Visible Vessels of Vocal Folds: Can they have a Diagnostic Role?

Page: [785 - 795] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Challenges in visual identification of laryngeal disorders lead researchers to investigate new opportunities to help clinical examination. This paper presents an efficient and simple method which extracts and assesses blood vessels on vocal fold tissue in order to serve medical diagnosis.

Methods: The proposed vessel segmentation approach has been designed in order to overcome difficulties raised by design specifications of videolaryngostroboscopy and anatomic structure of vocal fold vasculature. The limited number of medical studies on vocal fold vasculature point out that the direction of blood vessels and amount of vasculature are discriminative features for vocal fold disorders. Therefore, we extracted the features of vessels on the basis of these studies. We represent vessels as vascular vectors and suggest a vector field based measurement that quantifies the orientation pattern of blood vessels towards vocal fold pathologies.

Results: In order to demonstrate the relationship between vessel structure and vocal fold disorders, we performed classification of vocal fold disorders by using only vessel features. A binary tree of Support Vector Machine (SVM) has been exploited for classification. Average recall of proposed vessel extraction method was calculated as 0.82 while healthy, sulcus vocalis, laryngitis classification accuracy of 0.75 was achieved.

Conclusion: Obtained success rates showed the efficiency of vocal fold vessels in serving as an indicator of laryngeal diseases.

Keywords: Laryngeal image analysis, vascular vectors, vessel centerline extraction, vocal fold pathologies, histogram of oriented gradients, matched filter.

Graphical Abstract

[1]
Pontes P, Gonc¸alves MI, Behlau M. Vocal fold cover minor structural alterations: diagnostic errors. Phonoscope 1999; 2(4): 175-85.
[2]
Ulis JM, Yanagisawa E. What’s new in differential diagnosis and treatment of hoarseness? Curr Opin Otolaryngol Head Neck Surg 2009; 17(3): 209-15.
[http://dx.doi.org/10.1097/MOO.0b013e32832a2230] [PMID: 19469052]
[3]
Verikas A, Gelzinis A, Bacauskiene M, Hållander M, Uloza V, Kaseta M. Combining image, voice, and the patient’s questionnaire data to categorize laryngeal disorders. Artif Intell Med 2010; 49(1): 43-50.
[http://dx.doi.org/10.1016/j.artmed.2010.02.002] [PMID: 20338736]
[4]
Lin S-F, Chen H-T, Tsai TL. Automatic identifying laryngopharyngeal reflux using artificial neural network. Biomed Eng Appl Basis Commun 2012; 24: 47-56.
[5]
Jeffrey Kuo CF, Wang PC, Chu YH, Wang HW, Lai CY. Using image processing technology combined with decision tree algorithm in laryngeal video stroboscope automatic identification of common vocal fold diseases. Comput Methods Programs Biomed 2013; 112(1): 228-36.
[6]
Huang CC, Leu YS, Kuo CF, Chu WL, Chu YH, Wu HC. Automatic recognizing of vocal fold disorders from glottis images. Proc Inst Mech Eng H 2014 Sep; 228(9): 952-61.
[7]
Yoshida T, Inoue H, Usui S, Satodate H, Fukami N, Kudo SE. Narrow-band imaging system with magnifying endoscopy for superficial esophageal lesions. Gastrointest Endosc 2004; 59(2): 288-95.
[http://dx.doi.org/10.1016/S0016-5107(03)02532-X] [PMID: 14745410]
[8]
Kirbas C, Quek F. A review of vessel extraction techniques and algorithms. ACM Comput Surv (CSUR) 2004; 36(2): 81-121.
[http://dx.doi.org/10.1145/1031120.1031121]
[9]
Trucco E, Azegrouz H, Dhillon B. Modeling the tortuosity of retinal vessels: does caliber play a role? IEEE Trans Biomed Eng 2010; 57(9): 2239-47.
[http://dx.doi.org/10.1109/TBME.2010.2050771] [PMID: 20515707]
[10]
Piazza C, Cocco D, De Benedetto L, Del Bon F, Nicolai P, Peretti G. Narrow band imaging and high definition television in the assessment of laryngeal cancer: a prospective study on 279 patients. Eur Arch Otorhinolaryngol 2010; 267(3): 409-14.
[http://dx.doi.org/10.1007/s00405-009-1121-6] [PMID: 19826829]
[11]
Jovanovic MB, Mulutinovic Z, Perovic J, Grubor A, Milenkovic S, Malobabic S. Contact telescopy reveals blood vessel alterations of vocal fold mucosa in Reinke’s edema. J Voice 2007; 21(3): 355-60.
[http://dx.doi.org/10.1016/j.jvoice.2006.01.004] [PMID: 16564676]
[12]
Martins RHG, Defaveri J, Domingues MAC. de Albuquerque e Silva R. Vocal polyps: clinical, morphological, and immunohistochemical aspects. J Voice 2011; 25(1): 98-106.
[http://dx.doi.org/10.1016/j.jvoice.2009.05.002] [PMID: 20097524]
[13]
De Biase NG, Pontes PA. Blood vessels of vocal folds: a videolaryngoscopic study. Arch Otolaryngol Head Neck Surg 2008; 134(7): 720-4.
[http://dx.doi.org/10.1001/archotol.134.7.720] [PMID: 18645121]
[14]
Turkmen H, Irem H, Elif Karsligil M. Comput Biol Med 2015; 62: 76-85.
[http://dx.doi.org/10.1016/j.compbiomed.2015.02.001] [PMID: 25912989]
[15]
Turkmen HI, Karsligil ME, Koçak İ. Classification of vocal fold nodules and cysts based on vascular defects of vocal folds. In:MLSP United Kingdom. Southampton: IEEE 2013.
[16]
Barbalata C, Mattos LS. Laryngeal tumor detection and classification in endoscopic video. IEEE J Biomed Health Inform 2016; 20(1): 322-32.
[http://dx.doi.org/10.1109/JBHI.2014.2374975] [PMID: 25438330]
[17]
Lesage D, Angelini ED, Bloch I, Funka-Lea G. A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 2009; 13(6): 819-45.
[http://dx.doi.org/10.1016/j.media.2009.07.011] [PMID: 19818675]
[18]
L Srinidhi C, Aparna P, Rajan J. Recent advancements in retinal vessel segmentation. J Med Syst 2017; 41(4): 70.
[http://dx.doi.org/10.1007/s10916-017-0719-2] [PMID: 28285460]
[19]
Zhao YQ, Wang XH, Wang XF, Shih FY. Retinal vessels segmentation based on level set and region growing. Pattern Recognit 2014; 47(7): 2437-46.
[http://dx.doi.org/10.1016/j.patcog.2014.01.006]
[20]
Nguyen UT, Bhuiyan A, Park LA, Ramamohanarao K. An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit 2013; 46(3): 703-15.
[http://dx.doi.org/10.1016/j.patcog.2012.08.009]
[21]
Sofka M, Stewart CV. Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans Med Imaging 2006; 25(12): 1531-46.
[http://dx.doi.org/10.1109/TMI.2006.884190] [PMID: 17167990]
[22]
Delibasis KK, Kechriniotis AI, Tsonos C, Assimakis N. Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput Methods Programs Biomed 2010; 100(2): 108-22.
[http://dx.doi.org/10.1016/j.cmpb.2010.03.004] [PMID: 20363522]
[23]
Mendonça AM, Campilho A. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 2006; 25(9): 1200-13.
[http://dx.doi.org/10.1109/TMI.2006.879955] [PMID: 16967805]
[24]
Lam BY, Yan H. A novel vessel segmentation algorithm for pathological retina images based on the divergence of vector fields. IEEE Trans Med Imaging 2008; 27(2): 237-46.
[http://dx.doi.org/10.1109/TMI.2007.909827] [PMID: 18334445]
[25]
Tang S, Chan CS. Orthogonal planar search (OPS) for coronary artery centerline extraction. Signal Image Video Process 2016; 10(2): 335-42.
[http://dx.doi.org/10.1007/s11760-014-0746-0]
[26]
Materka A, Kociński M, Blumenfeld J, et al. Automated modeling of tubular blood vessels in 3D MR angiography images. In: 9th International Symposium on Image and Signal Processing and Analysis (ISPA) IEEE. 2015; 54-9.
[27]
Gong ZX, Tan W, Song YH, et al. Segmentation of pulmonary blood vessels based on fractional differentiation in 3D chest CT images. J Med Imaging Health Inform 2016; 6(7): 1746-9.
[http://dx.doi.org/10.1166/jmihi.2016.1883]
[28]
Allin S, Galeotti J, Stetten G, Dailey SH. Enhanced snake based segmentation of vocal folds. In: IEEE International Symposium. 2004 15-18 April;; Virginia. 2004
[http://dx.doi.org/10.1109/ISBI.2004.1398662]
[29]
Palm C, Lehmann TM, Bredno J, Neuschaefer-Rube C, Klajman S, Spitzer K. Automated analysis of stroboscopic image sequences by vibration profiles In: Proc 5th Int Workshop Advances Quantitative Laryngol, Voice Speech Res. Groningen, Netherlands. 2001.
[30]
Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int J Comput Vis 1988; 1(4): 321-31.
[http://dx.doi.org/10.1007/BF00133570]
[31]
Cerrolaza JJ, Osma V, Sáenz N, Villanueva A, Gutiérrez JM, Godino JI. Full-automatic glottis segmentation with active shape models. In: 7th international Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications. 2011; Florence, Italy. 25-7.
[32]
Andrade-Miranda G, Saenz-Lechon N, Osma-Ruiz V, Godino-Llorente JI. A new approach for the glottis segmentation using snakes. In: International Conference on Bio-Inspired Systems and Signal Processing. Barcelona, Spain. 2013.
[33]
Karakozoglou SZ, Henrich N, d’Alessandro C. Automatic glottal segmentation using local-based active contours and application to glottovibrography. Speech Commun 2012; 54(5): 641-54.
[http://dx.doi.org/10.1016/j.specom.2011.07.010]
[34]
Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell 1994; 16(6): 641-7.
[http://dx.doi.org/10.1109/34.295913]
[35]
Lohscheller J, Toy H, Rosanowski F, Eysholdt U, Döllinger M. Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos. Med Image Anal 2007; 11(4): 400-13.
[http://dx.doi.org/10.1016/j.media.2007.04.005] [PMID: 17544839]
[36]
Lohscheller J1, Eysholdt U, Toy H, Dollinger M, et al. Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics. IEEE Trans Med Imaging 2008; 27(3): 300-9.
[37]
Yan Y, Chen X, Bless D. Automatic tracing of vocal-fold motion from high-speed digital images. IEEE Trans Biomed Eng 2006; 53(7): 1394-400.
[http://dx.doi.org/10.1109/TBME.2006.873751] [PMID: 16830943]
[38]
Moccia S, De Momi E, Baselli G, Mattos LS. Vocal Folds Disorders Detection and Classification in Endoscopic Narrow-Band Images. In: CRAS 2019: 9th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery. Genoa, Italy. 2019.
[39]
Osma-Ruiz V, Godino-Llorente JI, Sáenz-Lechón N, Fraile R. Segmentation of the glottal space from laryngeal images using the watershed transform. Comput Med Imaging Graph 2008; 32(3): 193-201.
[http://dx.doi.org/10.1016/j.compmedimag.2007.12.003] [PMID: 18243657]
[40]
Andrade-Miranda G, Godino-Llorente JI, Moro-Velázquez L, Gómez-García JA. An automatic method to detect and track the glottal gap from high speed videoendoscopic images. Biomed Eng Online 2015; 14(1): 100.
[http://dx.doi.org/10.1186/s12938-015-0096-3] [PMID: 26510707]
[41]
O’Brien NF. Ezquerra. Automated segmentation of coronary vessels in angiographic image sequences utilizing temporal, spatial and structural constraints. In: Visualization in Biomedical Computing. SPIE; Rochester, MN, United States 1994; pp. 25-37.
[42]
Lam L, Lee SW. Thinning methodologies-a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 1992; 14(9): 869-85.
[http://dx.doi.org/10.1109/34.161346]
[43]
Hanson DG, Jiang JJ. Diagnosis and management of chronic laryngitis associated with reflux. Am J Med 2000; 108(4): 112S-9S.
[http://dx.doi.org/10.1016/S0002-9343(99)00349-6] [PMID: 10718463]
[44]
Noordzij JP, Khidr A, Evans BA, et al. Evaluation of omeprazole in the treatment of reflux laryngitis: a prospective, placebo-controlled, randomized, double-blind study. Laryngoscope 2001; 111(12): 2147-51.
[http://dx.doi.org/10.1097/00005537-200112000-00013] [PMID: 11802014]
[45]
Nagy JA, Chang SH, Dvorak AM, Dvorak HF. Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer 2009; 100(6): 865-9.
[46]
Lin B, Sun Y, Sanchez JE, Qian X. Efficient vessel feature detection for endoscopic image analysis. IEEE Trans Biomed Eng 2015; 62(4): 1141-50.
[http://dx.doi.org/10.1109/TBME.2014.2373273] [PMID: 25423648]