F. One-step stereoselective synthesis of trisubstituted monofluoroalkenes from 3,3,3-trifluoropro-pionates. Eur. J. Org. Chem., 2013, 21, 4486-4489.
[57]
Zell, D.; Meller, V.; Dhawa, U.; Bursch, M.; Presa, R.R.; Grimme, S.; Ackermannm, L. Mild cobalt(III)-catalyzed allylative C-F/C-H functionalizations at room temperature. Chem. Eur. J, 2017, 23(50), 12145-12148.
[58]
Liu, Y.; Zhou, Y.; Zhao, Y.; Qu, J. Synthesis of gem-difluoroallylboranates via FeCl2-catalyzed boration/β-Fluorine elimination of trifluoromethyl alkenes. Org. Lett., 2017, 19(4), 946-949.
[59]
Sakaguchi, H.; Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hosoya, T. Copper-catalyzed regioselective monodefluoroborylation of polyfluoroalkenes en route to diverse fluoroalkenes. J. Am. Chem. Soc., 2017, 139(36), 12855-12862.
[60]
Fuchibe, K.; Hatta, H.; Oh, K.; Oki, R.; Ichikawa, J. Lewis acid promoted single C-F bond activation of the CF3 group: SN1′-type 3,3-Difluoroallylation of arenes with 2-Trifluoromethyl-1-alkenes. Angew. Chem., 2017, 129(21), 5984-5987.
[61]
Fuchibe, K.; Takahashi, M.; Ichikawa, J. Substitution of two fluorine atoms in a trifluoromethyl group: Regioselective synthesis of 3-Fluoropyrazoles. Angew. Chem., 2012, 124(48), 12225-12228.
[62]
Tang, X.Q.; Hu, C.M. Synthesis of 3-perfluoroalkyl-, including 3-trifluoromethyl-, substituted pyrazoles from perfluoroalkylacetylenes. J. Fluor. Chem., 1995, 73(2), 129-131.
[63]
Zhang, B.; Zhang, X.; Hao, J.; Yang, C. Direct approach to N-substituted-2-fluoroindoles by sequential construction of C-N bond from gem-difluorostyrenes. Org. Lett., 2017, 19(7), 1780-1783.
[64]
Ohashi, M.; Ogoshi, S. Palladium-catalyzed cross-coupling reactions of perfluoro organic compounds. Catalysts, 2014, 4(3), 321-345.
[65]
Jedidi Yaich, B.; Amanatoullah, A.O.; Mekni, N.H.; Romdhani-Younes, M. Strudy of the zinc action on the 2-chloroethyl 2-bromo-2-perfluoroalkylethanoates. J. Taibah Univ. Sci., 2018, 12(3), 241-246.
[66]
Bourgeois, C.J.; Hughes, R.P.; Yuan, J.; DiPasquale, A.G.; Rheingold, A.L. α- and β-Fluorine elimination reactions induced by reduction of iridium-fluoroalkyl complexes. Selective formation of fluoroalkylidene and hydrofluoroalkene ligands. Organometallics, 2006, 25(12), 2908-2910.
[67]
Mykhailiuk, P.K.; Ishchenko, A.Y.; Stepanenko, V.; Cossy, J. Synthesis of fluoroalkyl pyrazoles from in situ generated C2F5CHN2 and electron-deficient alkenes. Eur. J. Org. Chem., 2016, 25, 5485-5499.
[68]
Charrada, B.; Ayach, W.; Hedhli, A.; Baklouti, A. Synthesis of unsaturated F-Alkyl sulfoxides. Synth. Commun., 2000, 30(15), 2813-2818.
[69]
Cochrane, A.; Kerr, W.J.; Sandella, J. Preparation of [3H]fluoroethyl tosylate and its use in the lbelling of dopamine transporter radioligand [3H]FE-PE2I. J. Labelled Comp. Radiopharm., 2013, 56(9-10), 447-450.
[70]
Fujita, T.; Arita, T.; Ichitsuka, T.; Ichikawa, J. Catalytic defluorinative [3+2]cycloaddition of trifluoromethylalkenes with alkynes via reduction of nickel(II) fluoride species. Dalton Trans., 2015, 44, 19460-19463.
[71]
Ichitsuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Double C-F bond activation through β-fluorine elimination: Nickel-mediated [3+2] cycloaddition of 2-trifluoromethyl-1-alkenes with alkynes. Angew. Chem, 2014, 126(29), 7694-7698.