Composites of Poly (3,4-Ethylenedioxythiophene) with Nanostructures as Electrochemical Sensors for Application in Bioelectroanalysis

Page: [186 - 197] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: The article presents the state of research on conductive composite materials constructed on the basis of poly (3,4-ethylenedioxythiophene) (PEDOT), a conductive polymer, as well as selected nanoparticles and nanostructures. Combining two or more materials in a composite which is later used in electrode modification can result in obtaining an electrode with new, more desirable properties. One of such fields is pharmacological analysis which, due to the continuous emergence of new substances and often also a need for analyte determination in complex samples, requires newer instruments in the form of suitably sensitive and selective sensors.

Contents: The review contains the description of properties of PEDOT and composite PEDOT with polystyrenesulfonates. In the following part, composite materials are described: PEDOT-CNT, PEDOT- nanoparticles, PEDOT-graphene. The review closes with the examples of multi-component composite materials.

Conclusion: The on-going development of new substances used in medicine, pharmacy and related fields, as well as the continuous increase in the production and consumption of this type of substances, necessitates constant development and modernization of analytical techniques used for their determination.

Biomedical assays require being able to carry out determinations in different systems, including in vitro ones, without separating individual compounds. It is necessary to be able to identify several substances simultaneously or determine one compound in the presence of chemically similar substances. Modern electrode materials such as PEDOT and nanostructured materials allow for the development of sensors which are getting increasingly better at meeting the requirements of the analysts.

Keywords: Carbon nanotubes, electrochemical detection, modified electrodes, nanodots, nanoparticles, PEDOT, sensor.

Graphical Abstract

[1]
Ajayan, P.M.; Schadler, L.S.; Braun, P.V. In: Nanocomposite science and technology; Wiley: New York, 2003.
[2]
Bayer, A.G. Eur. Patent 339 340 1988.
[3]
Jonas, F.; Schrader, L. Conductive modifications of polymers with polypyrroles and polythiophenes. Synth. Met., 1991, 831, 41-43.
[4]
Heywang, G.; Jonas, F. Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Adv. Mater., 1992, 4, 116.
[5]
Winter, I.; Reece, C.; Hormes, J.; Heywang, G.; Jonas, F. The thermal ageing of poly(3,4-ethylenedioxythiophene). An investigation by X-ray absorption and X-ray photoelectron spectroscopy. Chem. Phys., 1995, 194, 207.
[6]
Dietrich, M.; Heinze, J.; Heywang, G.; Jonas, F. Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J. Electroanal. Chem., 1994, 369, 87.
[7]
Groenendaal, L.B.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J.R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater., 2000, 12(7), 481-494.
[8]
Kalfagiannis, N.; Karagiannidis, P.G.; Pitsalidis, C.; Hastas, N.; Panagiotopoulos, N.T.; Patsalas, P.; Logothetidis, S. Performance of hybrid buffer Poly(3,4-ethylenedioxythiophene) poly(styrenesul-fonate) layers doped with plasmonic silver nanoparticles. Thin Solid Films, 2014, 560, 27-33.
[9]
Shen, J.; Zhu, Y.; Yang, X.; Li, Ch. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun., 2012, 48, 3686-3699.
[10]
Kvarnström, C.; Neugebauer, H.; Blomquist, S.; Ahonen, H.J.; Kankare, J.; Ivaska, A. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). Electrochim. Acta, 1999, 44, 2739-2750.
[11]
Rannou, P.; Nechtschein, M. Ageing of Poly(3,4-ethylenedioxy-thiophene): Kinetics of conductivity decay and lifespan. Synth. Met., 1999, 101, 474.
[12]
Erdogdu, G.; Karagozler, A.E. Investigation and comparison of the electrochemical behavior of some organic and biological molecules at various conducting polymer electrodes. Talanta, 1997, 44, 2011-2018.
[13]
Atta, N.F.; Marawi, I.; Petticrew, K.L.; Zimmer, H.; Mark, H.B.; Galal, A. Electrochemistry and detection of some organic and biological molecules at conducting polymer electrodes. Part 3. Evidence of the electrocatalytic effect of the heteroatom of the poly(hetetroarylene) at the electrode/electrolyte interface. J. Electroanal. Chem., 1996, 408, 47-52.
[14]
Mark, H.B., Jr; Atta, N.; Maa, Y.L.; Petticrew, K.L.; Zimmer, H.; Shi, Y.; Lunsford, S.K.; Rubinson, J.F.; Galal, A. The electrochemistry of neurotransmitters at conducting organic polymer electrodes: electrocatalysis and analytical applications. Bioelectrochem. Bioenerg., 1995, 38, 229-245.
[15]
Yeh, W-M.; Ho, K-Ch. Amperometric morphine sensing using a molecularly imprinted polymer-modified electrode. Anal. Chim. Acta, 2005, 542, 76-82.
[16]
Mantione, D.; Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers, 2017, 9, 354.
[17]
Kros, A.; Sommerdijk, N.A.J.M.; Nolte, R.J.M. Poly(pyrrole) versus poly(3,4-ethylenedioxythiophene): implications for biosensor applications. Sens. Actuat. B, 2005, 106, 289-295.
[18]
F., Fuck Farbe & Lack, 1998, 104, 32.
[19]
Krzyczmonik, P.; Socha, E.; Andrijewski, G. Determination of ascorbic acid by a Composite-Modified platinum electrode. Anal. Lett., 2017, 50(5), 806-818.
[20]
Latessa, G.; Brunetti, F.; Reale, A.; Saggio, G.; Di Carlo, A. Piezoresistive behaviour of flexible PEDOT: PSS based sensors. Sens. Actuat. B, 2009, 139, 304-309.
[21]
Jang, J.; Chang, M.; Yoon, H. Chemical sensors based on highly conductive Poly(3,4-ethylenedioxythiophene). Nanorods. Adv. Mater., 2005, 17, 1616-1620.
[22]
Liu, N.; Fang, G.; Wan, J.; Zhou, H.; Long, H.; Zhao, X. Electrospun PEDOT:PSS-PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. J. Mater. Chem., 2011, 21, 18962-18966.
[23]
Yamato, H.; Ohwa, M.; Wernett, W. Stability of polypyrrole and poly(3,4_ethylenedioxy thiophene) for biosensor application. J. Electroanal. Chem., 1995, 397, 163-170.
[24]
Jeyalakshmi, S.R.; Kumar, S.S.; Mathiyarasu, J.; Phani, K.L.M.; Yegnaraman, V. Simultaneous determination of ascorbic acid, dopamine and uric acid using PEDOT polymer modified electrodes. Indian J. Chem., 2007, 46A, 957-961.
[25]
Belaidi, F.S.; Civélas, A.; Castagnola, V.; Tsopela, A.; Mazenq, L.; Gros, P.; Launay, J.; Temple-Boyer, P. PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid. Sens. Actuat. B., 2015, 214, 1-9.
[26]
Gualandi, I.; Marzocchi, M.; Scavetta, E.; Calienni, M.; Bonfiglio, A.; Frabonia, B. A simple all-PEDOT:PSS electrochemical transistor for ascorbic acid sensing. J. Mater. Chem. B, 2015, 3, 6753-6762.
[27]
Gualandi, I.; Tonelli, D.; Mariani, F.; Scavetta, E.; Marzocchi, M.; Fraboni, B. Selective detection of dopaminę with an all PEDOT:PSS organic electrochemical transistor. Sci. Rep., 2016, 6, 35419.
[28]
Jayakumar, C.; Reddy, Y.S.; Kulandainathan, M.A.; Jeyaraj, B. Fabrication of PEDOT-PSS modified glassy carbon electrode for Biosensor and its performance in determining L-dopa in the presence of Ascorbic acid. J. Chem. Pharm. Res., 2016, 8(6), 512-520.
[29]
Sipa, K.; Socha, E. Skrzypek, Sł.; Krzyczmonik, P. Electrodes modified with composite layers based on poly(3,4-ethylenedioxythiophene) as sensors for paracetamol. Anal. Sci., 2017, 33(3), 281.
[30]
Ho, K-Ch.; Yeh, W-M.; Tung, T-S.; Liao, J-Y. Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization. Anal. Chim. Acta, 2005, 542, 90-96.
[31]
Su, W.; Nguyen, H.T.; Cho, M.; Son, Y.; Lee, Y. Synthesis, characterization and self-assembled film of poly(3-((2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy)propane-1-thiol) (PEDTMSHA). Synth. Met., 2010, 160, 2471-2475.
[32]
Asuri, P.; Bale, S.S.; Karajanagi, S.S.; Kane, R.S. The Protein/Nanomaterial interface. Curr. Opin. Biotechnol., 2005, 17, 562.
[33]
Wang, Y.; Liu, L.; Li, M.; Xu, S.; Gao, F. Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. Biosens. Bioelectron., 2011, 30, 107-111.
[34]
Falka, M.; Andoralova, Y.; Bluma, Z.; Sotresa, J.; Suyatinb, D.B.; Ruzgasa, T.; Arnebranta, T.; Shleev, S. Biofuel cell as a power source for electronic contact lenses. Biosens. Bioelectron., 2012, 37, 38-45.
[35]
Negash, N.; Alemu, H.; Tessema, M. Determination of phenol and chlorophenols at single-wall carbon nanotubes/poly(3,4- ethylenedioxythiophene) modified glassy carbon electrode using flow injection amperometry. ISRN Anal. Chem., 2014, 2014, Article ID 926213..
[36]
Xu, G.; Li, B.; Wang, X.; Luo, X. Electrochemical sensor for nitrobenzene based on carbon paste electrode modified with a poly(3,4-ethylenedioxythiophene) and carbon nanotube nanocomposite. Mikrochim. Acta, 2014, 181, 463-469.
[37]
Lin, K.C.; Tsai, T.H.; Chen, S.M. Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT-PEDOT film. Biosens. Bioelectron., 2010, 26, 608-614.
[38]
Xu, G.; Li, B.; Luo, X. Carbon nanotube doped poly(3,4-ethylenedioxythiophene) for the electrocatalytic oxidation and detection of hydroquinone. Sens. Actuat. B., 2013, 176, 69-74.
[39]
Xu, G.; Li, B.; Cui, X.T.; Ling, L.; Luo, X. Electrodeposited conducting polymer PEDOT doped with pure carbonnanotubes for the detection of dopamine in the presence of ascorbic acid. Sens. Actuat. B., 2013, 188, 405-410.
[40]
Zhang, L.; Wen, Y-P.; Yao, Y-Y.; Wang, Z-F.; Duan, X-M.; Xu, J-K. Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A. Chin. Chem. Lett., 2014, 25, 517-522.
[41]
Nie, T.; Lu, L. Bai1, L.; Xu, J.; Zhang, K.; Zhang, O.; Wen, Y.; Wu, L. Simultaneous determination of folic acid and uric acid under coexistence of L-Ascorbic acid using a modified electrode based on Poly(3,4-Ethylenedioxythiophene) and functionalized single-walled carbon nanotubes composite. Int. J. Electrochem. Sci., 2013, 8, 7016-7029.
[42]
Tsai, T-H.; Lin, K-C.; Chen, S-M. Electrochemical synthesis of Poly(3,4-ethylenedioxythiophene) and gold nanocomposite and its application for hypochlorite sensor. Int. J. Electrochem. Sci., 2011, 6, 2672-2687.
[43]
Stoyanova, A.; Tsakova, V. Copper-modified poly(3,4-ethylenedioxythiophene) layers for selective determination of dopamine in the presence of ascorbic acid: I. Role of the polymer layer thickness. J. Solid State Electrochem., 2010, 14, 1947-1955.
[44]
Stoyanova, A.; Tsakova, V. Copper-modified poly(3,4-ethylenedioxythiophene) layers for selective determination of dopamine in the presence of ascorbic acid: II Role of the characteristics of the metal deposit. J. Solid State Electrochem., 2010, 14, 1957-1965.
[45]
Harish, S.; Mathiyarasu, J.; Phani, K.L.N.; Yegnaraman, V. PEDOT/Palladium composite material: Synthesis, characterization and application to simultaneous determination of dopamine and uric acid. J. Appl. Electrochem., 2008, 38, 1583-1588.
[46]
Mathiyarasu, J.; Kumar, S.S.; Phani, K.L.N.; Yegnaraman, V. PEDOT-Au nanocomposite film for electrochemical sensing. Mat. Lett., 2008, 62, 571-573.
[47]
Zanardi, C.; Terzi, F.; Seeber, R. Composite electrode coatings in amperometric sensors. Effects of differently encapsulated gold nanoparticles in poly(3,4-ethylendioxythiophene) system. Sens. Actuat. B., 2010, 148, 277-282.
[48]
Kumar, S.S.; Mathiyarasu, J.; Phani, K.L. Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopaminę. J. Electroanal. Chem., 2005, 578, 95-103.
[49]
Chang, L-Ch.; Wu, H-N.; Lin, C-Y.; Lai, Y-H.; Hu, C-W.; Ho, K.C. One-pot synthesis of poly(3,4-ethylenedioxythiophene)-Pt nanoparticle composite and its application to electrochemical H2O2 sensor. Nano. Res. Lett., 2012, 7, 319.
[50]
Liu, Z.; Lu, B.; Gao, Y.; Yang, T.; Yue, R.; Xu, J.; Gao, L. Facile one-pot preparation of Pd-Au/PEDOT/ graphene nanocomposites and their high electrochemical sensing performance for caffeic acid detection. RSC Adv, 2016, 6, 89157-89166.
[51]
Sethuraman, V.; Muthuraja, P. AnandhaRaj, J.; Manisankar, P. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced grapheme oxide-metal oxide enzyme modified electrode. Biosens. Bioelectron., 2016, 84, 112-119.
[52]
Wang, W.; Wang, W.; Davis, J.J.; Luo, X. Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Microchim. Acta, 2015, 182, 1123-1129.
[53]
Si, W.; Lei, W.; Zhang, Y.; Xia, M.; Wang, F.; Hao, Q. Electrodeposition of graphene oxide doped poly(3,4-ethylenedioxythiophene) film and its electrochemical sensing of catechol and hydroquinone. Electrochim. Acta, 2012, 85, 295-301.
[54]
Si, W.; Lei, W.; Han, Z.; Hao, Q.; Zhang, Y.; Xia, M. Selective sensing of catechol and hydroquinone based onpoly(3,4-ethylenedioxythiophene)/nitrogen-doped graphene composites. Sens. Actuat. B., 2014, 199, 154-160.
[55]
Wang, W.; Xu, G.; Cui, X.T.; Sheng, G.; Luo, X. Enhanced catalytic and dopaminę sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens. Bioelectron., 2014, 58, 153-156.
[56]
Feng, Z-L.; Yao, Y-Y.; Xu, J-K.; Zhang, L.; Wang, Z-F.; Wen, Y-P. One-step co-electrodeposition of graphene oxide doped poly(hydroxymethylated-3,4-ethylenedioxythiophene) film and its electrochemical studies of indole-3-acetic acid. Chin. Chem. Lett., 2014, 25, 511-516.
[57]
Liu, Z.; Xu, J.; Yue, R.; Yang, T.; Gao, L. Facile one-pot synthesis of Au-PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in red wine sample. Electrochim. Acta, 2016, 196, 1-12.
[58]
Su, W.; Cho, M.; Nam, J-D.; Choe, W-S.; Lee, Y. Aptamer-Assisted gold Nanoparticles/PEDOT platform for ultrasensitive detection of LPS. Electroanalysis, 2013, 25(2), 380-386.
[59]
Kuralay, F.; Demirci, S.; Kiristi, M.; Oksuz, L.; Oksuz, A.U. Poly(3,4-ethylenedioxy-thiophene) coated chitosan modified disposable electrodes for DNA and DNA-drug interaction sensing. Coll. Surf. B. Biointerf., 2014, 123, 825-830.
[60]
Karadag, M.; Geyik, C.; Demirkol, D.O.; Nil, F.; Timur, E.S. Modified gold surfaces by 6-(ferrocenyl)hexanethiol/dendrimer/gold nanoparticles as a platform for the mediated biosensing applications. Mater. Sci. Eng. C, 2013, 33, 634-640.
[61]
Krzyczmonik, P.; Socha, E. Skrzypek, Sł. Immobilization of glucose oxidase on modified electrodes with composite layers based on poly(3,4-ethylenedioxythiophene). Bioelectrochemistry, 2015, 101, 8-13.
[62]
Lang, U.; Naujoks, N.; Dual, J. Mechanical characterization of PEDOT:PSS thin films. Synth. Metal., 2009, 159, 473-479.
[63]
Krzyczmonik, P.; Socha, E.; Skrzypek, S. Electrochemical detection of glucose in beverages samples using poly(3,4-ethylenedioxythiophene) modified electrodes with immobilized glucose oxidase. Electrocatalysis, 2018, 9(3), 380-387.
[64]
Kim, D.M.; Rahman, Md. A.; Do, M.H.; Ban, C.; Shim, Y.B. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer. Biosens. Bioelectron., 2010, 25, 1781-1788.
[65]
Paimard, G.; Gholivand, M.B.; Shamsipur, M.; Gholivand, K.; Mohammadi-Behzad, L.; Gholami, A.; Barati, A. Fabrication of a highly sensitive amperometric sensor using 1,4-phenylene-N,N0-bis (O,O-diphenylphoramidate)/CdS quantum dots/multi-walled carbon nanotubes for nanomolar detection of captopril. J. Electroanal. Chem., 2015, 738, 176-183.
[66]
Ye, X.; Du, Y.; Duan, K. Daban, Lu, D.; Wang, Ch.; Shi, X. Fabrication of nano-ZnS coated PEDOT-reduced graphene oxidehybrids modified glassy carbon-rotating disk electrode and itsapplication for simultaneous determination of adenine, guanine, and thymine. Sens. Actuat. B., 2014, 203, 271-281.
[67]
Ouyang, X.; Luo, L.; Ding, Y.; Liu, B.; Xu, D. Simultaneous determination of purine and pyrimidine bases in DNA using poly(3,4-ethylenedioxythiophene)/graphene composite film. J. Electroanal. Chem., 2014, 735, 51-56.
[68]
Sriprachuabwong, Ch.; Karuwan, Ch.; Wisitsorrat, A.; Phokharatkul, D.; Lomas, T.; Sritongkham, P.; Tuantranont, A. Inkjet-printed graphene-PEDOT: PSS modified screen printed carbon electrode for biochemical sensing. J. Mater. Chem., 2012, 22, 5478.