Advances in the Treatment of Explicit Water Molecules in Docking and Binding Free Energy Calculations

Page: [7598 - 7622] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Background: The inclusion of direct effects mediated by water during the ligandreceptor recognition is a hot-topic of modern computational chemistry applied to drug discovery and development. Docking or virtual screening with explicit hydration is still debatable, despite the successful cases that have been presented in the last years. Indeed, how to select the water molecules that will be included in the docking process or how the included waters should be treated remain open questions.

Objective: In this review, we will discuss some of the most recent methods that can be used in computational drug discovery and drug development when the effect of a single water, or of a small network of interacting waters, needs to be explicitly considered.

Results: Here, we analyse the software to aid the selection, or to predict the position, of water molecules that are going to be explicitly considered in later docking studies. We also present software and protocols able to efficiently treat flexible water molecules during docking, including examples of applications. Finally, we discuss methods based on molecular dynamics simulations that can be used to integrate docking studies or to reliably and efficiently compute binding energies of ligands in presence of interfacial or bridging water molecules.

Conclusions: Software applications aiding the design of new drugs that exploit water molecules, either as displaceable residues or as bridges to the receptor, are constantly being developed. Although further validation is needed, workflows that explicitly consider water will probably become a standard for computational drug discovery soon.

Keywords: MM-GBSA, MM-PBSA, drug design, scoring, solvation, virtual screening.

[1]
Bruno, A.; Costantino, G.; Sartori, L.; Radi, M. The in silico drug discovery toolbox: applications in lead discovery and optimization. Curr. Med. Chem., 2019, 26(21), 3838-3873.
[http://dx.doi.org/10.2174/0929867324666171107101035] [PMID: 29110597]
[2]
Vilar, S.; Sobarzo-Sanchez, E.; Santana, L.; Uriarte, E. Molecular docking and drug discovery in β-adrenergic receptors. Curr. Med. Chem., 2017, 24(39), 4340-4359.
[http://dx.doi.org/10.2174/0929867324666170724101448] [PMID: 28738772]
[3]
Maheswari, N.; Karthikeyan, C.; Trivedi, P.; Moorthy, N.S. Recent advances in protein tyrosine phosphatase 1b targeted drug discovery for type II diabetes and obesity. Curr. Drug Targets, 2018, 19(5), 551-575.
[http://dx.doi.org/10.2174/1389450118666170222143739] [PMID: 28228082]
[4]
Scotti, L.; Scotti, M.T. Editorial: multi-target in computer-aided drug design studies. Curr. Drug Targets, 2017, 18(5), 498-499.
[http://dx.doi.org/10.2174/138945011805170224223532] [PMID: 28270060]
[5]
Abdolmaleki, A.; Ghasemi, J.B.; Ghasemi, F. Computer aided drug design for multi-target drug design: sar/qsar, molecular docking and pharmacophore methods. Curr. Drug Targets, 2017, 18(5), 556-575.
[http://dx.doi.org/10.2174/1389450117666160101120822] [PMID: 26721410]
[6]
Hendlich, M.; Bergner, A.; Günther, J.; Klebe, G. Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J. Mol. Biol., 2003, 326(2), 607-620.
[http://dx.doi.org/10.1016/S0022-2836(02)01408-0] [PMID: 12559926]
[7]
Günther, J.; Bergner, A.; Hendlich, M.; Klebe, G. Utilising structural knowledge in drug design strategies: applications using Relibase. J. Mol. Biol., 2003, 326(2), 621-636.
[http://dx.doi.org/10.1016/S0022-2836(02)01409-2] [PMID: 12559927]
[8]
Lu, Y.; Wang, R.; Yang, C.Y.; Wang, S. Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. J. Chem. Inf. Model., 2007, 47(2), 668-675.
[http://dx.doi.org/10.1021/ci6003527] [PMID: 17266298]
[9]
Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem., 2010, 53(14), 5061-5084.
[http://dx.doi.org/10.1021/jm100112j] [PMID: 20345171]
[10]
Bodnarchuk, M.S. Water, water, everywhere… It’s time to stop and think. Drug Discov. Today, 2016, 21(7), 1139-1146.
[http://dx.doi.org/10.1016/j.drudis.2016.05.009] [PMID: 27210724]
[11]
Yang, Y.; Lightstone, F.C.; Wong, S.E. Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: the use of WaterMap. Expert Opin. Drug Discov., 2013, 8(3), 277-287.
[http://dx.doi.org/10.1517/17460441.2013.749853] [PMID: 23286874]
[12]
de Beer, S.B.; Vermeulen, N.P.; Oostenbrink, C. The role of water molecules in computational drug design. Curr. Top. Med. Chem., 2010, 10(1), 55-66.
[http://dx.doi.org/10.2174/156802610790232288] [PMID: 19929830]
[13]
Sullivan, T.J.; Truglio, J.J.; Boyne, M.E.; Novichenok, P.; Zhang, X.; Stratton, C.F.; Li, H.J.; Kaur, T.; Amin, A.; Johnson, F.; Slayden, R.A.; Kisker, C.; Tonge, P.J. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem. Biol., 2006, 1(1), 43-53.
[http://dx.doi.org/10.1021/cb0500042] [PMID: 17163639]
[14]
Howard, E.I.; Sanishvili, R.; Cachau, R.E.; Mitschler, A.; Chevrier, B.; Barth, P.; Lamour, V.; Van Zandt, M.; Sibley, E.; Bon, C.; Moras, D.; Schneider, T.R.; Joachimiak, A.; Podjarny, A. Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 A. Proteins, 2004, 55(4), 792-804.
[http://dx.doi.org/10.1002/prot.20015] [PMID: 15146478]
[15]
Wang, Y.; Freedberg, D.I.; Wingfield, P.T.; Stahl, S.J.; Kaufman, J.D.; Kiso, Y.; Bhat, T.N.; Erickson, J.W.; Torchia, D.A. Bound water molecules at the interface between the HIV-1 protease and a potent inhibitor, KNI-272, determined by NMR. J. Am. Chem. Soc., 1996, 118(49), 12287-12290.
[http://dx.doi.org/10.1021/ja962612i]
[16]
Fornabaio, M.; Spyrakis, F.; Mozzarelli, A.; Cozzini, P.; Abraham, D.J.; Kellogg, G.E. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes. J. Med. Chem., 2004, 47(18), 4507-4516.
[http://dx.doi.org/10.1021/jm030596b] [PMID: 15317462]
[17]
Kageyama, S.; Mimoto, T.; Murakawa, Y.; Nomizu, M.; Ford, H., Jr; Shirasaka, T.; Gulnik, S.; Erickson, J.; Takada, K.; Hayashi, H. In vitro anti-human immunodeficiency virus (HIV) activities of transition state mimetic HIV protease inhibitors containing allophenylnorstatine. Antimicrob. Agents Chemother., 1993, 37(4), 810-817.
[http://dx.doi.org/10.1128/AAC.37.4.810] [PMID: 8494379]
[18]
Baldwin, E.T.; Bhat, T.N.; Gulnik, S.; Liu, B.; Topol, I.A.; Kiso, Y.; Mimoto, T.; Mitsuya, H.; Erickson, J.W. Structure of HIV-1 protease with KNI-272, a tight-binding transition-state analog containing allophenylnorstatine. Structure, 1995, 3(6), 581-590.
[http://dx.doi.org/10.1016/S0969-2126(01)00192-7] [PMID: 8590019]
[19]
Lam, P.Y.S.; Jadhav, P.K.; Eyermann, C.J.; Hodge, C.N.; Ru, Y.; Bacheler, L.T.; Meek, J.L.; Otto, M.J.; Rayner, M.M.; Wong, Y.N.; Chang, C-H.; Weber, P.C.; Jackson, D.A.; Sharpe, T.R.; Erickson-Viitanen, S. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science, 1994, 263(5145), 380-384.
[http://dx.doi.org/10.1126/science.8278812] [PMID: 8278812]
[20]
Grzesiek, S.; Bax, A.; Nicholson, L.K.; Yamazaki, T.; Wingfield, P.; Stahl, S.J.; Eyermann, C.J.; Torchia, D.A.; Hodge, C.N. NMR evidence for the displacement of a conserved interior water molecule in hiv protease by a non-peptide cyclic urea-based inhibitor. J. Am. Chem. Soc., 1994, 116(4), 1581-1582.
[http://dx.doi.org/10.1021/ja00083a058]
[21]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[22]
Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The cambridge structural database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2016, 72(Pt 2), 171-179.
[http://dx.doi.org/10.1107/S2052520616003954] [PMID: 27048719]
[23]
Benson, M.L.; Smith, R.D.; Khazanov, N.A.; Dimcheff, B.; Beaver, J.; Dresslar, P.; Nerothin, J.; Carlson, H.A. Binding MOAD, a high-quality protein-ligand database. Nucleic Acids Res., 2008, 36(Database issue), D674-D678.
[http://dx.doi.org/ 10.1093/nar/gkm911] [PMID: 18055497]
[24]
Ahmed, A.; Smith, R.D.; Clark, J.J.; Dunbar, J.B. Jr.; Carlson, H.A.; Carlson, H.A. Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures. Nucleic Acids Res., 2015, 43(Database issue), D465-D469.
[http://dx.doi.org/10.1093/nar/gku1088] [PMID: 25378330]
[25]
Liu, Z.; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z.; Nie, W.; Liu, Y.; Wang, R. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics, 2015, 31(3), 405-412.
[http://dx.doi.org/10.1093/bioinformatics/btu626] [PMID: 25301850]
[26]
Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J. Med. Chem., 2004, 47(12), 2977-2980.
[http://dx.doi.org/10.1021/jm030580l] [PMID: 15163179]
[27]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053.
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[28]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R. N.; Gilson, M. K. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[29]
Raymer, M.L.; Sanschagrin, P.C.; Punch, W.F.; Venkataraman, S.; Goodman, E.D.; Kuhn, L.A. Predicting conserved water-mediated and polar ligand interactions in proteins using a K-nearest-neighbors genetic algorithm. J. Mol. Biol., 1997, 265(4), 445-464.
[http://dx.doi.org/10.1006/jmbi.1996.0746] [PMID: 9034363]
[30]
Wang, R.; Lu, Y.; Wang, S. Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem., 2003, 46(12), 2287-2303.
[http://dx.doi.org/10.1021/jm0203783] [PMID: 12773034]
[31]
Liu, J.; Wang, R. Classification of current scoring functions. J. Chem. Inf. Model., 2015, 55(3), 475-482.
[http://dx.doi.org/10.1021/ci500731a] [PMID: 25647463]
[32]
Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261(3), 470-489.
[http://dx.doi.org/10.1006/jmbi.1996.0477] [PMID: 8780787]
[33]
Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des., 2002, 16(1), 11-26.
[http://dx.doi.org/10.1023/A:1016357811882] [PMID: 12197663]
[34]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[35]
Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated docking of flexible ligands: applications of AutoDock. J. Mol. Recognit., 1996, 9(1), 1-5.
[http://dx.doi.org/10.1002/(SICI)1099-1352(199601)9:1<1:AID-JMR241>3.0.CO;2-6] [PMID: 8723313]
[36]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/ 10.1006/jmbi.1996.0897] [PMID: 9126849]
[37]
Yin, S.; Biedermannova, L.; Vondrasek, J.; Dokholyan, N.V. MedusaScore: an accurate force field-based scoring function for virtual drug screening. J. Chem. Inf. Model., 2008, 48(8), 1656-1662.
[http://dx.doi.org/10.1021/ci8001167] [PMID: 18672869]
[38]
García-Sosa, A.T.; Mancera, R.L.; Dean, P.M. WaterScore: a novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein-ligand complexes. J. Mol. Model., 2003, 9(3), 172-182.
[http://dx.doi.org/10.1007/s00894-003-0129-x] [PMID: 12756610]
[39]
García-Sosa, A.T. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies. J. Chem. Inf. Model., 2013, 53(6), 1388-1405.
[http://dx.doi.org/10.1021/ci3005786] [PMID: 23662606]
[40]
García-Sosa, A.T.; Mancera, R.L. Free energy calculations of mutations involving a tightly bound water molecule and ligand substitutions in a ligand-protein complex. Mol. Inform., 2010, 29(8-9), 589-600.
[http://dx.doi.org/10.1002/minf.201000007] [PMID: 27463454]
[41]
Amadasi, A.; Spyrakis, F.; Cozzini, P.; Abraham, D.J.; Kellogg, G.E.; Mozzarelli, A. Mapping the energetics of water-protein and water-ligand interactions with the “natural” HINT forcefield: predictive tools for characterizing the roles of water in biomolecules. J. Mol. Biol., 2006, 358(1), 289-309.
[http://dx.doi.org/10.1016/j.jmb.2006.01.053] [PMID: 16497327]
[42]
Chen, D.L.; Kellogg, G.E. A computational tool to optimize ligand selectivity between two similar biomacromolecular targets. J. Comput. Aided Mol. Des., 2005, 19(2), 69-82.
[http://dx.doi.org/10.1007/s10822-005-1485-7] [PMID: 16075302]
[43]
Amadasi, A.; Surface, J.A.; Spyrakis, F.; Cozzini, P.; Mozzarelli, A.; Kellogg, G.E. Robust classification of “relevant” water molecules in putative protein binding sites. J. Med. Chem., 2008, 51(4), 1063-1067.
[http://dx.doi.org/10.1021/jm701023h] [PMID: 18232647]
[44]
Ahmed, M.H.; Spyrakis, F.; Cozzini, P.; Tripathi, P.K.; Mozzarelli, A.; Scarsdale, J.N.; Safo, M.A.; Kellogg, G.E. Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif. PLoS One, 2011, 6(9) e24712
[http://dx.doi.org/10.1371/journal.pone.0024712] [PMID: 21961043]
[45]
Ahmed, M.H.; Habtemariam, M.; Safo, M.K.; Scarsdale, J.N.; Spyrakis, F.; Cozzini, P.; Mozzarelli, A.; Kellogg, G.E. Unintended consequences? Water molecules at biological and crystallographic protein-protein interfaces. Comput. Biol. Chem., 2013, 47, 126-141.
[http://dx.doi.org/10.1016/j.compbiolchem.2013.08.009] [PMID: 24076743]
[46]
Parikh, H.I.; Kellogg, G.E. Intuitive, but not simple: including explicit water molecules in protein-protein docking simulations improves model quality. Proteins, 2014, 82(6), 916-932.
[http://dx.doi.org/10.1002/prot.24466] [PMID: 24214407]
[47]
Bayden, A.S.; Fornabaio, M.; Scarsdale, J.N.; Kellogg, G.E. Web application for studying the free energy of binding and protonation states of protein-ligand complexes based on HINT. J. Comput. Aided Mol. Des., 2009, 23(9), 621-632.
[http://dx.doi.org/10.1007/s10822-009-9270-7] [PMID: 19554265]
[48]
Salsi, E.; Bayden, A.S.; Spyrakis, F.; Amadasi, A.; Campanini, B.; Bettati, S.; Dodatko, T.; Cozzini, P.; Kellogg, G.E.; Cook, P.F.; Roderick, S.L.; Mozzarelli, A. Design of O-acetylserine sulfhydrylase inhibitors by mimicking nature. J. Med. Chem., 2010, 53(1), 345-356.
[http://dx.doi.org/10.1021/jm901325e] [PMID: 19928859]
[49]
Mosier, P.D.; Krishnasamy, C.; Kellogg, G.E.; Desai, U.R. On the specificity of heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin and thrombin are fundamentally different. PLoS One, 2012, 7(11) e48632
[http://dx.doi.org/10.1371/journal.pone.0048632] [PMID: 23152789]
[50]
Spyrakis, F.; Cellini, B.; Bruno, S.; Benedetti, P.; Carosati, E.; Cruciani, G.; Micheli, F.; Felici, A.; Cozzini, P.; Kellogg, G.E.; Voltattorni, C.B.; Mozzarelli, A. Targeting cystalysin, a virulence factor of treponema denticola-supported periodontitis. ChemMedChem, 2014, 9(7), 1501-1511.
[http://dx.doi.org/10.1002/cmdc.201300527] [PMID: 24616267]
[51]
Dellafiora, L.; Marchetti, M.; Spyrakis, F.; Orlandi, V.; Campanini, B.; Cruciani, G.; Cozzini, P.; Mozzarelli, A. Expanding the chemical space of human serine racemase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(19), 4297-4303.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.081] [PMID: 26283510]
[52]
Roberts, B.C.; Mancera, R.L. Ligand-protein docking with water molecules. J. Chem. Inf. Model., 2008, 48(2), 397-408.
[http://dx.doi.org/10.1021/ci700285e] [PMID: 18211049]
[53]
Chandler, D.; Andersen, H.C. Optimized cluster expansions for classical fluids. II. Theory of molecular liquids. J. Chem. Phys., 1972, 57(5), 1930-1937.
[http://dx.doi.org/10.1063/1.1678513]
[54]
Hirata, F.; Pettitt, B.M.; Rossky, P.J. Application of an extended RISM equation to dipolar and quadrupolar fluids. J. Chem. Phys., 1982, 77(1), 509-520.
[http://dx.doi.org/10.1063/1.443606]
[55]
Hirata, F.; Rossky, P.J. An extended RISM equation for molecular polar fluids. Chem. Phys. Lett., 1981, 83(2), 329-334.
[http://dx.doi.org/10.1016/0009-2614(81)85474-7]
[56]
Hirata, F.; Rossky, P.J.; Pettitt, B.M. The interionic potential of mean force in a molecular polar solvent from an extended RISM equation. J. Chem. Phys., 1983, 78(6), 4133-4144.
[http://dx.doi.org/10.1063/1.445090]
[57]
Kovalenko, A.; Hirata, F. Three-dimensional density profiles of water in contact with a solute of arbitrary shape: A RISM approach. Chem. Phys. Lett., 1998, 290(1), 237-244.
[http://dx.doi.org/10.1016/S0009-2614(98)00471-0]
[58]
Kovalenko, A.; Hirata, F. Self-consistent description of a metal-water interface by the kohn-sham density functional theory and the three-dimensional reference interaction site model. J. Chem. Phys., 1999, 110(20), 10095-10112.
[http://dx.doi.org/10.1063/1.478883]
[59]
Kovalenko, A. Multiscale modeling of solvation in chemical and biological nanosystems and in nanoporous materials. Pure Appl. Chem., 2013, 85(1), 159-199.
[http://dx.doi.org/10.1351/PAC-CON-12-06-03]
[60]
Hansen, J-P.; McDonald, I.R. In: Theory of Simple Liquids, 4th ed; Academic Press, 2013.
[61]
Kovalenko, A. Three-dimensional rism theory for molecular liquids and solid-liquid interfaces.Molecular Theory of Solvation; Hirata, F., Ed.; Kluwer Academic Publishers: Dordrecht, 2003, pp. 169-275.
[62]
Ram, J. Equilibrium theory of molecular fluids: Structure and freezing transitions. Physics Reports., 2014, 538(4), 121-185.
[http://dx.doi.org/10.1016/j.physrep.2014.01.004]
[63]
Kovalenko. Molecular theory of solvation: Methodology summary and illustrations. Condens. Matter Phys., 2015, 18(3), 32601.
[http://dx.doi.org/10.5488/CMP.18.32601]
[64]
Yoshida, N. Role of solvation in drug design as revealed by the statistical mechanics integral equation theory of liquids. J. Chem. Inf. Model., 2017, 57(11), 2646-2656.
[http://dx.doi.org/10.1021/acs.jcim.7b00389] [PMID: 28991467]
[65]
Kovalenko, A.; Kobryn, A.E.; Gusarov, S.; Lyubimova, O.; Liu, X.; Blinov, N.; Yoshida, M. Molecular theory of solvation for supramolecules and soft matter structures: application to ligand binding, ion channels, and oligomeric polyelectrolyte gelators. Soft Matter, 2012, 8(5), 1508-1520.
[http://dx.doi.org/10.1039/C1SM06542D]
[66]
Yoshida, N.; Imai, T.; Phongphanphanee, S.; Kovalenko, A.; Hirata, F. Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids. J. Phys. Chem. B, 2009, 113(4), 873-886.
[http://dx.doi.org/10.1021/jp807068k] [PMID: 19105732]
[67]
Phongphanphanee, S.; Yoshida, N.; Hirata, F. On the proton exclusion of aquaporins: a statistical mechanics study. J. Am. Chem. Soc., 2008, 130(5), 1540-1541.
[http://dx.doi.org/10.1021/ja077087+] [PMID: 18186633]
[68]
Maruyama, Y.; Yoshida, N.; Hirata, F. Electrolytes in biomolecular systems studied with the 3D-RISM/RISM theory. Interdiscip. Sci., 2011, 3(4), 290-307.
[http://dx.doi.org/10.1007/s12539-011-0104-7] [PMID: 22179763]
[69]
Genheden, S.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Ryde, U. An MM/3D-RISM approach for ligand binding affinities. J. Phys. Chem. B, 2010, 114(25), 8505-8516.
[http://dx.doi.org/10.1021/jp101461s] [PMID: 20524650]
[70]
Huang, W.; Blinov, N.; Wishart, D.S.; Kovalenko, A. Role of water in ligand binding to maltose-binding protein: insight from a new docking protocol based on the 3D-RISM-KH molecular theory of solvation. J. Chem. Inf. Model., 2015, 55(2), 317-328.
[http://dx.doi.org/10.1021/ci500520q] [PMID: 25545470]
[71]
Sindhikara, D.J.; Yoshida, N.; Hirata, F. Placevent: an algorithm for prediction of explicit solvent atom distribution-application to HIV-1 protease and F-ATP synthase. J. Comput. Chem., 2012, 33(18), 1536-1543.
[http://dx.doi.org/10.1002/jcc.22984] [PMID: 22522665]
[72]
Zhu, T.; Zhang, J.Z.H.; He, X. Automated fragmentation QM/MM calculation of amide proton chemical shifts in proteins with explicit solvent model. J. Chem. Theory Comput., 2013, 9(4), 2104-2114.
[http://dx.doi.org/10.1021/ct300999w] [PMID: 26583557]
[73]
He, X.; Zhu, T.; Wang, X.; Liu, J.; Zhang, J.Z.H. Fragment quantum mechanical calculation of proteins and its applications. Acc. Chem. Res., 2014, 47(9), 2748-2757.
[http://dx.doi.org/10.1021/ar500077t] [PMID: 24851673]
[74]
Watanabe, H.C.; Welke, K.; Sindhikara, D.J.; Hegemann, P.; Elstner, M. Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism. J. Mol. Biol., 2013, 425(10), 1795-1814.
[http://dx.doi.org/10.1016/j.jmb.2013.01.033] [PMID: 23376098]
[75]
Huang, Y-H.; Henriques, S.T.; Wang, C.K.; Thorstholm, L.; Daly, N.L.; Kaas, Q.; Craik, D.J. Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold. Sci. Rep., 2015, 5(1), 12974.
[http://dx.doi.org/10.1038/srep12974] [PMID: 26264857]
[76]
Lu, S.; Deng, R.; Jiang, H.; Song, H.; Li, S.; Shen, Q.; Huang, W.; Nussinov, R.; Yu, J.; Zhang, J. The mechanism of ATP-dependent allosteric protection of Akt kinase phosphorylation. Structure, 2015, 23(9), 1725-1734.
[http://dx.doi.org/10.1016/j.str.2015.06.027] [PMID: 26256536]
[77]
Stumpe, M.C.; Blinov, N.; Wishart, D.; Kovalenko, A.; Pande, V.S. Calculation of local water densities in biological systems: a comparison of molecular dynamics simulations and the 3D-RISM-KH molecular theory of solvation. J. Phys. Chem. B, 2011, 115(2), 319-328.
[http://dx.doi.org/10.1021/jp102587q] [PMID: 21174421]
[78]
Lazaridis, T. Inhomogeneous fluid approach to solvation thermodynamics. 1. Theory. J. Phys. Chem. B, 1998, 102(18), 3531-3541.
[http://dx.doi.org/10.1021/jp9723574]
[79]
Lazaridis, T.; Karplus, M. Orientational correlations and entropy in liquid water. J. Chem. Phys., 1996, 105(10), 4294-4316.
[http://dx.doi.org/10.1063/1.472247]
[80]
Lazaridis, T.; Paulaitis, M.E. Entropy of hydrophobic hydration: A new statistical mechanical formulation. J. Phys. Chem., 1992, 96(9), 3847-3855.
[http://dx.doi.org/10.1021/j100188a051]
[81]
Abel, R.; Young, T.; Farid, R.; Berne, B.J.; Friesner, R.A. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc., 2008, 130(9), 2817-2831.
[http://dx.doi.org/10.1021/ja0771033] [PMID: 18266362]
[82]
Young, T.; Abel, R.; Kim, B.; Berne, B.J.; Friesner, R.A. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl. Acad. Sci. USA, 2007, 104(3), 808-813.
[http://dx.doi.org/10.1073/pnas.0610202104] [PMID: 17204562]
[83]
Schrödinger. Small-Molecule Drug Discovery Suite 2017-4; Schrödinger, LLC: New York, NY, 2017.
[84]
Repasky, M.P.; Murphy, R.B.; Banks, J.L.; Greenwood, J.R.; Tubert-Brohman, I.; Bhat, S.; Friesner, R.A. Docking performance of the glide program as evaluated on the Astex and DUD datasets: a complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide. J. Comput. Aided Mol. Des., 2012, 26(6), 787-799.
[http://dx.doi.org/10.1007/s10822-012-9575-9] [PMID: 22576241]
[85]
Murphy, R.B.; Repasky, M.P.; Greenwood, J.R.; Tubert-Brohman, I.; Jerome, S.; Annabhimoju, R.; Boyles, N.A.; Schmitz, C.D.; Abel, R.; Farid, R.; Friesner, R.A. WScore: A flexible and accurate treatment of explicit water molecules in ligand-receptor docking. J. Med. Chem., 2016, 59(9), 4364-4384.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00131] [PMID: 27054459]
[86]
Robinson, D.D.; Sherman, W.; Farid, R. Understanding kinase selectivity through energetic analysis of binding site waters. ChemMedChem, 2010, 5(4), 618-627.
[http://dx.doi.org/10.1002/cmdc.200900501] [PMID: 20183853]
[87]
Higgs, C.; Beuming, T.; Sherman, W. Hydration site thermodynamics explain SARs for Triazolylpurines analogues binding to the A2A receptor. ACS Med. Chem. Lett., 2010, 1(4), 160-164.
[http://dx.doi.org/10.1021/ml100008s] [PMID: 24900189]
[88]
Fidock, D.A. Drug discovery: Priming the antimalarial pipeline. Nature, 2010, 465(7296), 297-298.
[http://dx.doi.org/10.1038/465297a] [PMID: 20485420]
[89]
Cuny, G.D.; Yu, P.B.; Laha, J.K.; Xing, X.; Liu, J-F.; Lai, C.S.; Deng, D.Y.; Sachidanandan, C.; Bloch, K.D.; Peterson, R.T. Structure-activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(15), 4388-4392.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.052] [PMID: 18621530]
[90]
Chrencik, J.E.; Patny, A.; Leung, I.K.; Korniski, B.; Emmons, T.L.; Hall, T.; Weinberg, R.A.; Gormley, J.A.; Williams, J.M.; Day, J.E.; Hirsch, J.L.; Kiefer, J.R.; Leone, J.W.; Fischer, H.D.; Sommers, C.D.; Huang, H.C.; Jacobsen, E.J.; Tenbrink, R.E.; Tomasselli, A.G.; Benson, T.E. Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. J. Mol. Biol., 2010, 400(3), 413-433.
[http://dx.doi.org/10.1016/j.jmb.2010.05.020] [PMID: 20478313]
[91]
Knegtel, R.M.A.; Robinson, D.D. A role for hydration in Interleukin-2 inducible T cell kinase (Itk) selectivity. Mol. Inform., 2011, 30(11-12), 950-959.
[http://dx.doi.org/10.1002/minf.201100086] [PMID: 27468150]
[92]
Beuming, T.; Che, Y.; Abel, R.; Kim, B.; Shanmugasundaram, V.; Sherman, W. Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization. Proteins, 2012, 80(3), 871-883.
[http://dx.doi.org/10.1002/prot.23244] [PMID: 22223256]
[93]
Bortolato, A.; Tehan, B.G.; Bodnarchuk, M.S.; Essex, J.W.; Mason, J.S. Water network perturbation in ligand binding: adenosine A(2A) antagonists as a case study. J. Chem. Inf. Model., 2013, 53(7), 1700-1713.
[http://dx.doi.org/10.1021/ci4001458] [PMID: 23725291]
[94]
Tehan, B.G.; Bortolato, A.; Blaney, F.E.; Weir, M.P.; Mason, J.S. Unifying family A GPCR theories of activation. Pharmacol. Ther., 2014, 143(1), 51-60.
[http://dx.doi.org/10.1016/j.pharmthera.2014.02.004] [PMID: 24561131]
[95]
Breiten, B.; Lockett, M.R.; Sherman, W.; Fujita, S.; Al-Sayah, M.; Lange, H.; Bowers, C.M.; Heroux, A.; Krilov, G.; Whitesides, G.M. Water networks contribute to enthalpy/entropy compensation in protein-ligand binding. J. Am. Chem. Soc., 2013, 135(41), 15579-15584.
[http://dx.doi.org/10.1021/ja4075776] [PMID: 24044696]
[96]
Kohlmann, A.; Zech, S.G.; Li, F.; Zhou, T.; Squillace, R.M.; Commodore, L.; Greenfield, M.T.; Lu, X.; Miller, D.P.; Huang, W.S.; Qi, J.; Thomas, R.M.; Wang, Y.; Zhang, S.; Dodd, R.; Liu, S.; Xu, R.; Xu, Y.; Miret, J.J.; Rivera, V.; Clackson, T.; Shakespeare, W.C.; Zhu, X.; Dalgarno, D.C. Fragment growing and linking lead to novel nanomolar lactate dehydrogenase inhibitors. J. Med. Chem., 2013, 56(3), 1023-1040.
[http://dx.doi.org/10.1021/jm3014844] [PMID: 23302067]
[97]
Newman, A.H.; Beuming, T.; Banala, A.K.; Donthamsetti, P.; Pongetti, K.; LaBounty, A.; Levy, B.; Cao, J.; Michino, M.; Luedtke, R.R.; Javitch, J.A.; Shi, L. Molecular determinants of selectivity and efficacy at the dopamine D3 receptor. J. Med. Chem., 2012, 55(15), 6689-6699.
[http://dx.doi.org/10.1021/jm300482h] [PMID: 22632094]
[98]
Abel, R.; Salam, N.K.; Shelley, J.; Farid, R.; Friesner, R.A.; Sherman, W. Contribution of explicit solvent effects to the binding affinity of small-molecule inhibitors in blood coagulation factor serine proteases. ChemMedChem, 2011, 6(6), 1049-1066.
[http://dx.doi.org/10.1002/cmdc.201000533] [PMID: 21506273]
[99]
Ohno, K.; Mori, K.; Orita, M.; Takeuchi, M. Computational insights into binding of bisphosphates to farnesyl pyrophosphate synthase. Curr. Med. Chem., 2011, 18(2), 220-233.
[http://dx.doi.org/10.2174/092986711794088335] [PMID: 21110804]
[100]
Han, S.; Zaniewski, R.P.; Marr, E.S.; Lacey, B.M.; Tomaras, A.P.; Evdokimov, A.; Miller, J.R.; Shanmugasundaram, V. Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 2010, 107(51), 22002-22007.
[http://dx.doi.org/10.1073/pnas.1013092107] [PMID: 21135211]
[101]
Pearlstein, R.A.; Hu, Q.Y.; Zhou, J.; Yowe, D.; Levell, J.; Dale, B.; Kaushik, V.K.; Daniels, D.; Hanrahan, S.; Sherman, W.; Abel, R. New hypotheses about the structure-function of proprotein convertase subtilisin/kexin type 9: analysis of the epidermal growth factor-like repeat A docking site using WaterMap. Proteins, 2010, 78(12), 2571-2586.
[http://dx.doi.org/10.1002/prot.22767] [PMID: 20589640]
[102]
Beuming, T.; Farid, R.; Sherman, W. High-energy water sites determine peptide binding affinity and specificity of PDZ domains. Protein Sci., 2009, 18(8), 1609-1619.
[http://dx.doi.org/10.1002/pro.177] [PMID: 19569188]
[103]
de Azevedo, W.F. Jr Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr. Med. Chem., 2011, 18(9), 1353-1366.
[http://dx.doi.org/10.2174/092986711795029519] [PMID: 21366529]
[104]
de Azevedo, W.F. Jr.; Canduri, F.; Fadel, V.; Teodoro, L.G.V.L.; Hial, V.; Gomes, R.A.S. Molecular model for the binary complex of uropepsin and pepstatin. Biochem. Biophys. Res. Commun., 2001, 287(1), 277-281.
[http://dx.doi.org/10.1006/bbrc.2001.5555] [PMID: 11549287]
[105]
Perez, P.C.; Caceres, R.A.; Canduri, F.; de Azevedo, W.F. Jr. Molecular modeling and dynamics simulation of human cyclin-dependent kinase 3 complexed with inhibitors. Comput. Biol. Med., 2009, 39(2), 130-140.
[http://dx.doi.org/10.1016/j.compbiomed.2008.11.004] [PMID: 19152876]
[106]
Canduri, F.; Perez, P.C.; Caceres, R.A.; de Azevedo, W.F. Jr. Protein kinases as targets for antiparasitic chemotherapy drugs. Curr. Drug Targets, 2007, 8(3), 389-398.
[http://dx.doi.org/10.2174/138945007780058979] [PMID: 17348832]
[107]
Wang, L.; Berne, B.J.; Friesner, R.A. Ligand binding to protein-binding pockets with wet and dry regions. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1326-1330.
[http://dx.doi.org/10.1073/pnas.1016793108] [PMID: 21205906]
[108]
Nguyen, C.N.; Young, T.K.; Gilson, M.K. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril. J. Chem. Phys., 2012, 137(4)044101
[http://dx.doi.org/10.1063/1.4733951] [PMID: 22852591]
[109]
Nguyen, C.N.; Cruz, A.; Gilson, M.K.; Kurtzman, T. Thermodynamics of water in an enzyme active site: grid-based hydration analysis of coagulation factor xa. J. Chem. Theory Comput., 2014, 10(7), 2769-2780.
[http://dx.doi.org/10.1021/ct401110x] [PMID: 25018673]
[110]
Ramsey, S.; Nguyen, C.; Salomon-Ferrer, R.; Walker, R.C.; Gilson, M.K.; Kurtzman, T. Solvation thermodynamic mapping of molecular surfaces in AmberTools: GIST. J. Comput. Chem., 2016, 37(21), 2029-2037.
[http://dx.doi.org/10.1002/jcc.24417] [PMID: 27317094]
[111]
Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[112]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[113]
Uehara, S.; Tanaka, S. AutoDock-GIST: Incorporating thermodynamics of active-site water into scoring function for accurate protein-ligand docking. Molecules, 2016, 21(11), 1604.
[http://dx.doi.org/10.3390/molecules21111604] [PMID: 27886114]
[114]
Li, Z.; Lazaridis, T. Computational drug discovery and design In: Methods in Molecular Biology; Baron, R., Ed.; Springer: New York: New York, NY, Vol: 819, 2012.
[115]
Li, Z.; Lazaridis, T. Thermodynamics of buried water clusters at a protein-ligand binding interface. J. Phys. Chem. B, 2006, 110(3), 1464-1475.
[http://dx.doi.org/10.1021/jp056020a] [PMID: 16471698]
[116]
Li, Z.; Lazaridis, T. The effect of water displacement on binding thermodynamics: concanavalin A. J. Phys. Chem. B, 2005, 109(1), 662-670.
[http://dx.doi.org/10.1021/jp0477912] [PMID: 16851059]
[117]
Li, Z.; Lazaridis, T. Thermodynamic contributions of the ordered water molecule in HIV-1 protease. J. Am. Chem. Soc., 2003, 125(22), 6636-6637.
[http://dx.doi.org/10.1021/ja0299203] [PMID: 12769565]
[118]
Li, Z.; Lazaridis, T. Water at biomolecular binding interfaces. Phys. Chem. Chem. Phys., 2007, 9(5), 573-581.
[http://dx.doi.org/10.1039/B612449F] [PMID: 17242738]
[119]
Hu, B.; Lill, M.A. WATsite: hydration site prediction program with PyMOL interface. J. Comput. Chem., 2014, 35(16), 1255-1260.
[http://dx.doi.org/10.1002/jcc.23616] [PMID: 24752524]
[120]
Hu, B.; Lill, M.A. Protein pharmacophore selection using hydration-site analysis. J. Chem. Inf. Model., 2012, 52(4), 1046-1060.
[http://dx.doi.org/10.1021/ci200620h] [PMID: 22397751]
[121]
López, E.D.; Arcon, J.P.; Gauto, D.F.; Petruk, A.A.; Modenutti, C.P.; Dumas, V.G.; Marti, M.A.; Turjanski, A.G. WATCLUST: a tool for improving the design of drugs based on protein-water interactions. Bioinformatics, 2015, 31(22), 3697-3699.
[http://dx.doi.org/10.1093/bioinformatics/btv411] [PMID: 26198103]
[122]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38. 27- 28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[123]
Michel, J.; Tirado-Rives, J.; Jorgensen, W.L. Prediction of the water content in protein binding sites. J. Phys. Chem. B, 2009, 113(40), 13337-13346.
[http://dx.doi.org/10.1021/jp9047456] [PMID: 19754086]
[124]
Jorgensen, W.L.; Tirado-Rives, J. Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J. Comput. Chem., 2005, 26(16), 1689-1700.
[http://dx.doi.org/ 10.1002/jcc.20297] [PMID: 16200637]
[125]
Michel, J.; Tirado-Rives, J.; Jorgensen, W.L. Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. J. Am. Chem. Soc., 2009, 131(42), 15403-15411.
[http://dx.doi.org/10.1021/ja906058w] [PMID: 19778066]
[126]
Luccarelli, J.; Michel, J.; Tirado-Rives, J.; Jorgensen, W.L. Effects of water placement on predictions of binding affinities for p38α MAP kinase inhibitors. J. Chem. Theory Comput., 2010, 6(12), 3850-3856.
[http://dx.doi.org/10.1021/ct100504h] [PMID: 21278915]
[127]
Cole, D.J.; Tirado-Rives, J.; Jorgensen, W.L. Enhanced monte carlo sampling through replica exchange with solute tempering. J. Chem. Th Comput., 2014, 10(2), 565-571.
[http://dx.doi.org/10.1021/ct400989x] [PMID: 24803853]
[128]
Adams, D.J. Grand canonical ensemble monte carlo for a lennard-jones fluid. Mol. Phys., 1975, 29(1), 307-311.
[http://dx.doi.org/10.1080/00268977500100221]
[129]
Resat, H.; Mezei, M. Grand canonical ensemble monte carlo simulation of the dCpG/proflavine crystal hydrate. Biophys. J., 1996, 71(3), 1179-1190.
[http://dx.doi.org/10.1016/S0006-3495(96)79322-0] [PMID: 8873992]
[130]
Marrone, T.J.; Resat, H.; Hodge, C.N.; Chang, C.H.; McCammon, J.A. Solvation studies of DMP323 and A76928 bound to HIV protease: analysis of water sites using grand canonical Monte Carlo simulations. Protein Sci., 1998, 7(3), 573-579.
[http://dx.doi.org/10.1002/pro.5560070305] [PMID: 9541388]
[131]
Speidel, J.A.; Banfelder, J.R.; Mezei, M. Automatic control of solvent density in grand canonical ensemble monte carlo simulations. J. Chem. Theory Comput., 2006, 2(5), 1429-1434.
[http://dx.doi.org/10.1021/ct0600363] [PMID: 26626850]
[132]
Malasics, A.; Gillespie, D.; Boda, D. Simulating prescribed particle densities in the grand canonical ensemble using iterative algorithms. J. Chem. Phys., 2008, 128(12)124102
[http://dx.doi.org/10.1063/1.2839302] [PMID: 18376903]
[133]
Ross, G.A.; Bodnarchuk, M.S.; Essex, J.W. Water sites, networks, and free energies with grand canonical monte carlo. J. Am. Chem. Soc., 2015, 137(47), 14930-14943.
[http://dx.doi.org/10.1021/jacs.5b07940] [PMID: 26509924]
[134]
Woods, C.J.; Essex, J.W.; King, M.A. Enhanced configurational sampling in binding free-energy calculations. J. Phys. Chem. B, 2003, 107(49), 13711-13718.
[http://dx.doi.org/10.1021/jp036162+]
[135]
Woods, C.J.; Essex, J.W.; King, M.A. The development of replica-exchange-based free-energy methods. J. Phys. Chem. B, 2003, 107(49), 13703-13710.
[http://dx.doi.org/10.1021/jp0356620]
[136]
Gilson, M.K.; Given, J.A.; Bush, B.L.; McCammon, J.A. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys. J., 1997, 72(3), 1047-1069.
[http://dx.doi.org/10.1016/S0006-3495(97)78756-3] [PMID: 9138555]
[137]
Bodnarchuk, M.S.; Viner, R.; Michel, J.; Essex, J.W. Strategies to calculate water binding free energies in protein-ligand complexes. J. Chem. Inf. Model., 2014, 54(6), 1623-1633.
[http://dx.doi.org/10.1021/ci400674k] [PMID: 24684745]
[138]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/ 10.1002/jcc.21334] [PMID: 19499576]
[139]
Ross, G.A.; Morris, G.M.; Biggin, P.C. Rapid and accurate prediction and scoring of water molecules in protein binding sites. PLoS One, 2012, 7(3) e32036
[http://dx.doi.org/10.1371/journal.pone.0032036] [PMID: 22396746]
[140]
Hartshorn, M.J.; Verdonk, M.L.; Chessari, G.; Brewerton, S.C.; Mooij, W.T.M.; Mortenson, P.N.; Murray, C.W. Diverse, high-quality test set for the validation of protein-ligand docking performance. J. Med. Chem., 2007, 50(4), 726-741.
[http://dx.doi.org/10.1021/jm061277y] [PMID: 17300160]
[141]
Randjelovic, J.; Eric, S.; Savic, V. In silico design of small molecule inhibitors of CDK9/cyclin T1 interaction. J. Mol. Graph. Model., 2014, 50, 100-112.
[http://dx.doi.org/10.1016/j.jmgm.2014.04.002] [PMID: 24769691]
[142]
Zapata-Torres, G.; Fierro, A.; Barriga-González, G.; Salgado, J.C.; Celis-Barros, C. Revealing monoamine oxidase B catalytic mechanisms by means of the quantum chemical cluster approach. J. Chem. Inf. Model., 2015, 55(7), 1349-1360.
[http://dx.doi.org/10.1021/acs.jcim.5b00140] [PMID: 26091526]
[143]
Fierro, A.; Edmondson, D.E.; Celis-Barros, C.; Rebolledo-Fuentes, M.; Zapata-Torres, G. Why p-OMe- and p-Cl-β-Methylphenethylamines display distinct activities upon MAO-B binding. PLoS One, 2016, 11(5)e0154989
[http://dx.doi.org/10.1371/journal.pone.0154989] [PMID: 27152414]
[144]
Bartl, J.; Palazzesi, F.; Parrinello, M.; Hommers, L.; Riederer, P.; Walitza, S.; Grünblatt, E. The impact of methylphenidate and its enantiomers on dopamine synthesis and metabolism in vitro. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 79(Pt B), 281-288.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.002] [PMID: 28690202]
[145]
Morozenko, A.; Stuchebrukhov, A.A. Dowser++, a new method of hydrating protein structures. Proteins, 2016, 84(10), 1347-1357.
[http://dx.doi.org/10.1002/prot.25081] [PMID: 27273373]
[146]
Zhang, L.; Hermans, J. Hydrophilicity of cavities in proteins. Proteins, 1996, 24(4), 433-438.
[http://dx.doi.org/10.1002/(SICI)1097-0134(199604)24:4<433:AID-PROT3>3.0.CO;2-F] [PMID: 9162944]
[147]
Sridhar, A.; Ross, G.A.; Biggin, P.C. Waterdock 2.0: Water placement prediction for Holo-structures with a pymol plugin. PLoS One, 2017, 12(2)e0172743
[http://dx.doi.org/10.1371/journal.pone.0172743] [PMID: 28235019]
[148]
OpenEye. SZMAP 1.2.1.4; OpenEye Scientific Software: Santa Fe, NM, 2015.
[149]
Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem., 1985, 28(7), 849-857.
[http://dx.doi.org/10.1021/jm00145a002] [PMID: 3892003]
[150]
Grant, J.A.; Pickup, B.T.; Nicholls, A. A smooth permittivity function for poisson-boltzmann solvation methods. J. Comput. Chem., 2001, 22(6), 608-640.
[http://dx.doi.org/10.1002/jcc.1032]
[151]
Bayden, A.S.; Moustakas, D.T.; Joseph-McCarthy, D.; Lamb, M.L. Evaluating free energies of binding and conservation of crystallographic waters using SZMAP. J. Chem. Inf. Model., 2015, 55(8), 1552-1565.
[http://dx.doi.org/10.1021/ci500746d] [PMID: 26176600]
[152]
Verdonk, M.L.; Cole, J.C.; Taylor, R. SuperStar: a knowledge-based approach for identifying interaction sites in proteins. J. Mol. Biol., 1999, 289(4), 1093-1108.
[http://dx.doi.org/10.1006/jmbi.1999.2809] [PMID: 10369784]
[153]
Verdonk, M.L.; Cole, J.C.; Watson, P.; Gillet, V.; Willett, P. SuperStar: improved knowledge-based interaction fields for protein binding sites. J. Mol. Biol., 2001, 307(3), 841-859.
[http://dx.doi.org/10.1006/jmbi.2001.4452] [PMID: 11273705]
[154]
Boer, D.R.; Kroon, J.; Cole, J.C.; Smith, B.; Verdonk, M.L. SuperStar: comparison of CSD and PDB-based interaction fields as a basis for the prediction of protein-ligand interactions. J. Mol. Biol., 2001, 312(1), 275-287.
[http://dx.doi.org/10.1006/jmbi.2001.4901] [PMID: 11545602]
[155]
Bruno, I.J.; Cole, J.C.; Lommerse, J.P.M.; Rowland, R.S.; Taylor, R.; Verdonk, M.L. IsoStar: a library of information about nonbonded interactions. J. Comput. Aided Mol. Des., 1997, 11(6), 525-537.
[http://dx.doi.org/10.1023/A:1007934413448] [PMID: 9491345]
[156]
Kraemer, O.; Hazemann, I.; Podjarny, A.D.; Klebe, G. Virtual screening for inhibitors of human aldose reductase. Proteins, 2004, 55(4), 814-823.
[http://dx.doi.org/10.1002/prot.20057] [PMID: 15146480]
[157]
Nissink, J.W.M.; Taylor, R. Combined use of physicochemical data and small-molecule crystallographic contact propensities to predict interactions in protein binding sites. Org. Biomol. Chem., 2004, 2(22), 3238-3249.
[http://dx.doi.org/10.1039/b405205f] [PMID: 15534701]
[158]
Matter, H.; Will, D.W.; Nazaré, M.; Schreuder, H.; Laux, V.; Wehner, V. Structural requirements for factor Xa inhibition by 3-oxybenzamides with neutral P1 substituents: combining X-ray crystallography, 3D-QSAR, and tailored scoring functions. J. Med. Chem., 2005, 48(9), 3290-3312.
[http://dx.doi.org/10.1021/jm049187l] [PMID: 15857135]
[159]
Serrano, D.R.; Mugheirbi, N.A.; O’Connell, P.; Leddy, N.; Healy, A.M.; Tajber, L. Impact of substrate properties on the formation of spherulitic films: A case study of salbutamol sulfate. Cryst. Growth Des., 2016, 16(7), 3853-3858.
[http://dx.doi.org/10.1021/acs.cgd.6b00390]
[160]
Saito, R.; Hoshi, M.; Kato, A.; Ishikawa, C.; Komatsu, T. Green fluorescent protein chromophore derivatives as a new class of aldose reductase inhibitors. Eur. J. Med. Chem., 2017, 125, 965-974.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.016] [PMID: 27769036]
[161]
Söderholm, A.A.; Lehtovuori, P.T.; Nyrönen, T.H. Three-dimensional structure-activity relationships of nonsteroidal ligands in complex with androgen receptor ligand-binding domain. J. Med. Chem., 2005, 48(4), 917-925.
[http://dx.doi.org/10.1021/jm0495879] [PMID: 15715462]
[162]
Rossato, G.; Ernst, B.; Vedani, A.; Smiesko, M. AcquaAlta: a directional approach to the solvation of ligand-protein complexes. J. Chem. Inf. Model., 2011, 51(8), 1867-1881.
[http://dx.doi.org/10.1021/ci200150p] [PMID: 21714532]
[163]
Dunitz, J.D. The entropic cost of bound water in crystals and biomolecules. Science, 1994, 264(5159), 670-670.
[http://dx.doi.org/10.1126/science.264.5159.670] [PMID: 17737951]
[164]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[165]
Jones, G.; Willett, P.; Glen, R.C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol., 1995, 245(1), 43-53.
[http://dx.doi.org/10.1016/S0022-2836(95)80037-9] [PMID: 7823319]
[166]
Verdonk, M.L.; Chessari, G.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Nissink, J.W.M.; Taylor, R.D.; Taylor, R. Modeling water molecules in protein-ligand docking using GOLD. J. Med. Chem., 2005, 48(20), 6504-6515.
[http://dx.doi.org/10.1021/jm050543p] [PMID: 16190776]
[167]
Ntie-Kang, F.; Nwodo, J.N.; Ibezim, A.; Simoben, C.V.; Karaman, B.; Ngwa, V.F.; Sippl, W.; Adikwu, M.U.; Mbaze, L.M. Molecular modeling of potential anticancer agents from African medicinal plants. J. Chem. Inf. Model., 2014, 54(9), 2433-2450.
[http://dx.doi.org/10.1021/ci5003697] [PMID: 25116740]
[168]
Pisani, L.; Barletta, M.; Soto-Otero, R.; Nicolotti, O.; Mendez-Alvarez, E.; Catto, M.; Introcaso, A.; Stefanachi, A.; Cellamare, S.; Altomare, C.; Carotti, A. Discovery, biological evaluation, and structure-activity and -selectivity relationships of 6′-substituted (E)-2-(benzofuran-3(2H)-ylidene)-N-methylacetamides, a novel class of potent and selective monoamine oxidase inhibitors. J. Med. Chem., 2013, 56(6), 2651-2664.
[http://dx.doi.org/10.1021/jm4000769] [PMID: 23437843]
[169]
Berg, L.; Andersson, C.D.; Artursson, E.; Hörnberg, A.; Tunemalm, A-K.; Linusson, A.; Ekström, F. Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling. PLoS One, 2011, 6(11) e26039
[http://dx.doi.org/10.1371/journal.pone.0026039] [PMID: 22140425]
[170]
Mouchlis, V.D.; Magrioti, V.; Barbayianni, E.; Cermak, N.; Oslund, R.C.; Mavromoustakos, T.M.; Gelb, M.H.; Kokotos, G. Inhibition of secreted phospholipases A2 by 2-oxoamides based on α-amino acids: Synthesis, in vitro evaluation and molecular docking calculations. Bioorg. Med. Chem., 2011, 19(2), 735-743.
[http://dx.doi.org/10.1016/j.bmc.2010.12.030] [PMID: 21216150]
[171]
Santos, R.; Hritz, J.; Oostenbrink, C. Role of water in molecular docking simulations of cytochrome P450 2D6. J. Chem. Inf. Model., 2010, 50(1), 146-154.
[http://dx.doi.org/10.1021/ci900293e] [PMID: 19899781]
[172]
Murray, C.W.; Carr, M.G.; Callaghan, O.; Chessari, G.; Congreve, M.; Cowan, S.; Coyle, J.E.; Downham, R.; Figueroa, E.; Frederickson, M.; Graham, B.; McMenamin, R.; O’Brien, M.A.; Patel, S.; Phillips, T.R.; Williams, G.; Woodhead, A.J.; Woolford, A.J.A. Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J. Med. Chem., 2010, 53(16), 5942-5955.
[http://dx.doi.org/10.1021/jm100059d] [PMID: 20718493]
[173]
Vasanthanathan, P.; Hritz, J.; Taboureau, O.; Olsen, L.; Jørgensen, F.S.; Vermeulen, N.P.E.; Oostenbrink, C. Virtual screening and prediction of site of metabolism for cytochrome P450 1A2 ligands. J. Chem. Inf. Model., 2009, 49(1), 43-52.
[http://dx.doi.org/10.1021/ci800371f] [PMID: 19099399]
[174]
Li, Y.; Shen, J.; Sun, X.; Li, W.; Liu, G.; Tang, Y. Accuracy assessment of protein-based docking programs against RNA targets. J. Chem. Inf. Model., 2010, 50(6), 1134-1146.
[http://dx.doi.org/10.1021/ci9004157] [PMID: 20481574]
[175]
Davis, I.W.; Baker, D. RosettaLigand docking with full ligand and receptor flexibility. J. Mol. Biol., 2009, 385(2), 381-392.
[http://dx.doi.org/10.1016/j.jmb.2008.11.010] [PMID: 19041878]
[176]
Lemmon, G.; Meiler, J. Towards ligand docking including explicit interface water molecules. PLoS One, 2013, 8(6)e67536
[http://dx.doi.org/10.1371/journal.pone.0067536] [PMID: 23840735]
[177]
Meiler, J.; Baker, D. ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins, 2006, 65(3), 538-548.
[http://dx.doi.org/10.1002/prot.21086] [PMID: 16972285]
[178]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[179]
Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem., 2007, 28(6), 1145-1152.
[http://dx.doi.org/10.1002/jcc.20634] [PMID: 17274016]
[180]
Lie, M.A.; Thomsen, R.; Pedersen, C.N.S.; Schiøtt, B.; Christensen, M.H. Molecular docking with ligand attached water molecules. J. Chem. Inf. Model., 2011, 51(4), 909-917.
[http://dx.doi.org/10.1021/ci100510m] [PMID: 21452852]
[181]
Paulsen, E.S.; Villadsen, J.; Tenori, E.; Liu, H.; Bonde, D.F.; Lie, M.A.; Bublitz, M.; Olesen, C.; Autzen, H.E.; Dach, I.; Sehgal, P.; Nissen, P.; Møller, J.V.; Schiøtt, B.; Christensen, S.B. Water-mediated interactions influence the binding of thapsigargin to sarco/endoplasmic reticulum calcium adenosinetriphosphatase. J. Med. Chem., 2013, 56(9), 3609-3619.
[http://dx.doi.org/10.1021/jm4001083] [PMID: 23574308]
[182]
Forli, S.; Olson, A.J. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem., 2012, 55(2), 623-638.
[http://dx.doi.org/10.1021/jm2005145] [PMID: 22148468]
[183]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[184]
Shityakov, S.; Salmas, R.E.; Durdagi, S.; Roewer, N.; Förster, C.; Broscheit, J. Solubility profiles, hydration and desolvation of curcumin complexed with γ-cyclodextrin and hydroxypropyl-γ-cyclodextrin. J. Mol. Struct., 2017, 1134, 91-98.
[http://dx.doi.org/10.1016/j.molstruc.2016.12.028]
[185]
Yuan, H.; Wu, J.; Wang, X.; Chen, J.; Zhong, Y.; Huang, Q.; Nan, P. Computational identification of amino-acid mutations that further improve the activity of a chalcone-flavonone isomerase from glycine max. Front. Plant Sci., 2017, 8, 248.
[http://dx.doi.org/10.3389/fpls.2017.00248] [PMID: 28286513]
[186]
Patel, D.; Antwi, J.; Koneru, P.C.; Serrao, E.; Forli, S.; Kessl, J.J.; Feng, L.; Deng, N.; Levy, R.M.; Fuchs, J.R.; Olson, A.J.; Engelman, A.N.; Bauman, J.D.; Kvaratskhelia, M.; Arnold, E. A new class of allosteric HIV-1 integrase inhibitors identified by crystallographic fragment screening of the catalytic core domain. J. Biol. Chem., 2016, 291(45), 23569-23577.
[http://dx.doi.org/10.1074/jbc.M116.753384] [PMID: 27645997]
[187]
Taliani, S.; Pugliesi, I.; Barresi, E.; Salerno, S.; Marchand, C.; Agama, K.; Simorini, F.; La Motta, C.; Marini, A.M.; Di Leva, F.S.; Marinelli, L.; Cosconati, S.; Novellino, E.; Pommier, Y.; Di Santo, R.; Da Settimo, F. Phenylpyrazolo[1,5-a]quinazolin-5(4H)-one: a suitable scaffold for the development of noncamptothecin topoisomerase I (Top1) inhibitors. J. Med. Chem., 2013, 56(18), 7458-7462.
[http://dx.doi.org/10.1021/jm400932c] [PMID: 23987476]
[188]
Tamborini, L.; Pinto, A.; Smith, T.K.; Major, L.L.; Iannuzzi, M.C.; Cosconati, S.; Marinelli, L.; Novellino, E.; Lo Presti, L.; Wong, P.E.; Barrett, M.P.; De Micheli, C.; Conti, P. Synthesis and biological evaluation of CTP synthetase inhibitors as potential agents for the treatment of African trypanosomiasis. ChemMedChem, 2012, 7(9), 1623-1634.
[http://dx.doi.org/10.1002/cmdc.201200304] [PMID: 22865834]
[189]
Leach, A.R.; Kuntz, I.D. Conformational analysis of flexible ligands in macromolecular receptor sites. J. Comput. Chem., 1992, 13(6), 730-748.
[http://dx.doi.org/10.1002/jcc.540130608]
[190]
Rarey, M.; Kramer, B.; Lengauer, T. The particle concept: placing discrete water molecules during protein-ligand docking predictions. Proteins, 1999, 34(1), 17-28.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19990101)34:1<17:AID-PROT3>3.0.CO;2-1] [PMID: 10336380]
[191]
Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis; Wiley: New York, 1973.
[192]
Alonso, H.; Bliznyuk, A.A.; Gready, J.E. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev., 2006, 26(5), 531-568.
[http://dx.doi.org/10.1002/med.20067] [PMID: 16758486]
[193]
Durrant, J.D.; McCammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol., 2011, 9(1), 71.
[http://dx.doi.org/10.1186/1741-7007-9-71] [PMID: 22035460]
[194]
Kerrigan, J.E. Molecular dynamics simulations in drug design in: In Silico Models for Drug Discovery; Humana Press: Totowa, NJ, 2013, Vol. 993, pp. 95-113.
[http://dx.doi.org/10.1007/978-1-62703-342-8_7]
[195]
Zhang, J-L.; Zheng, Q-C.; Chu, W-T.; Zhang, H-X. Drug design benefits from molecular dynamics: some examples. Curr Comput Aided Drug Des, 2013, 9(4), 532-546.
[http://dx.doi.org/10.2174/15734099113099990024] [PMID: 24138397]
[196]
Zhao, H.; Caflisch, A. Molecular dynamics in drug design. Eur. J. Med. Chem., 2015, 91, 4-14.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.004] [PMID: 25108504]
[197]
Borhani, D.W.; Shaw, D.E. The future of molecular dynamics simulations in drug discovery. J. Comput. Aided Mol. Des., 2012, 26(1), 15-26.
[http://dx.doi.org/10.1007/s10822-011-9517-y] [PMID: 22183577]
[198]
Hamelberg, D.; McCammon, J.A. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method. J. Am. Chem. Soc., 2004, 126(24), 7683-7689.
[http://dx.doi.org/10.1021/ja0377908] [PMID: 15198616]
[199]
Price, D.J.; Jorgensen, W.L. Improved convergence of binding affinities with free energy perturbation: application to nonpeptide ligands with pp60src SH2 domain. J. Comput. Aided Mol. Des., 2001, 15(8), 681-695.
[http://dx.doi.org/10.1023/A:1012266200343] [PMID: 11718474]
[200]
Helms, V.; Wade, R.C. Computational alchemy to calculate absolute protein-ligand binding free energy. J. Am. Chem. Soc., 1998, 120(12), 2710-2713.
[http://dx.doi.org/10.1021/ja9738539]
[201]
Williams-Noonan, B.J.; Yuriev, E.; Chalmers, D.K. Free energy methods in drug design: prospects of “alchemical perturbation” in medicinal chemistry. J. Med. Chem., 2018, 61(3), 638-649.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00681] [PMID: 28745501]
[202]
Abel, R.; Mondal, S.; Masse, C.; Greenwood, J.; Harriman, G.; Ashwell, M.A.; Bhat, S.; Wester, R.; Frye, L.; Kapeller, R.; Friesner, R.A. Accelerating drug discovery through tight integration of expert molecular design and predictive scoring. Curr. Opin. Struct. Biol., 2017, 43, 38-44.
[http://dx.doi.org/10.1016/j.sbi.2016.10.007] [PMID: 27816785]
[203]
Abel, R.; Wang, L.; Harder, E.D.; Berne, B.J.; Friesner, R.A. Advancing drug discovery through enhanced free energy calculations. Acc. Chem. Res., 2017, 50(7), 1625-1632.
[http://dx.doi.org/10.1021/acs.accounts.7b00083] [PMID: 28677954]
[204]
Ciordia, M.; Pérez-Benito, L.; Delgado, F.; Trabanco, A.A.; Tresadern, G. Application of free energy perturbation for the design of BACE1 inhibitors. J. Chem. Inf. Model., 2016, 56(9), 1856-1871.
[http://dx.doi.org/10.1021/acs.jcim.6b00220] [PMID: 27500414]
[205]
Lenselink, E.B.; Louvel, J.; Forti, A.F.; van Veldhoven, J.P.D.; de Vries, H.; Mulder-Krieger, T.; McRobb, F.M.; Negri, A.; Goose, J.; Abel, R.; van Vlijmen, H.W.T.; Wang, L.; Harder, E.; Sherman, W.; IJzerman, A.P.; Beuming, T. Predicting binding affinities for GPCR ligands using free-energy perturbation. ACS Omega, 2016, 1(2), 293-304.
[http://dx.doi.org/10.1021/acsomega.6b00086] [PMID: 30023478]
[206]
Lovering, F.; Aevazelis, C.; Chang, J.; Dehnhardt, C.; Fitz, L.; Han, S.; Janz, K.; Lee, J.; Kaila, N.; McDonald, J.; Moore, W.; Moretto, A.; Papaioannou, N.; Richard, D.; Ryan, M.S.; Wan, Z.K.; Thorarensen, A. Imidazotriazines: Spleen tyrosine kinase (Syk) inhibitors identified by free-energy perturbation (FEP). ChemMedChem, 2016, 11(2), 217-233.
[http://dx.doi.org/10.1002/cmdc.201500333] [PMID: 26381330]
[207]
Massova, I.; Kollman, P.A. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des., 2000, 18(1), 113-135.
[http://dx.doi.org/10.1023/A:1008763014207]
[208]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[209]
Kuhn, B.; Kollman, P.A. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J. Med. Chem., 2000, 43(20), 3786-3791.
[http://dx.doi.org/10.1021/jm000241h] [PMID: 11020294]
[210]
Srinivasan, J.; Cheatham, T.E.; Cieplak, P.; Kollman, P.A.; Case, D.A. Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate - DNA Helices. J. Am. Chem. Soc., 1998, 120(37), 9401-9409.
[http://dx.doi.org/10.1021/ja981844+]
[211]
Sun, H.; Li, Y.; Tian, S.; Xu, L.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys. Chem. Chem. Phys., 2014, 16(31), 16719-16729.
[http://dx.doi.org/10.1039/C4CP01388C] [PMID: 24999761]
[212]
Sun, H.; Li, Y.; Shen, M.; Tian, S.; Xu, L.; Pan, P.; Guan, Y.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys., 2014, 16(40), 22035-22045.
[http://dx.doi.org/10.1039/C4CP03179B] [PMID: 25205360]
[213]
Xu, L.; Sun, H.; Li, Y.; Wang, J.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J. Phys. Chem. B, 2013, 117(28), 8408-8421.
[http://dx.doi.org/10.1021/jp404160y] [PMID: 23789789]
[214]
Chen, F.; Liu, H.; Sun, H.; Pan, P.; Li, Y.; Li, D.; Hou, T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys. Chem. Chem. Phys., 2016, 18(32), 22129-22139.
[http://dx.doi.org/10.1039/C6CP03670H] [PMID: 27444142]
[215]
Simonson, T. Binding free energies and free energy differences. Curr. Opin. Struct. Biol., 2001, 11, 243-252.
[http://dx.doi.org/10.1016/S0959-440X(00)00197-4] [PMID: 11297935]
[216]
Maffucci, I.; Contini, A. Tuning the solvation term in the MM-PBSA/GBSA binding affinity predictions in: Frontiers in Computational Chemistry; Ul-Haq, Z; Madura, J.D., Ed.; Bentham Science Publishers, 2015, Vol. 1, pp. 82-120.
[http://dx.doi.org/10.2174/9781608058648115010005]
[217]
Maffucci, I.; Contini, A. Explicit ligand hydration shells improve the correlation between MM-PB/GBSA binding energies and experimental activities. J. Chem. Theory Comput., 2013, 9(6), 2706-2717.
[http://dx.doi.org/10.1021/ct400045d] [PMID: 26583864]
[218]
Maffucci, I.; Contini, A. Improved computation of protein-protein relative binding energies with the Nwat-MMGBSA method. J. Chem. Inf. Model., 2016, 56(9), 1692-1704.
[http://dx.doi.org/10.1021/acs.jcim.6b00196] [PMID: 27500550]
[219]
Treesuwan, W.; Hannongbua, S. Bridge water mediates nevirapine binding to wild type and Y181C HIV-1 reverse transcriptase--evidence from molecular dynamics simulations and MM-PBSA calculations. J. Mol. Graph. Model., 2009, 27(8), 921-929.
[http://dx.doi.org/10.1016/j.jmgm.2009.02.007] [PMID: 19414275]
[220]
Wong, S.; Amaro, R.E.; McCammon, J.A. MM-PBSA captures key role of intercalating water molecules at a protein-protein interface. J. Chem. Theory Comput., 2009, 5(2), 422-429.
[http://dx.doi.org/10.1021/ct8003707] [PMID: 19461869]
[221]
Nurisso, A.; Blanchard, B.; Audfray, A.; Rydner, L.; Oscarson, S.; Varrot, A.; Imberty, A. Role of water molecules in structure and energetics of Pseudomonas aeruginosa lectin I interacting with disaccharides. J. Biol. Chem., 2010, 285(26), 20316-20327.
[http://dx.doi.org/10.1074/jbc.M110.108340] [PMID: 20410292]
[222]
Liu, J.; He, X.; Zhang, J.Z.H. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization. J. Chem. Inf. Model., 2013, 53(6), 1306-1314.
[http://dx.doi.org/10.1021/ci400067c] [PMID: 23651068]
[223]
Checa, A.; Ortiz, A.R.; de Pascual-Teresa, B.; Gago, F. Assessment of solvation effects on calculated binding affinity differences: trypsin inhibition by flavonoids as a model system for congeneric series. J. Med. Chem., 1997, 40(25), 4136-4145.
[http://dx.doi.org/10.1021/jm970245v] [PMID: 9406602]
[224]
Greenidge, P.A.; Kramer, C.; Mozziconacci, J.C.; Wolf, R.M. MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J. Chem. Inf. Model., 2013, 53(1), 201-209.
[http://dx.doi.org/10.1021/ci300425v] [PMID: 23268595]
[225]
Wallnoefer, H.G.; Liedl, K.R.; Fox, T. A challenging system: free energy prediction for factor Xa. J. Comput. Chem., 2011, 32(8), 1743-1752.
[http://dx.doi.org/10.1002/jcc.21758] [PMID: 21374633]
[226]
Henchman, R.H.; McCammon, J.A. Structural and dynamic properties of water around acetylcholinesterase. Protein Sci., 2002, 11(9), 2080-2090.
[http://dx.doi.org/10.1110/ps.0214002] [PMID: 12192064]
[227]
Schiffer, C.; Hermans, J. Promise of advances in simulation methods for protein crystallography: implicit solvent models, time-averaging refinement, and quantum mechanical modeling. Methods Enzymol., 2003, 374, 412-461.
[http://dx.doi.org/10.1016/S0076-6879(03)74019-1] [PMID: 14696384]
[228]
Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B. Jr.; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15387-15392.
[http://dx.doi.org/10.1073/pnas.242259599] [PMID: 12426403]
[229]
Aldeghi, M.; Bodkin, M.J.; Knapp, S.; Biggin, P.C. Statistical analysis on the performance of molecular mechanics poisson-boltzmann surface area versus absolute binding free energy calculations: Bromodomains as a case study. J. Chem. Inf. Model., 2017, 57(9), 2203-2221.
[http://dx.doi.org/10.1021/acs.jcim.7b00347] [PMID: 28786670]
[230]
Kannan, S.; Pradhan, M.R.; Cherian, J.; Joseph, T.L.; Poh, Z.Y.; Hai , Yan. Y.; Melvyn, H.; Boping, L.; Jeffrey, H.; Nacro, K.; Verma, C.S. Small molecules targeting the inactive form of the Mnk1/2 kinases. ACS Omega, 2017, 2(11), 7881-7891.
[http://dx.doi.org/10.1021/acsomega.7b01403] [PMID: 30023565]
[231]
Maffucci, I.; Hu, X.; Fumagalli, V.; Contini, A. An efficient implementation of the Nwat-MMGBSA method to rescore docking results in medium-throughput virtual screenings. Front Chem., 2018, 6, 43.
[http://dx.doi.org/10.3389/fchem.2018.00043] [PMID: 29556494]
[232]
Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J. Comput. Chem., 2011, 32(5), 866-877.
[http://dx.doi.org/10.1002/jcc.21666] [PMID: 20949517]
[233]
Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model., 2011, 51(1), 69-82.
[http://dx.doi.org/10.1021/ci100275a] [PMID: 21117705]
[234]
Weis, A.; Katebzadeh, K.; Söderhjelm, P.; Nilsson, I.; Ryde, U. Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J. Med. Chem., 2006, 49(22), 6596-6606.
[http://dx.doi.org/10.1021/jm0608210] [PMID: 17064078]
[235]
Case, D.A. Normal mode analysis of protein dynamics. Curr. Opin. Struct. Biol., 1994, 4(2), 285-290.
[http://dx.doi.org/10.1016/S0959-440X(94)90321-2]
[236]
Duan, L.; Liu, X.; Zhang, J.Z.H. Interaction entropy: A new paradigm for highly efficient and reliable computation of protein-ligand binding free energy. J. Am. Chem. Soc., 2016, 138(17), 5722-5728.
[http://dx.doi.org/10.1021/jacs.6b02682] [PMID: 27058988]
[237]
Mikulskis, P.; Genheden, S.; Ryde, U. Effect of explicit water molecules on ligand-binding affinities calculated with the MM/GBSA approach. J. Mol. Model., 2014, 20(6), 2273.
[http://dx.doi.org/10.1007/s00894-014-2273-x] [PMID: 24869780]