Nanoscience & Nanotechnology-Asia

Author(s): Jothi Varghese* and Rudra Mohan

DOI: 10.2174/2210681208666180604092506

Bioscaffolds in Periodontal Regeneration

Page: [428 - 436] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Tissue engineering is a highly evolving field in periodontology which incorporates the use of cells, signalling molecules and scaffolds thereby creating a three dimensional microenvironment facilitating cellular growth and function for restoration of lost tissues due to periodontal disease. This review discusses the various types, ideal characteristics, properties and applications of potential scaffolds that can be used in periodontal regeneration with the help of principles of tissue engineering.

Methods: Research work pertaining to bioscaffolds for periodontal regeneration were selected using key words in major databases and internet sources.

Results: Studies related to various features of scaffold and its inherent properties were searched and analysed. Data were organized considering the sources of its origin and salient features of these inert matrices. Specific probe into the techniques and medium used for developing scaffolds were cited. Further, bioactive ceramic materials which are involved in stimulating cell proliferation, and bone tissue regeneration, which may also facilitate periodontal regeneration were mentioned. Likewise, few data linked to different types of biodegradable synthetic scaffolds and its advantages were considered. The progress of science in various fabrication techniques and newer advances using modern technology such as tissue engineering approaches, 3D printing and physical & chemical methods to enhance the physical properties are being used to make them more versatile for the application in the field of biomedical science.

Conclusion: In lieu of the available literature search and vast progress in material science, scaffolds construction for cellular regeneration requires wide exploration. Furthermore, when these scaffolds are placed at a particular site, it should be able to restore lost periodontal tissue. Also, the newer innovative technologies like the 3D version of biomimicking, nano/micro-based scaffolds displays potential for further extensive research and complete regeneration of periodontal tissues.

Keywords: Bioscaffolds, periodontal regeneration, inflammatory process, bioresorbable collagen membranes, tooth loss, periodontal therapy.

Graphical Abstract

[1]
Shimauchi, H.; Nemoto, E.; Ishihata, H.; Shimomura, M. Possible functional scaffolds for periodontal regeneration. Jpn. Dent. Sci. Rev., 2013, 49, 118-130.
[2]
Ramseier, C.A.; Rasperini, G.; Batia, S.; Giannobile, W.V. Advanced reconstructive technologies for periodontal tissue repair. Periodontol. 2000, 2012, 59, 185-202.
[3]
Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J., 2008, 17, S467-S479.
[4]
Boccaccini, A.R.; Blaker, J.J. Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Devices, 2005, 2, 303-317.
[5]
Chan, B.P.; Hui, T.Y.; Chan, O.C.; So, K.F.; Lu, W.; Cheung, K.M.; Salomatina, E.; Yaroslavsky, A. Photochemical cross-linking for collagen-based scaffolds: A study on optical properties, mechanical properties, stability, and hematocompatibility. Tissue Eng., 2007, 13, 73-85.
[6]
Kurella, A.; Dahotre, N.B. Review paper: surface modification for bioimplants: The role of laser surface engineering. J. Biomater. Appl., 2005, 20, 5-50.
[7]
Brodie, J.C.; Goldie, E.; Connel, G.; Merry, J.; Grant, M.H. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. J. Biomed. Mater. Res. A, 2005, 73, 409-421.
[8]
Chevalier, E.; Chulia, D.; Pouget, C.; Viana, M. Fabrication of porous substrates: A review of processes using pore forming agents in the biomaterial field. J. Pharm. Sci., 2008, 97, 1135-1154.
[9]
Yang, S.; Leong, K.F.; Du, Z.; Chua, C.K. The design of scaffolds for use in tissue engineering: Part II. Rapid prototyping techniques. Tissue Eng., 2002, 8, 1-11.
[10]
Chai, C.; Leong, K.W. Biomaterials approach to expand and direct differentiation of stem cells. Mol. Ther., 2007, 15, 467-480.
[11]
Mallick, S.; Tripathi, S.; Srivastava, P. Advancement in scaffolds for bone tissue engineering: A review. IOSR J. Pharm. Biol. Sci, 2015, 10, 37-54.
[12]
Badylak, S.F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol., 2004, 12, 367-377.
[13]
Okano, T.; Yamada, N.; Sakai, H.; Sakurai, Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J. Biomed. Mater. Res., 1993, 27, 1243-1251.
[14]
Tsuda, Y.; Shimizu, T.; Yamato, M.; Kikuchi, A.; Sasagawa, T.; Sekiya, S.; Kobayashi, J.; Chen, G.; Okano, T. Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials, 2007, 28, 4939-4946.
[15]
Lanza, R.P.; Hayes, J.L.; Chick, W.L. Encapsulated cell technology. Nat. Biotechnol., 1996, 14, 1107-1111.
[16]
Orive, G.; Hernandez, R.M.; Rodrıguez, G.A.; Calafiore, R.; Chang, T.M.; de Vos, P.; Hortelano, G.; Hunkeler, D.; Lacı´, K.I.; Pedraz, J.L. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol., 2004, 22, 87-92.
[17]
Chan, B.P.; Chan, G.C.F.; Wong, H.L.; Cheung, P.T.; Chan, D.; Cheah, K. Cell-matrix microsphere, associated products, methods for preparation and applications. Patent, 60/801, 975. 2007b
[18]
Chan, B.P.; Hui, T.Y.; Yeung, C.W.; Li, J.; Mo, I.; Chan, G.C.F. Self-assembled collagen-human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials, 2007, 28, 4652-4666.
[19]
Hui, T.Y.; Cheung, K.M.C.; Cheung, W.L.; Chan, D.; Chan, B.P. In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: Influence of cell seeding density and collagen concentration. Biomaterials, 2008, 29, 3201-3212.
[20]
Locci, P.; Calvitti, M.; Belcastro, S.; Pugliese, M.; Guerra, M. Phenotypic expression of gingival fibroblasts cultured on membranes used in guided tissue regeneration. J. Periodontol., 1997, 68, 857-863.
[21]
Schlegel, A.K.; Möhler, H.; Busch, F.; Mehl, A. Preclinical and clinical studies of a collagen membrane(Bio-Gide). Biomaterials, 1997, 18, 535-538.
[22]
Minabe, M.; Kodarna, T.; Kogou, T.; Tamura, T.; Hori, T.; Watanbe, Y. T, Miyata. Different cross-linked types of collagen implanted in rat palatal gingiva. J. Periodontol., 1989, 60, 35-43.
[23]
Kodama, T.; Minabe, M.; Hori, T.; Watanabe, Y. The effect of various concentrations of collagen barrier on periodontal wound healing. J. Periodontol., 1989, 60, 205-210.
[24]
Mitchell, R. A new biological dressing for areas denuded of mucous membrane. Br. Dent. J., 1983, 155, 346-348.
[25]
Iglhaut, J.; Aukhil, I.; Simpson, D.M.; Johnston, M.C.; Kock, G. Progenitor cell kinetics during guided tissue regeneration in experimental periodontal wounds. J. Periodontal Res., 1988, 23, 107-117.
[26]
Colangelo, P.; Piatelli, A.; Barrucci, S.; Trisi, P.; Formisano, G.; Caiazza, S. Bone regeneration guided by resorbable collagen membranes in rabbits. A pilot study. Implant Dent., 1993, 2, 101-105.
[27]
Mukherjee, D.P.; Tunkle, A.S.; Roberts, R.A.; Clavenna, A.; Rogers, S.; Smith, D. An animal evaluation of a paste of chitosan glutamate and hydroxyapatite as a synthetic bone graft material. J. Biomed. Mater. Res., 2003, 67, 603-609.
[28]
Hench, L.L.; Polak, J.M. Third-generation biomedical materials. Science, 2002, 295, 1014-1017.
[29]
Yoshikawa, M.; Tsuji, N.; Shimomura, Y.; Hayashi, H.; Ohgushi, H. Effects of laminin for osteogenesis in porous hydroxyapatite. Macromol. Symp., 2007, 253, 172-178.
[30]
Mastrangelo, F.; Nargi, E.; Carone, L.; Dolci, M.; Caciagli, F.; Ciccarelli, R.; Maria, L.; Virginia, K.; Basha, S.; Pio, C.; Stefano, T. Tridimensional response of human dental follicular stem cells onto a synthetic hydroxyapatite scaffold. J. Health Sci., 2008, 54, 154-161.
[31]
Losquadro, W.D.; Tatum, S.A.; Allen, M.J.; Mann, K.A. Polylactide-co-glycolide fiber-reinforced calcium phosphate bone cement. Arch. Facial Plast. Surg., 2009, 11, 104-109.
[32]
Becher, P.F.; Hsueh, C.H.; Angelini, P.; Tiegs, T.N. Toughening behavior in Whisker-reinforced ceramic matrix composites. J. Am. Ceram. Soc., 1988, 71, 1050-1061.
[33]
Ahn, E.S.; Gleason, N.J.; Ying, J.Y. The effect of zirconia reinforcing agents on the microstructure and mechanical properties of hydroxyapatite-based nanocomposites. J. Am. Ceram. Soc., 2005, 88, 3374-3379.
[34]
Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci., 2006, 51, 427-556.
[35]
Chiara, G.; Letizia, F.; Lorenzo, F.; Edoardo, S.; Diego, S.; Stefano, S.; Eriberto, B.; Barbara, Z. Nanostructured biomaterials for tissue engineered bone tissue reconstruction. Int. J. Mol. Sci., 2012, 13, 737-757.
[36]
Yoon, S.Y.; Park, H.C.; Jin, H.H.; Lee, W.K. Microstructural and mechanical properties of polymer-based scaffolds reinforced by hydroxyapatite. Mater. Sci. Forum, 2007, 544-545, 765-768.
[37]
Xu, C-Z.; Yang, W-G.; He, X-F.; Zhou, L-T.; Han, X-K.; Xu, X.F. Vascular endothelial growth factor and nano-hydroxyapatite/collagen composite in the repair of femoral defect in rats. J. Clin. Rehabil. Tissue Eng. Res, 2011, 15, 7118-7122.
[38]
Alvarez, K.; Nakajima, H. Metallic scaffolds for bone regeneration. Materials (Basel), 2009, 2, 790-832.
[39]
Ge, Z.; Jin, Z.; Cao, T. Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed. Mater., 2008, 3, 1-11.
[40]
Lin, K.; Zhang, M.; Zhai, W.; Qu, H.; Chang, J. Fabrication and characterization of hydroxyapatite/wollastonite composite bioceramics with controllable properties for hard tissue repair. J. Am. Ceram. Soc., 2011, 94, 99-105.
[41]
Zavan, B.; Vindigni, V.; Vezzù, K.; Zorzato, G.; Luni, C.; Abatangelo, G.; Elvassore, N.; Cortivo, R. Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: A placebo-controlled study. J. Mater. Sci., 2009, 20, 235-247.
[42]
Froum, S.; Cho, S.G.; Rosenberg, E.; Rohrer, M.; Tarnow, D. Histological comparison of healing extraction sockets implanted with bioactive glass or demineralized free-dried bone allograft: A pilot study. J. Periodontol., 2002, 73, 94-102.
[43]
Zhang, R.; Ma, P.X. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Res. A, 1999, 45, 285-293.
[44]
Ma, P.X.; Zhang, R. Microtubular architecture of biodegradable polymer scaffolds. J. Biomed. Mater. Res. A, 2001, 4, 469-477.
[45]
Hou, Q.; Grijpma, D.W.; Feijen, J. Preparation of porous poly(ε-caprolactone) structures. Macromol. Rapid Commun., 2002, 23, 247-252.
[46]
Bryant, J.; Anseth, K.S. The effects of scaffold thickness on tissue engineered cartilage in photo-crosslinked poly (ethylene oxide) hydrogels. Biomaterials, 2001, 22, 619-626.
[47]
Lee, J.; Shanbhag, S.; Kotov, N.A. Inverted colloidal crystals as three dimensional microenvironments of cellular co-structures. J. Mater. Chem., 2006, 1, 3558-3564.
[48]
Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L. Electrospinning of collagen nanofibers. Biomacromolecules, 2002, 3, 232-238.
[49]
Geng, X.; Kwon, O.H.; Jang, J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005, 26, 5427-5432.
[50]
Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005, 26, 2603-2610.
[51]
Mo, X.M.; Xu, C.Y.; Kotaki, M.; Ramakrishna, S.; Electrospun, P. LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials, 2004, 25, 1883-1890.
[52]
Vasita, R.; Katti, D.S. Nanofibers and their applications in tissue engineering. Int. J. Nanomedicine, 2006, 1, 15-30.
[53]
Singh, M.; Sandhu, B.; Scurto, A.; Berkland, C.; Detamore, M.S. Microsphere-based scaffolds for cartilage tissue engineering: Using subcritical CO2 as a sintering agent. Acta Biomater., 2010, 6, 137-143.
[54]
Ravivarapu, H.B.; Burton, K.; DeLuca, P.P. Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres. Eur. J. Pharm. Biopharm., 2000, 50, 263-270.
[55]
Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 3413-3431.
[56]
Hench, L.L. Bioceramics: From concept to clinic. Am. Ceram. Soc. Bull., 1993, 74(4), 93-98.
[57]
Hentrich, R.L., Jr; Graves, G.A., Jr; Stein, H.G.; Bajpai, P.K. Evaluation of inert and resorbable ceramics for future clinical orthopedic applications. J. Biomed. Mater. Res. A, 1971, 5, 25-51.
[58]
Park, J.B.; Lakes, R.S. Biomaterials-An Introduction, 2nd ed; Plenum Press: New York, 1992.
[59]
Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, S.D. Polymeric scaffolds in tissue engineering application: A review. Int. J. Polym. Sci., 2011, 290602, 19.
[60]
Kang, H.G.; Kim, S.Y.; Lee, Y.M. Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications. J. Biomed. Mater. Res. B Appl. Biomater., 2006, 79, 388-397.
[61]
Dahms, S.E.; Piechota, H.J.; Dahiya, R.; Lue, T.F.; Tanagho, E.A. Composition and biomechanical properties of the bladder acellular matrix graft: Comparative analysis in rat, pig and human. Br. J. Urol., 1998, 82, 411-419.
[62]
Tran, K.T.; Griffith, L.; Wells, A. Extracellular matrix signaling through growth factor receptors during wound healing. Wound Repair Regen., 2004, 12, 262-268.
[63]
Midwood, K.S.; Williams, L.V.; Schwarzbauer, J.E. Tissue repair and the dynamics of the extracellular matrix. Int. J. Biochem. Cell Biol., 2004, 36, 1031-1037.
[64]
Selvig, K.; Kersten, B.; Chamberlain, D.; Wikesjö, U.M.; Nilvéus, R.E. Regenerative surgery of intrabony periodontal defects using ePTFE barrier membranes: Scanning electron microscopic evaluation of retrieved membranes versus clinical healing. J. Periodontol., 1992, 63, 974-978.
[65]
Couri, C.J.; Maze, G.; Hinkson, W.D.; Collins, B.H.; Dawson, D.V. Medical grade calcium sulfate hemihydrate versus expanded polytetrafluoroethylene in the treatment of mandibular class II furcations. J. Periodontol., 2002, 73, 1352-1359.
[66]
Mellado, J.; Salkin, L.M.; Freedman, A.L.; Stein, M.D. A comparative study of Eptfe periodontal membranes with and without decalcified freeze-dried bone allografts for the regeneration of interproximal intraosseous defects. J. Periodontol., 1995, 66, 751-755.
[67]
Hoffman, O.; Bartee, B.K.; Beaumont, C.; Kasaj, A.; Deli, G.; Zafiropoulos, G.G. Alveolar bone preservation in extraction sockets using non-resorbable dptfe membranes: A retrospective non-randomized study. J. Periodontol., 2008, 79, 1355-1369.
[68]
Dőri, F.; Arweiler, N.; Szàntó, E.; Àgics, A.; Gera, I. Ten-year results following treatment of intrabony defects with an enamel matrix derivative combined with either a natural bone mineral or a β- tricalcium phosphate. J. Periodontol., 2013, 84, 749-757.
[69]
Nevins, M.; Kao, R.T.; Mcguire, M.K.; McClain, P.K.; Hinrichs, J.E.; McAllister, B.S.; Reddy, M.S.; Nevins, M.L.; Genco, R.J.; Lynch, S.E.; Giannobile, W.V. Platelelet-derived growth factor promotes periodontal regeneration in localized osseous defects: A 36 month extension results from a randomized controlled, double masked clinical trial. J. Periodontol., 2013, 84, 456-464.
[70]
Camargo, P.M.; Lekovic, V.; Weinlaender, M.; Divnic-Resnik, T.; Pavlovic, M.; Kenney, E.B. A surgical re-entry study on the influence of platelet-rich plasma in enhancing the regenerative effects of bovine porous bone mineral and guided tissue regeneration in the treatment of intrabony defects in humans. J. Periodontol., 2009, 80, 915-923.
[71]
Kinoshita, A.; Oda, S.; Takahashi, K.; Yokota, S.; Ishikawa, I. Periodontal regeneration by application of recombinant human bone morphogenetic protein-2 to horizontal circumferential defects created by experimental periodontitis in beagle dogs. J. Periodontol., 1997, 68, 103-109.
[72]
Hynes, K.; Menicanin, D.; Gronthos, S.; Bartord, P.M. Clinical utility of stem cells for periodontal regeneration. Periodontol. 2000, 2012, 59, 203-227.
[73]
Tsumanuma, Y.; Iwata, T.; Washio, K.; Yoshida, T.; Yamada, A.; Takagi, R.; Ohno, T.; Lin, K.; Yamato, M.; Ishikawa, I.; Okano, T.; Izumi, Y. Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine one-wall defect model. Biotechnology, 2011, 32, 5819-5825.
[74]
O’Brien, F.J.; Harley, B.A.; Yannas, I.V.; Gibson, L.J. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 2005, 26, 433-441.
[75]
Sicchieri, L.G.; Crippa, G.E.; de Oliveira, P.T.; Beloti, M.M.; Rosa, A.L. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. J. Tissue Eng. Regen. Med., 2012, 6, 155-162.
[76]
Salem, A.K.; Stevens, R.; Pearson, R.G.; Davies, M.C.; Tendler, S.J.; Roberts, C.J.; Williams, P.M.; Shakesheff, K.M. Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J. Biomed. Mater. Res., 2002, 61, 212-217.
[77]
Lowery, J.L.; Datta, N.; Rutledge, G.C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Biomaterials, 2010, 31, 491-504.
[78]
Haugh, M.G.; Jaasma, M.J.; O’Brien, F.J. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J. Biomed. Mater. Res. A, 2009, 89, 363-369.
[79]
Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126, 677-689.
[80]
Trappmann, B.; Gautrot, J.E.; Connelly, J.T.; Strange, D.G.; Li, Y.; Oyen, M.L.; Stuart, M.A.C.; Boehm, H.; Li, B.; Vogel, V.; Spatz, J.P.; Watt, F.M.; Huck, W.T.S. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater., 2012, 11, 642-649.
[81]
Leukers, B.; Gülkan, H.; Irsen, S.H.; Milz, S.; Tille, C.; Schieker, M.; Seitz, H. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J. Mater. Sci. Mater. Med., 2005, 16, 1121-1124.
[82]
Xue, S.H.; Lv, P.J.; Wang, Y.; Zhao, Y.; Zhang, T. Three dimensional bioprinting technology of human dental pulp cells mixtures. J. Peking Univ. Health Sci, 2013, 45, 105-108.