Mini-Reviews in Organic Chemistry

Author(s): Hari K. Kadam* and Santosh G. Tilve

DOI: 10.2174/1570193X15666180528103548

6H-Indolo[2,3-b]Quinoline: A Recent Synthetic Comprehension

Page: [35 - 42] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

The present review provides a comprehensive overview of the synthetic methods developed recently for 6H-Indolo[2,3-b]quinoline. The review is classified into the following: 1) inheriting indole skeleton and constructing quinoline ring; 2) inheriting quinoline skeleton and constructing indole ring, and 3) convergent strategies constructing both rings simultaneously or step by step. This review discusses the scope of multifunctional reactivity of indole and quinoline skeleton for constructing the desired indoloquinolines as explored in various research strategies.

Keywords: Indoloquinoline, indole, quinoline, natural product, synthesis, indole skeleton.

Graphical Abstract

[1]
Parvatkar, P.T.; Parameswaran, P.S.; Tilve, S.G. Isolation, biological activities and synthesis of indoloquinoline alkaloids: Cryptolepine, isocryptolepine and neocryptolepine. Curr. Org. Chem., 2011, 15, 1036-1057.
[2]
Parvatkar, P.T.; Tilve, S.G. Bioactivities and synthesis of indoloquinoline alkaloids: Cryptolepine, isocryptolepine and neocryptolepine. Bioactive Heterocycles; Nova Science Publishers: New York, 2012, p. 217.
[3]
Bracca, A.B.; Heredia, D.A.; Larghi, E.L.; Kaufman, T.S. Neocryptolepine (cryprotackieine), a unique bioactive natural product: Isolation, synthesis, and profile of its biological activity. Eur. J. Org. Chem., 2014, 7979-8003.
[4]
Subbaraju, G.V.; Kavitha, J.; Rajasekhar, D.; Jimenez, J.I. Jusbetonin, the first Indolo[3,2-b]quinoline alkaloid glycoside, from Justicia betonica. J. Nat. Prod., 2004, 67, 461-462.
[5]
Alajarin, M.; Molina, P.; Vidal, A. Formal total synthesis of the alkaloid cryptotackieine (neocryptolepine). J. Nat. Prod., 1997, 60, 747-748.
[6]
Sundaram, G.S.M.; Venkatesh, C.; Syam Kumar, U.K.; Ila, H.; Junjappa, H. A concise formal synthesis of alkaloid cryptotackiene and substituted 6H-Indolo[2,3-b]quinolines. J. Org. Chem., 2004, 69, 5760-5762.
[7]
Shi, C.; Zhang, Q.; Wang, K.K. Biradicals from thermolysis of N-[2-(1-Alkynyl)phenyl]-N-phenylcarbodiimides and their subsequent transformations to 6H-Indolo[2,3-b]quinolines. J. Org. Chem., 1999, 64, 925-932.
[8]
Cimanga, K.; De Bruyne, T.; Pieters, L.; Claeys, M.; Vlietinck, A. New alkaloids from Cryptolepis sanguinolenta. Tetrahedron Lett., 1996, 37, 1703-1706.
[9]
Pousset, J.L.; Martin, M.T.; Jossang, A.; Bodo, B. Isocryptolepine from Cryptolepis sanguinolenta. Phytochemistry, 1995, 39, 735-736.
[10]
Cimanga, K.; De Bruyne, T.; Pieters, L.; Vlietinck, A.J.; Turger, C.A. In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. J. Nat. Prod., 1997, 60, 688-691.
[11]
Cimanga, K.; De Bruyne, T.; Pieters, L.; Totte, J.; Tona, L.; Kambu, K.; Berghe, D.V.; Vlietinck, A.J. Antibacterial and antifungal activities of neocryptolepine, biscryptolepine and cryptoquindoline, alkaloids isolated from Cryptolepis sanguinolenta. Phytomedicine, 1998, 5, 209-214.
[12]
Miert, S.V.; Jonckers, T.; Maes, L.; Vlietinck, A.; Dommisse, R.; Lemiere, G.; Pteters, L. Synthesis, cytotoxicity and antiplasmodial activity of neocryptolepine derivatives. Acta Hortic., 2005, (677), 91-97.
[13]
Guittat, L.; Alberti, P.; Rosu, F.; Miert, S.V.; Thetiot, E.; Pieters, L.; Gabelica, V.; Pauw, E.D.; Ottaviani, A.; Riou, J.F.; Mergny, J.L. Interactions of cryptolepine and neocryptolepine with unusual DNA structures. Biochimie, 2003, 85, 535-547.
[14]
Peczynska-Czoch, W.; Pognan, F.; Kaczmarek, L.; Boratynski, J. Synthesis and structure -activity relationship of methyl-substituted indolo[2,3-b]quinolines: Novel cytotoxic, DNA topoisomerase-II inhibitors. J. Med. Chem., 1994, 37, 3503-3510.
[15]
Jaromin, A.; Korycinska, M.; Pietka-Ottlik, M.; Musial, W.; Peczynska-Czoch, W.; Kaczmarek, L.; Kozubek, A. Membrane perturbations induced by new analogs of neocryptolepine. Biol. Pharm. Bull., 2012, 35, 1432-1439.
[16]
Miert, S.V.; Jonckers, T.; Cimanga, K.; Maes, L.; Maes, B.; Lemiere, G.; Dommisse, R.; Vlietinck, A.; Pieters, L. In vitro inhibition of b-haematin formation, DNA interactions, antiplasmodial activity, and cytotoxicity of synthetic neocryptolepine derivatives. Exp. Parasitol., 2004, 108, 163-168.
[17]
Dejaegher, B.; Dhooghe, L.; Goodarzi, M.; Apers, S.; Pieters, L.; Heyden, Y.V. Classification models for neocryptolepine derivatives as inhibitors of the b-haematin formation. Anal. Chim. Acta, 2011, 705, 98-110.
[18]
Jonckers, T.H.M.; Miert, S.V.; Cimanga, K.; Bailly, C.; Colson, P. De PauwGillet, M.C.; Heuvel, H.V.; Claeys, M.; Dommisse, R.; Lemiere, G.L.F.; Vlietinck, A.; Pieters, L. Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new neocryptolepine derivatives. J. Med. Chem., 2002, 45, 3497-3508.
[19]
Wang, L.; Switalska, M.; Mei, Z.W.; Lu, W.J.; Takahara, Y.; Feng, X.W.; Sayed, I.E.T.E.; Wietrzyk, J.; Inokuchi, T. Synthesis and in vitro antiproliferative activity of new 11-aminoalkylamino-substituted 5H- and 6H-indolo[2,3-b]quinolines; structure–activity relationships of neocryptolepines and 6-methyl congeners. Bioorg. Med. Chem., 2012, 20, 4820-4829.
[20]
Sayed, I.E.; Ramzy, F.; William, S.; Bahanasawy, M.E.; Sattar, M.M.A.E. Neocryptolepine analogues containing N-substituted side-chains at C-11: Synthesis and antischistosomicidal activity. Med. Chem. Res., 2012, 21, 4219-4229.
[21]
Mei, Z.W.; Wang, L.; Lu, W.J.; Pang, C.Q.; Maeda, T.; Peng, W.; Kaiser, M.; Sayed, I.E.; Inokuchi, T. Synthesis and in vitro antimalarial testing of neocryptolepines: SAR study for improved activity by introduction and modifications of side chains at C2 and C11 on indolo[2,3-b]quinolines. J. Med. Chem., 2013, 56, 1431-1442.
[22]
Schmittel, M.; Rodriguez, D.; Steffen, J.P. A highly efficient triplicate analogue of a thermal biradical cyclisation-The photochemical C2-C6 cyclisation of enyne-heteroallenes. Angew. Chem. Int. Ed., 2000, 39, 2152-2155.
[23]
Parvatkar, P.T.; Ajay, A.K.; Bhat, M.K.; Parameswaran, P.S.; Tilve, S.G. Iodine catalyzed one-pot synthesis of chloro-substituted linear and angular indoloquinolines and in vitro antiproliferative activity study of different indoloquinolines. Med. Chem. Res., 2013, 22, 88-93.
[24]
Kraus, G.A.; Guo, H.; Kumar, G.; Pollock, G.; Carruthers, H.; Chaudhary, D.; Beasley, J. A flexible synthesis of indoles from ortho-substituted anilines: A direct synthesis of isocryptolepine. Synthesis, 2010, 8, 1386-1389.
[25]
Cubillo, F.P.; Scott, J.S.; Walton, J.C. Microwave-assisted syntheses of N-Heterocycles using alkenone-, alkynone- and aryl-carbonyl O-phenyl oximes: Formal synthesis of neocryptolepine. J. Org. Chem., 2008, 73, 5558-5565.
[26]
Parvatkar, P.T.; Parameswaran, P.S.; Tilve, S.G. An expeditious I2-catalyzed entry into 6H-Indolo[2,3-b]quinoline system of cryptotackieine. J. Org. Chem., 2009, 74, 8369-8372.
[27]
Vaghei, R.G.; Malaekehpoor, S.M. N-Bromosuccinimide as an efficient catalyst for the synthesis of indolo[2,3-b]quinolines. Tetrahedron Lett., 2012, 53, 4751-4753.
[28]
Khorshidi, A.; Tabatabaeian, K. Ruthenium-exchanged FAU-Y zeolite catalyzed improvement in the synthesis of 6H-indolo[2,3-b]quinolines. J. Mol. Catal. Chem., 2011, 344, 128-131.
[29]
Matthew, K.V.; Aaron, X.S.; Daniel, S. Divergent reactions of indoles with aminobenzaldehydes: Indole ring-opening vs. annulation and facile synthesis of neocryptolepine. Chem. Sci., 2011, 2, 2178-2181.
[30]
Ali, S.; Li, Y.X.; Anwar, S.; Yang, F.; Chen, Z.S.; Liang, Y.M. One-pot access to Indolo[2,3-b]quinolines by electrophile-triggered cross-amination/friedel-crafts alkylation of indoles with 1-(2-tosylaminophenyl)ketones. J. Org. Chem., 2012, 77, 424-431.
[31]
Kadam, H.K.; Tilve, S.G. An alternate synthesis of 6H-indolo[2,3-b]quinoline via one-pot alkylation–dehydration–cyclization–aromatization approach. J. Heterocycl. Chem., 2016, 53, 2066-2069.
[32]
Kadam, H.K.; Parvatkar, P.T. Tilve, S.G. A concise synthesis of 6H-Indolo[2,3-b]quinolines: Formal synthesis of neocryptolepine. Synthesis, 2012, 44, 1339-1342.
[33]
Yan, Z.; Wan, C.; Wan, J.; Wang, Z. An efficient iron-promoted synthesis of 6H-indolo[2,3-b]quinolines and neocryptolepine derivatives. Org. Biomol. Chem., 2016, 14, 4405-4408.
[34]
Yu, S.; Li, Y.; Zhou, X.; Wang, H.; Kong, L.; Li, X. Access to structurally diverse quinoline-fused heterocycles via rhodium(iii)-catalyzed C−C/C−N coupling of bifunctional substrates. Org. Lett., 2016, 18, 2812-2815.
[35]
Shi, L.; Wang, B. Tandem Rh(III)-Catalyzed C−H amination/ annulation reactions: Synthesis of indoloquinoline derivatives in water. Org. Lett., 2016, 18, 2820-2823.
[36]
Parvatkar, P.T.; Tilve, S.G. An efficient synthesis of indoloquinoline alkaloid-neocryptolepine (cryptotackieine). Tetrahedron Lett., 2011, 52, 6594-6596.
[37]
Kadam, H.K.; Malik, D.D.; Salgaonkar, L.; Mandrekar, K.; Tilve, S.G. Facile convergent route to indoloquinolines. Synth. Commun., 2017, 47, 1980-1984.
[38]
Parvatkar, P.T.; Majik, M.S. Microwave-assisted reductive cyclization: An easy entry to the indoloquinolines and spiro[2H-indole- 2,3’-oxindole]. RSC Adv.2014, 4, 22481-22486
[39]
Volvoikar, P.S.; Parvatkar, P.T.; Tilve, S.G. Tandem reductive cyclization–dehydration approach for the synthesis of cryptolepine hydroiodide and its analogues. Eur. J. Org. Chem., 2013, 2172-2178.
[40]
Mei, Z.W.; Wang, L.; Lu, W.J.; Pang, C.Q.; Maeda, T.; Peng, W.; Kaiser, M.; Sayed, I.E.; Inokuchi, T. Synthesis and in vitro antimalarial testing of neocryptolepines: SAR study for improved activity by introduction and modifications of side chains at C2 and C11 on Indolo[2,3-b]quinolines. J. Med. Chem., 2013, 56, 1431-1442.
[41]
Sayed, I.E.; Veken, P.; Steert, K.; Dhooghe, L.; Hostyn, S.; Baelen, G.; Lemie’re, G.; Maes, B.U.W.; Cos, P.; Maes, L.; Joossens, J.; Haemers, A.; Pieters, L.; Augustyns, K. Synthesis and antiplasmodial activity of aminoalkylamino-substituted neocryptolepine derivatives. J. Med. Chem., 2009, 52, 2979-2988.
[42]
Sunke, R.; Kumar, V.; Ashfaq, M.A.; Yellanki, S.; Medisetti, R.; Kulkarni, P.; Ramarao, V.S.; Ehtesham, N.Z.; Pal, M.A. Pd(II)-catalyzed C-H activation approach to densely functionalized N-heteroaromatics related to neocryptolepine: Their evaluation as potential inducers of apoptosis. RSC Adv, 2015, 5, 44722-44727.
[43]
James, K.M.; Willetts, N.; Procter, D.J. Samarium(II)-mediated linker cleavage-cyclization in fluorous synthesis: Reactions of samarium enolates. Org. Lett., 2008, 10, 1203-1206.
[44]
Miller, M.; Vogel, J.C.; Tsang, W.; Merrit, A.; Procter, D.J. Formation of N-heterocycles by the reaction of thiols with glyoxamides: Exploring a connective Pummerer-type cyclisation. Org. Biomol. Chem., 2009, 7, 589-597.
[45]
Li, M.Y.; Xu, H.W.; Fan, W.; Ye, Q.; Wang, X.; Jiang, B.; Wang, S.L.; Tu, S.J. New formal (3+3) cycloaddition of enaminones for forming tetracyclic indolo[2,3-b]quinolines under microwave irradiation. Tetrahedron, 2014, 70, 1004-1010.
[46]
Fan, L.; Liu, M.; Ye, Y.; Yin, G. Synthesis of 6-substituted 6h-indolo[2,3-b]quinolines from isoindigos. Org. Lett., 2017, 19, 186-189.
[47]
Li, B.S.; Wang, Y.; Proctor, R.S.J.; Zhang, Y.; Webster, R.D.; Yang, S.; Song, B.; Robin, C.Y. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process. Nat. Commun., 2016, 7, Art. no. 12933.
[48]
Pumphrey, A.L.; Dong, H.; Driver, T.G. RhII2-catalyzed synthesis of a-, b-, or d-carbolines from aryl azides. Angew. Chem. Int. Ed., 2012, 51, 5920-5923.
[49]
Hostyn, S.; Tehrani, K.A.; Lemiere, F.; Smout, V.; Maes, B.U.W. Highly efficient one-pot synthesis of D-ring chloro-substituted neocryptolepines via a condensation Pd-catalyzed intramolecular direct arylation strategy. Tetrahedron, 2011, 67, 655-659.
[50]
Boganyi, B.; Kaman, J. A concise synthesis of indoloquinoline skeletons applying two consecutive Pd-catalyzed reactions. Tetrahedron, 2013, 69, 9512-9519.
[51]
Haddadin, M.J.; Zerdan, R.M.B.; Kurth, M.J.; Fettinger, J.C. Efficient syntheses of the unknown quinolino[2,3-c]cinnolines; synthesis of neocryptolepines. Org. Lett., 2010, 12, 5502-5505.
[52]
Basavaiah, D.; Reddy, D.M. Baylis-Hillman acetates in organic synthesis: Convenient one-pot synthesis of α-carboline framework – a concise synthesis of neocryptolepine. Org. Biomol. Chem., 2012, 10, 8774-8777.
[53]
Wentrup, C.; Vosswinkel, M. Pyrolysis of annelated hexa- and heptamethylene-tetrazoles: Formation of 9- and 10-membered cyclic carbodiimides. J. Anal. Appl. Pyrolysis, 2016, 117, 214-219.
[54]
Pitchai, P.; Sathiyaseelan, M.; Nepolraj, A.; Gengan, R.M. An elegant synthesis of indoloquinoline alkaloid cryptotackieine via Vilsmeier-Haack approach. Indian J. Chem. B., 2015, 54B, 1290-1292.