Formation of Regular Domain Structures in Quenched Ferroelectrics Under the Influence of an External High-frequency Electric Field

Page: [344 - 352] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Within the framework of the phenomenological theory of phase transitions of the second kind of Ginzburg-Landau, the kinetics of ordering of a rapidly quenched highly nonequilibrium domain structure is considered using the lithium tantalate and lithium niobate crystals as an example.

Experimental: Using the statistical approach, evolution equations describing the formation of the domain structure under the influence of a high-frequency alternating electric field in the form of a standing wave were obtained. Numerical analysis has shown the possibility of forming thermodynamically stable mono- and polydomain structures. It turned out that the process of relaxation of the system to the state of thermodynamic equilibrium can proceed directly or with the formation of intermediate quasi-stationary polydomain asymmetric phases.

Results: It is shown that the formation of Regular Domain Structures (RDS) is of a threshold character and occurs under the influence of an alternating electric field with an amplitude less than the critical value, whose value depends on the field frequency. The conditions for the formation of RDSs with a micrometer spatial scale were determined.

Conclusion: As shown by numerical studies, the RDSs obtained retain their stability, i.e. do not disappear even after turning off the external electric field. Qualitative analysis using lithium niobate crystals as an example has shown the possibility of RDSs formation in high-frequency fields with small amplitude under resonance conditions.

Keywords: Ferroelectric, order parameter, regular domain structure (RDS), high-frequency electric field, quenching system, evolution curves, polydomain structure.

Graphical Abstract

[1]
Yamada, M.; Nada, N.; Saitoh, M.; Watanabe, K. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett., 1993, 62(5), 435-437.
[2]
Shur, V.Ya.; Rumyantsev, E.L.; Nikolayeva, E.V.; Shishkin, E.I.; Batchko, R.G.; Fejer, M.M.; Byer, R.L. Recent achievements in domain engineering in lithium niobate and lithium tantalate. Ferroelectrics, 2001, 257, 191-202.
[3]
Sugita, T.; Mizuuchi, K.; Kitaoka, Y.; Yamamoto, K. Ultraviolet light generation in a periodically poled MgO: LiNbO3 waveguide. Jpn. J. Appl. Phys., 2001, 40, 1751-1753.
[4]
Krutov, V.V.; Sigov, A.S.; Shchuka, A.A.D.A. Formation of micro- and nanodomain structures in ferroelectric films by interfering hypersound. Nano-Microsys. Technol., 2016, 8(1), 32-39.
[5]
Shur, V.Ya. Doman nanotechnology in lithium niobate and lithium tantalate crystals. Ferroelectrics, 2010, 399(8), 97-106.
[6]
Shur, V.Ya.; Rumyantsev, E.L.; Nikolayeva, E.V.; Shishkin, E.I.; Batchko, R.G.; Miller, G.D.; Fejer, M.M.; Byer, R.L. Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications. Ferroelectrics, 2001, 236, 129-144.
[7]
Mingaliev, E.A.; Shur, V.Ya.; Kuznetsov, D.K.; Negashev, S.A.; Lobov, A.I. Formation of stripe domain structures by pulse laser irradiation of LiNbO3 crystals. Ferroelectrics, 2010, 399, 7-13.
[8]
Nikishina, A.I.; Drozhdin, S.N.; Golitsina, O.M. Relaxation of the domain structure in doped triglycine sulfate crystals in an internal field. Phys. Solid State, 2006, 48(6), 1140-1142.
[9]
Golitsyna, O.M.; Drozdin, S.N.; Korobova, A.D.; Chulakova, V.O. Spontaneous kinetics of the domain structure of triglycine sulfate near the Curie point. Cond. Matter Interphases, 2017, 19(1), 42-50.
[10]
Tomita, N.; Orihara, H.; Ishibashi, Y. Ferroelectric domain pattern evolution in quenched triglycine sulphate. J. Phys. Soc. Jap., 1989, 58(4), 1190-1198.
[11]
Luo, E.Z.; Xie, Z.; Xu, J.B.; Wilson, I.H.; Zhao, L.H. In situ observation of the ferroelectric-paraelectric phase transition in a triglycine sulfate single crystal by variable-temperature electrostatic force microscopy. Phys. Rev. B, 2000, 61(1), 203-206.
[12]
Stefanovich, L.I. Formation and growth dynamics of domains under phase transitions in an external field. Low Temp. Phys., 1998, 24(9), 643-646.
[13]
Mazur, O.Yu.; Stefanovich, L.I.; Yurchenko, V.M. Influence of quenching conditions on the kinetics of formation of a domain structure of ferroelectrics. Phys. Solid State, 2015, 57(3), 576-585.
[14]
Mazur, O.Yu.; Stefanovich, L.I.; Yurchenko, V.M. Effect of hydrostatic pressure on the kinetics of the ordering of ferroelectrics upon second-order phase transitions. Phys. Solid State, 2015, 57(7), 1386-1392.
[15]
Stephanovich, L.I.; Mazur, O.Yu. The formation of regular domain structures in ferroelectrics under switching polarization in high-nonequilibrium conditions. J. Nano- Electron. Phys., 2017, 9(2), 02032.
[16]
Golitsyna, O.M. Drozdin. Relaxation of the domain structure in the TGS crystal, stimulated by an alternating electric field. Phys. Solid State, 2011, 53(2), 320-323.
[17]
Shur, V.Ya.; Mingaliev, E.A.; Kuznetsov, D.K.; Kosobokov, M.S. Micro- and nanodomain structures produced by pulse laser heating n congruent lithium tantalate. Ferroelectrics, 2013, 443(1), 92-105.
[18]
Abrahams, S.C.; Bernstein, J.L. Ferroelectric lithium tantalate-1 single crystal X-ray diffraction study at 24°C. J. Phys. Chem. Solids, 1967, 28, 1685-1692.
[19]
Liu, J.; Banis, M.N.; Li, X.; Lushington, A.; Cai, M.; Li, R. Sham. T.-K.; Sun, X. Atomic layer deposition of lithium tantalate. Solid-state electrolytes. J. Phys. Chem., 2013, 117, 20260-20267.
[20]
Carruthers, J.R.; Kaminow, I.P.; Stulz, L.W. Diffusion kinetics and optical waveguiding properties of outdiffused layers in lithium niobate and lithium tantalate. Appl. Optics., 1974, 13(10), 2333-2342.
[21]
Agronin, A.; Molotskii, M.; Rosenwaks, Y.; Rosenman, G.; Rodriguez, B.J.; Kingon, A.I.; Gruverman, A. Dynamics of ferroelectric domain growth in the field of atomic force microscope. J. Appl. Phys., 2006, 99, 104102.
[22]
Anikyev, A.A. One- and two-phonon density of states in lithium niobate crystals; Optical Devices Sys, 2013, pp. 229-247.
[23]
Ishchuk, V.M. Ferro- antiferroelectric phase transtions, 1st ed; Knowledge: Donetsk, 2012.
[24]
Abrahams, S.C.; Reddy, J.M.; Bernstein, J.L. Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24°C. J. Phys. Chem. Solids, 1966, 27, 997-1012.
[25]
Jorgensen, P.J.; Bartlett, R.W. High temperature transport processes in lithium niobate. J. Phys. Chem. Solids, 1969, 30, 2639-2648.