Electrochemical Detection of ct-dsDNA on Nanomaterial-modified Carbon Based Electrodes

Page: [305 - 312] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Nanomaterials have a significant role in improving the performance of electrochemical sensing systems. Unique physical and chemical properties have extended the application of nanomaterials in the fields of engineering, materials and biomedical science. In the last few years, these materials with unique properties have been preferred in the design of experimental approaches for the analysis of metal ions, proteins, biomarkers and pharmaceutical compounds. This paper reports preparation, characterization of two different nanomaterials and their electrochemical application on doublestranded calf-thymus DNA signals.

Methods: The multi-walled carbon nanotubes were functionalized with amine groups (MWCNTs-NH2) by employing the dielectric barrier discharge plasma treatment and then applied as MWCNTs- NH2/glassy carbon electrode. Moreover, the synthesized mesoporous silica MCM-41 was chemically amine functionalized and used as MCM-41-NH2/carbon paste electrode. For biosensor preparation, a thin layer of calf thymus double stranded deoxyribonucleic acid (ct-dsDNA) was immobilized over the modified electrodes.

Results: The influence of dsDNA immobilized substrate was investigated based on the electrochemical signals. While dsDNA/MCM-41-NH2/carbon paste biosensor showed a selective effect for guanine signals, the dsDNA/MWCNTs-NH2/glassy carbon biosensor presented electrocatalytic effect for dsDNA signals. Both dsDNA modified electrodes were employed to explore the interaction between the dsDNA and the anticancer drug etoposide (ETP) in aqueous solution through voltammetric techniques. By increasing the interaction time with ETP, the adenine peak current was quenched in the presence of MWCNTs-NH2 based glassy carbon electrode. Whereas, in the presence of MCM-41-NH2 based CP electrode, selective interaction with guanine occurred and oxidation peak intensity was diminished.

Conclusion: The selective effect of MCM-41-NH2 can be used when the studied substances give a signal with the same potential of adenine.

Keywords: Functionalized nanomaterials, biosensor, deoxyribonucleic acid, multiwalled carbon nanotubes, mesoporous silica, electrochemistry.

Graphical Abstract

[1]
Sanchez-Valencia, J.R.; Dienel, T.; Groning, O.; Shorubalko, I.; Mueller, A.; Jansen, M.; Amsharov, K.; Ruffieux, P.; Fasel, R. Controlled synthesis of single-chirality carbon nanotubes. Nature, 2014, 512, 61-64.
[2]
Soper, A.K. Physical chemistry: Square ice in a graphene sandwich. Nature, 2015, 519, 417-418.
[3]
Ross, M.B.; Ku, J.C.; Vaccarezza, V.M.; Schatz, G.C.; Mirkin, C.A. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nat. Nanotechnol., 2015, 10, 453-458.
[4]
Li, J.; Ng, H.T.; Cassell, A.; Fan, W.; Chen, H.; Ye, Q.; Koehne, J.; Han, J.; Meyyappan, M. Carbon nanotube nanoelectrode array for ultrasensitive DNA Detection. Nano Lett., 2003, 3(5), 597-602.
[5]
Kara, P.; Ariksoysal, D.; Ozsoz, M. Electrochemical Nucleic Acid Biosensors Based on Hybridization Detection for Clinical Analysis. In: Electrochemical DNA Biosensors; Mehmet , Özsöz., Ed.; Panstanford Publishing: Singapore, 2012; pp. 403-425.
[6]
Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors - sensor principles and architectures. Sensors, 2008, 8, 1400-1458.
[7]
Kuhr, W.G. Electrochemical DNA analysis comes of age. Nat. Biotechnol., 2000, 18(10), 1042-1043.
[8]
Khajeamiri, A.R.; Kobarfard, F.; Moghaddam, A.B. Application of polyaniline and polyaniline/multiwalled carbon nanotubes-coated fibers for analysis of ecstasy. Chem. Eng. Technol., 2012, 35, 1515-1519.
[9]
Wang, J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis, 2005, 17(1), 7-14.
[10]
Kim, S.N.; Rusling, J.F.; Papadimitrakopoulos, F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater., 2007, 19(20), 3214-3228.
[11]
Asheghali, D.; Vichchulada, P.; Lay, M.D. Conversion of metallic single-walled carbon nanotube networks to semiconducting through electrochemical ornamentation. J. Am. Chem. Soc., 2013, 135, 7511-7522.
[12]
Mohammadi, A.; Moghaddam, A.B.; Eilkhanizadeh, K.; Alikhani, E.; Mozaffari, S.; Yavari, T. Electro-oxidation and simultaneous determination of amlodipine and atorvastatin in commercial tablets using carbon nanotube modified electrode. Micro Nano Lett., 2013, 8, 413-417.
[13]
Kharisov, B.I.; Kharisova, O.V.; Gutierrez, H.L.; Méndez, V.O. Recent advances on the soluble carbon nanotubes. Ind. Eng. Chem. Res., 2009, 48(2), 572-590.
[14]
O’Connell, M.J.; Poul, P.; Ericson, L.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, D.; Smalley, R.E. Reversibl water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett., 2001, 342, 265-271.
[15]
Wu, Z.; Xu, Y.; Zhang, X.; Shen, G.; Yu, R. Microwave plasma treated carbon nano-tubes and their electrochemical biosensing application. Talanta, 2007, 72, 1336-1341.
[16]
Matyshevska, O.P.; Karlasha, A.Y.; Shtogun, Y.V.; Benilov, A.; Kirgizov, Y. Gorchinskyy, K.O.; Buzaneva, E.V.; Prylutskyy, Y.I.; Scharff, P. Self-organizing DNA/carbon nanotube molecular films. Mat. Sci. Eng. C-Biomim, 2001, 15(1-2), 249-252.
[17]
Krizkova, S.; Heger, Z.; Zalewska, M.; Moulick, A.; Adam, V.; Kizek, R. Nanotechnologies in protein microarrays. Nanomedicine, 2015, 10(17), 2743-2755.
[18]
Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J.; Partidos, C.D.; Briand, J-P.; Prato, M.; Bianco, A.; Kostarelos, K. Binding and condensation of plasmid DNA onto functionalized carbon nano-tubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc., 2005, 127(12), 4388-4396.
[19]
Yang, X.Y.; Liu, Z.F.; Mao, J.; Wang, S.J.; Ma, Y.F.; Chen, Y.S. The preparation of func-tionalized single walled carbon nanotubes as high efficiency DNA carriers. Chin. Chem. Lett., 2007, 18, 1551-1553.
[20]
Ye, J-S.; Li, X-L.; Sheu, F-S. Novel mesoporous silicas as electrochemical biosensors In: Nanostructured Materials for Electrochemical Biosensors; Yogeswaran Umasankar; S. Ashok Kumar, Shen-Ming. Chen, Eds.; Nova Science Publishers, Inc.: NY, 2009; pp. 303-316.
[21]
Lei, C.; Shin, Y.; Magnuson, J.K.; Fryxell, G.; Lasure, L.L.; Elliott, D.C.; Liu, J.; Ackerman, E.J. Characterization of functionalized nanoporous supports for protein confinement. Nanotechnology, 2006, 17, 5531-5538.
[22]
Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, 710-712.
[23]
Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.D.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; Higgins, J.B.; Schlenker, J.L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114, 10834-10843.
[24]
Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.F.; Willner, I. “Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science, 2003, 299, 1877-1881.
[25]
Hasanzadeh, M.; Shadjou, N.; de la Guardia, M.; Eskandani, M.; Sheikhzadeh, P. Mesoporous silica-based materials for use in biosensors. TrAC. Trends Anal. Chem., 2012, 33, 117-129.
[26]
Nabid, M.R.; Shamsianpour, M.; Sedghi, R.; Moghaddam, A.B. Enzyme-catalyzed synthesis of conducting polyaniline nanocomposites with pure and functionalized carbon nanotubes. Chem. Eng. Technol., 2012, 35, 1707-1712.
[27]
Radi, A-E.; Nassef, H.M.; Eissa, A. Voltammetric and ultraviolet–visible spectroscopic studies on the interaction of etoposide with deoxyribonucleic acid. Electrochim. Acta, 2013, 113, 164-169.
[28]
Takimoto, C.H.; Calvo, E. Principles of oncologic pharmacotherapy. In: Cancer Management: A Multidisciplinary Approach; R., Pazdur; L.D., Wagman; K.A., Camphausen; W.J., Hoskins, Eds.; UBM Medica: London, UK, 2008; pp. 42-58.
[29]
Kagan, V.E.; Kuzmenko, A.I.; Tyurina, Y.Y.; Shvedova, A.A.; Matsura, T.; Yalowich, J.C. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: Role of myeloperoxidase. Cancer Res., 2001, 61, 7777-7784.
[30]
Chen, C.; Liang, B.; Lu, D.; Ogino, A.; Wang, X.; Nagatsu, M. Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. Carbon, 2010, 48, 939-948.
[31]
Wei, Y.; Yang, R.; Chen, X.; Wang, L.; Liu, J-H.; Huang, X-J. A cation trap for anodic stripping voltammetry: NH3–plasma treated carbon nanotubes for adsorption and detection of metal ions. Anal. Chim. Acta, 2012, 755, 54-61.
[32]
Parida, K.M.; Rath, D. Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction. J. Mol. Catal.A: Chem., 2009, 310, 93-100.
[33]
Melendez-Ortiz, H.I.; Garcia-Cerda, L.A.; Olivares-Maldonado, Y.; Castruita, G.; Mercado-Silva, J.A.; Perera-Mercado, Y.A. Preparation of spherical MCM-41 molecular sieve at room temperature: Influence of the synthesis conditions in the structural properties. Ceram. Int., 2012, 38, 6353-6358.
[34]
Zhu, L.; Zhou, L.; Huang, N.; Cui, W.; Liu, Z.; Xiao, K.; Zhou, Z. Efficient preparation of enantiopure D-phenylalanine through asymmetric resolution using immobilized phenylalanine ammonia-lyase from rhodotorula glutinis JN-1 in a recirculating packed-bed reactor. Plos One, 2014, 9, e108586-e.
[35]
Kannan, K.; Jasra, R.V. Immobilization of alkaline serine endopeptidase from Bacillus licheniformis on SBA-15 and MCF by surface covalent binding. J. Mol. Catal., B Enzym., 2009, 56, 34-40.
[36]
Wang, X.; Lin, K.S.; Chan, J.C.C.; Cheng, S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B, 2007, 109, 1763-1769.
[37]
Li, J.; Miao, M.; Hao, Y.; Zhao, J.; Sun, X.; Wang, L. Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(VI). J. Colloid Interf Sci., 2008, 318, 309-314.
[38]
Wang, J.; Kawde, A.N.; Musameh, M. Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst, 2003, 128, 912-916.
[39]
Brahman, P.K.; Dar, R.A.; Pitre, K.S. DNA-functionalized electrochemical biosensor for detection of vitamin B1 using electrochemically treated multiwalled carbon nanotube paste electrode by voltammetric methods. Sensor. Actuat B Chem., 2013, 177, 807-812.
[40]
Wang, J.; Musameh, M.; Lin, Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc., 2003, 125, 2408-2409.
[41]
Bollo, S.; Ferreyra, N.F.; Rivas, G.A. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in chitosan. Electroanalysis, 2007, 19(7-8), 833-840.
[42]
Luque, G.L.; Ferreyra, N.F.; Granero, A.; Bollo, S.; Rivas, G.A. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polyethylenimine. Electrochim. Acta, 2011, 56, 9121-9126.
[43]
Yin, H.; Zhou, Y.; Qiang, Ma.; Ai, S.; Ju, P.; Zhu, L.; Lu, L. Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochem., 2010, 45, 1707-1712.
[44]
Wang, Z.; Xiao, S.; Chen, Y. Beta-cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J. Electroanal. Chem., 2006, 589, 237-242.
[45]
Wang, J.; Li, M.; Shi, Z.; Li, N.; Gu, Z. Electrochemistry of DNA at single-wall carbon nanotubes. Electroanalysis, 2004, 16, 140-144.
[46]
Adams, R.N. Carbon paste electrodes. Anal. Chem., 1958, 30(9), 1576-1576.
[47]
Moghaddam, A.B.; Mohammadi, A.; Mohammadi, S.; Rayeji, D.; Dinarvand, R.; Baghi, M.; Walker, R.B. The determination of acetaminophen using a carbon nanotube:graphite-based electrode. Microchim. Acta, 2010, 171, 377-384.
[48]
Adams, R.N. Carbon paste electrodes. A review. Rev. Polarog. (Kyoto), 1963, 11, 71-78.