Synthesis and Characterization of L-Lysin Coated Iron Oxide Nanoparticles as Appropriate Choices for Cell Immobilization and Magnetic Separation

Page: [462 - 466] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Cell separation is one of the important steps of purification in downstream processes. Some separation techniques such as centrifugation and filtration are expensive and would affect cell viability. Magnetic separation can be a good alternative for laboratory and industrial cell separation processes.

Methods: For this purpose, L-lysine coated Iron Oxide Nanoparticles (IONs) were synthesized and used for magnetic separation of Escherichia coli as the most applied microbial cell in biotechnological processes.

Results: IONs have successfully decorated the bacterial cells and cells were completely separated by applying an external magnetic field.

Conclusion: This study showed that coating of E. coli cells with IONs could help to isolate cells from culture media without using expensive instruments.

Keywords: Downstream process, Escherichia coli, magnetic separation, iron oxide nanoparticles, cell immobilization, cell separation.

Graphical Abstract

[1]
Ebrahiminezhad, A.; Bagheri, M.; Taghizadeh, S.; Berenjian, A.; Ghasemi, Y. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv. Nat. Sci., 2016, 45(1), 7.
[2]
Ebrahiminezhad, A.; Barzegar, Y.; Ghasemi, Y.; Berenjian, A. Green synthesis and characterization of silver nanoparticles using Alcea rosea flower extract as a new generation of antimicrobials. Chem. Ind. Chem. Eng. Q., 2016, 23(1), 31-37.
[3]
Ebrahiminezhad, A.; Berenjian, A.; Ghasemi, Y. Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters. IET Nanobiotechnol., 2016, 10(3), 120-123.
[4]
Ebrahiminezhad, A.; Davaran, S.; Rasoul-Amini, S.; Barar, J.; Moghadam, M.; Ghasemi, Y. Synthesis, characterization and anti-listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Curr. Nanosci., 2012, 8(6), 868-874.
[5]
Ebrahiminezhad, A.; Zare-Hoseinabadi, A.; Berenjian, A.; Ghasemi, Y. Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Process. Syn., 2017, 6(5), 469-475.
[6]
Huang, Y-F.; Wang, Y-F.; Yan, X-P. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ. Sci. Technol., 2010, 44(20), 7908-7913.
[7]
Kell, A.J.; Somaskandan, K.; Stewart, G.; Bergeron, M.G.; Simard, B. Superparamagnetic nanoparticle-polystyrene bead conjugates as pathogen capture mimics: A parametric study of factors affecting capture efficiency and specificity. Langmuir, 2008, 24(7), 3493-3502.
[8]
Yitzhaki, S.; Zahavy, E.; Oron, C.; Fisher, M.; Keysary, A. Concentration of Bacillus spores by using silica magnetic particles. Anal. Chem., 2006, 78(18), 6670-6673.
[9]
Schilling, B.M.; Alvarez, L.M.; Wang, D.I.; Cooney, C.L. Continuous desulfurization of dibenzothiophene with Rhodococcus rhodochrous IGTS8 (ATCC 53968). Biotechnol. Prog., 2002, 18(6), 1207-1213.
[10]
Luo, R.G.; Sirkar, K.K. Passing feed solution into membrane module to separate bioproducts from feed solution by permeation; allowing permeated bioproducts to contact adsorbent particles; fractionating and purifying retained products; Google Patents, 2000.
[11]
Monticello, D.J. Biodesulfurization and the upgrading of petroleum distillates. Curr. Opin. Biotech., 2000, 11(6), 540-546.
[12]
Li, Y-G.; Gao, H-S.; Li, W-L.; Xing, J-M.; Liu, H-Z. In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Biores. Technol., 2009, 100(21), 5092-5096.
[13]
Ebrahiminezhad, A.; Varma, V.; Yang, S.; Berenjian, A. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl. Microbiol. Biotechnol., 2016, 100(1), 173-180.
[14]
Ebrahiminezhad, A.; Varma, V.; Yang, S.; Ghasemi, Y.; Berenjian, A. Synthesis and application of amine functionalized iron oxide nanoparticles on Menaquinone-7 fermentation: A step towards process intensification. Nanomaterials, 2015, 6(1), 1-9.
[15]
Ebrahiminezhad, A.; Varma, V.; Yang, S.; Berenjian, A. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl. Microbiol. Biotechnol., 2015, 100(1), 173-180.
[16]
Chwalibog, A.; Sawosz, E.; Hotowy, A.; Szeliga, J.; Mitura, S.; Mitura, K.; Grodzik, M.; Orlowski, P.; Sokolowska, A. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J. Nanomed., 2010, 5, 1085.
[17]
Ansari, F.; Grigoriev, P.; Libor, S.; Tothill, I.E.; Ramsden, J.J. DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol. Bioeng., 2009, 102(5), 1505-1512.
[18]
Liu, X.; Guan, Y.; Yang, Y.; Ma, Z.; Wu, X.; Liu, H. Preparation of superparamagnetic immunomicrospheres and application for antibody purification. J. Appl. Polym. Sci., 2004, 94(5), 2205-2211.
[19]
Can, K.; Ozmen, M.; Ersoz, M. Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization. Colloid Surface B, 2009, 71(1), 154-159.
[20]
Berry, C.C.; Wells, S.; Charles, S.; Aitchison, G.; Curtis, A.S. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials, 2004, 25(23), 5405-5413.
[21]
Islam, S.; Kusumoto, Y.; Abdulla-Al-Mamun, M.; Manaka, H.; Horie, Y. Synthesis, characterization and application of dumbbell-shaped magnetic (Fe3O4 and γ-Fe2O3) nanoparticles against HeLa (Cancer) cells. Curr. Nanosci., 2012, 8(6), 811-818.
[22]
Ficai, D.; Andronescu, E.; Ficai, A.; Voicu, G.; Vasile, B.; Ionita, V.; Guran, C. Synthesis and characterization of mesoporous magnetite based nanoparticles. Curr. Nanosci., 2012, 8(6), 875-879.
[23]
Gholami, A.; Rasoul-amini, S.; Ebrahiminezhad, A.; Seradj, S.H.; Ghasemi, Y. Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). J. Nanomater., 2015, 451405, 9.
[24]
Grumezescu, A.; Mihaiescu, D.; Mogoşanu, D.; Chifiriuc, M.; Lazar, V.; Calugarescu, I.; Traistaru, V. In vitro assay of the antimicrobial activity of Fe3O4 and CoFe2O4/oleic acid-core/shell on clinical isolates of bacterial and fungal strains. Optoelectron. Adv. Mat., 2010, 4(11), 1798-1801.
[25]
Ebrahiminezhad, A.; Rasoul-Amini, S.; Kouhpayeh, A.; Davaran, S.; Barar, J.; Ghasemi, Y. Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Curr. Nanosci., 2015, 11(1), 113-119.
[26]
Ebrahiminezhad, A.; Ghasemi, Y.; Rasoul-Amini, S.; Barar, J.; Davaran, S. Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull. Korean Chem. Soc., 2012, 33(12), 3957-3962.
[27]
Wang, Z.; Zhu, H.; Wang, X.; Yang, F.; Yang, X. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles. Nanotechnology, 2009, 20(46)465606
[28]
Durmus, Z.; Kavas, H.; Toprak, M.S.; Baykal, A.; Altınçekiç, T.G.; Aslan, A.; Bozkurt, A.; Coşgun, S. L-lysine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J. Alloys Compd., 2009, 484(1), 371-376.
[29]
Park, J.Y.; Choi, E.S.; Baek, M.J.; Lee, G.H. Colloidal stability of amino acid coated magnetite nanoparticles in physiological fluid. Mater. Lett., 2009, 63(3), 379-381.
[30]
Ebrahiminezhad, A.; Ghasemi, Y.; Rasoul-Amini, S.; Barar, J.; Davaran, S. Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf. B, 2013, 102, 534-539.
[31]
Ebrahiminezhad, A.; Rasoul-Amini, S.; Davaran, S.; Barar, J.; Ghasemi, Y. Impacts of iron oxide nanoparticles on the invasion power of listeria monocytogenes. Curr. Nanosci., 2014, 10(3), 382-388.
[32]
Gholami, A.; Rasoul-Amini, S.; Ebrahiminezhad, A.; Abootalebi, N.; Niroumand, U.; Ebrahimi, N.; Ghasemi, Y. Magnetic properties and antimicrobial effect of amino and lipoamino acid coated iron oxide nanoparticles. Minerva Biotecnol., 2016, 28(4), 177-186.
[33]
Ebrahimi, N.; Rasoul-Amini, S.; Ebrahiminezhad, A.; Ghasemi, Y.; Gholami, A.; Seradj, H. Comparative study on characteristics and cytotoxicity of bifunctional magnetic-silver nanostructures: Synthesized using three different reducing agents. Acta Metall. Sin, 2016, 29(4), 326-334.
[34]
Ebrahimi, N.; Rasoul-Amini, S.; Niazi, A.; Erfani, N.; Moghadam, A.; Ebrahiminezhad, A.; Ghasemi, Y. Cytotoxic and apoptotic effects of three types of silver-iron oxide binary hybrid nanoparticles. Curr. Pharm. Biotechnol., 2016, 17(12), 1049-1057.
[35]
Ebrahiminezhad, A.; Najafipour, S.; Kouhpayeh, A.; Berenjian, A.; Rasoul-Amini, S.; Ghasemi, Y. Facile fabrication of uniform hollow silica microspheres using a novel biological template. Colloids Surf. B, 2014, 118, 249-253.
[36]
Ebrahiminezhad, A.; Taghizadeh, S.; Berenjian, A.; Heidaryan Naeini, F.; Ghasemi, Y. Green synthesis of silver nanoparticles capped with natural carbohydrates using Ephedra intermedia. Nanosci. Nanotechnol. Asia, 2016, 6, 1-9.
[37]
Ebrahiminezhad, A.; Taghizadeh, S.; Berenjiand, A.; Rahi, A.; Ghasemi, Y. Synthesis and characterization of silver nanoparticles with natural carbohydrate capping using Zataria multiflora. Adv. Mater. Lett., 2016, 7(6), 122-127.
[38]
Ghoshoon, M.B.; Berenjian, A.; Hemmati, S.; Dabbagh, F.; Karimi, Z.; Negahdaripour, M.; Ghasemi, Y. Extracellular production of recombinant L-asparaginase II in Escherichia coli: Medium optimization using response surface methodology. Int. J. Pept. Res. Ther., 2015, 21(4), 487-495.
[39]
Niknezhad, S.V.; Asadollahi, M.A.; Zamani, A.; Biria, D. Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii. Int. J. Biol. Macromol., 2016, 82, 751-756.
[40]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[41]
Chatterjee, S.; Bandyopadhyay, A.; Sarkar, K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J. Nanobiotechnol., 2011, 9(34), 1.
[42]
Ramteke, C.; Ketan Sarangi, B.; Chakrabarti, T.; Mudliar, S.; Satpute, D.; Avatar Pandey, R. Synthesis and broad spectrum antibacterial activity of magnetite ferrofluid. Curr. Nanosci., 2010, 6(6), 587-591.