Mini-Reviews in Organic Chemistry

Author(s): Xiantao Feng*

DOI: 10.2174/1570193X15666180412152056

Electronic Characters and Synthesis Method of Novel Conjugated System Based on Benzodithiophene Groups

Page: [216 - 227] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Benzodithiophene based conjugated small molecules (SMBDTs) are usually used in organic photovoltaic (OPV), Organic Filed Effection Transistor (OFET), Organic Phototransistor (OPT) and Non-Linear Optical (NLO) chromophores. Band-gap engineering is one of the key design principles for π-conjugated materials and this can be done by altering the structures of SMBDTs with sidechain and backbone reactions. In this way, scientists develop several kinds of SMBDTs with different electron donors and acceptors. The alkoxyl and aromatic substituted BDT units are mostly used as the donors, while the alkyl cyanoacetate, dicyano, rhodamine, indenedione, thieno[3,4-c]pyrrole-4,6(5H)-dione, benzothiadiazole and diketopyrrolopyrrole groups are used as the acceptors. The electronic characters of SMBDTs including the HOMO and LUMO energy level are listed and discussed. The synthesis methods of SMBDTs are mostly in common, especially with the backbone reaction. There are about four coupling methods for the backbone reaction, mostly used is the Stille coupling methods. In this review paper, the common synthesis methods and the electronic characters by several samples are summarized to provide researchers an overview of SMBDTs’ synthesis, structures and applications.

Keywords: Conjugated system, benzodithiophene, organic photovoltaic, organic filed effection transistor, organic phototransistor, non-linear optical.

Graphical Abstract

[1]
Yao, H.F.; Ye, L.; Zhang, H.; Li, S.S.; Zhang, S.Q.; Hou, J.H. Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev., 2016, 116, 7397-7457.
[2]
Marta, M.T.; Concepcio, R. Novel small molecules for organic field-effect transistors: Towards processability and high performance. Chem. Soc. Rev., 2008, 37, 827-838.
[3]
Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev., 2012, 112, 2208-2267.
[4]
Zhao, G.Y.; Liu, J.; Meng, Q.; Ji, D.Y.; Zhang, X.T.; Zou, Y.; Zhen, Y.G.; Dong, H.L.; Hu, W.P. High-performance UV-Sensitive organic phototransistors based on benzo[1,2- b:4,5- b′ ]dithiophene dimers linked with unsaturated bonds. Adv. Electron. Mater., 2015, 1, 1500071.
[5]
Si, P.; Liu, J.L.; Zhen, Z.; Liu, X.H.; Lakshminarayana, G.; Kityk, I.V. Synthesis and characterization of NLO chromophore with benzo[1,2-b:4,5-b0]dithiophene unit as π-electron bridge. Tetrahedron Lett., 2012, 53, 3393-3396.
[6]
Si, P.; Liu, J.L.; Deng, G.W.; Huang, H.Y.; Xu, H.J.; Bo, S.H.; Qiu, L.; Zhen, Z.; Liu, X.H. Novel electro-optic chromophores based on substituted benzo[1,2-b:4,5-b0]dithiophene π-conjugated bridges. RSC Advances, 2014, 4, 25532-25539.
[7]
Roncali, J.; Thobie-Gautier, C. An efficient strategy towards small bandgap polymers: The rigidification of the π-conjugated system. Adv. Mater., 1994, 6, 846-848.
[8]
Brisset, H.; Thobie-Gautier, C.; Gorgues, A.; Jubault, M.; Roncali, J. Novel narrow bandgap polymers from sp3 carbon-bridged bithienyls: Poly(4,4-ethylenedioxy-4H-cyclopenta[2,1-b;3,4-b′] dithiophene). J. Chem. Soc. Chem. Commun., 1994, 11, 1305-1306.
[9]
Kitamura, C.; Tanaka, S.; Yamashita, Y. Design of narrow-bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units. Chem. Mater., 1996, 8, 570-578.
[10]
Brocks, G.; Tol, A. Small band gap semiconducting polymers made from dye molecules: Polysquaraines. J. Phys. Chem., 1996, 100, 1838-1846.
[11]
Yamamoto, T.; Zhou, Z.; Kanbara, T.; Shimura, M.; Kizu, K.; Maruyama, T. Nakamura, Y.; Fukuda, T.; Bang-Lin, L.; Ooba, N.; Tomaru, S.; Kurihara, T.; Kaino, T.; Kubota, K.; Sasaki, S. π-Conjugated donor-acceptor copolymers constituted of π-excessive and π-deficient arylene units. Optical and electrochemical properties in relation to CT structure of the polymer. J. Am. Chem. Soc., 1996, 118, 10389-10399.
[12]
Lee, D.; Stone, S.W.; Ferraris, J.P. Novel dialkylthio benzo[1,2-b:4,5-b′]dithiophene derivative for high open-circuit voltage in polymer solar cells. Chem. Commun., 2011, 47, 10987.
[13]
Wen, S. Liu, Jie.; Qiu, M.; Li, Y.H.; Zhu, D.Q.; Gu, C.T.; Han, L.L.; Yang, R.Q. Synthesis and photophysical properties of amino-substituted benzodithiophene-based fluorophores. RSC Advances, 2015, 5, 5875-5878.
[14]
Jun, K.; Koji, H.; Tetsuya, S.; Shu, S.; Masahiro, M. Effect of the substitution pattern of alkyl side chain in a benzodithiophene core π-system on intra and inter-molecular charge carrier mobility. J. Phys. Chem. B, 2011, 115, 8446-8452.
[15]
Liu, Y.; Wan, X.; Wang, F.; Zhou, J.; Long, G.; Tian, J.; Chen, Y. High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit. Adv. Mater., 2011, 23, 5387-5391.
[16]
Lim, N.; Cho, N.; Paek, S.; Kim, C.; Lee, J.K.; Ko, J. High-performance organic solar cells with efficient semiconducting small molecules containing an electron-rich benzodithiophene derivative. Chem. Mater., 2014, 26, 2283-2288.
[17]
Ni, W.; Li, M.; Wan, X.; Feng, H.; Kan, B.; Zuo, Y.; Chen, Y. A high-performance photovoltaic small molecule developed by modifying the chemical structure and optimizing the morphology of the active layer. RSC Advances, 2014, 4, 31977-31980.
[18]
Zhou, J.Y.; Wan, X.J.; Liu, Y.S.; Zuo, Y.; Li, Z.; He, G.R.; Long, G.K.; Ni, W.; Li, C.; Su, X.C.; Chen, Y.S. Small molecules based on benzo[1,2-b:4,5-b′]dithiophene unit for high-performance solution-processed organic solar cells. J. Am. Chem. Soc., 2012, 134, 16345-16351.
[19]
Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc., 2014, 136, 15529-15532.
[20]
Shen, S.; Jiang, P.; He, C.; Zhang, J.; Shen, P.; Zhang, Y.; Yi, Y.; Zhang, Z.; Li, Z.; Li, Y. Solution-processable organic molecule photovoltaic materials with bithienyl-benzodithiophene central unit and indenedione end groups. Chem. Mater., 2013, 25, 2274-2281.
[21]
Cui, C.; Min, J.; Ho, C.L.; Ameri, T.; Yang, P.; Zhao, J.; Brabec, C.J.; Wong, W.Y. A new two-dimensional oligothiophene end-capped with alkyl cyanoacetate groups for highly efficient solution-processed organic solar cells. Chem. Commun., 2013, 49, 4409-4411.
[22]
Kim, Y.J.; Park, K.H.; Ha, J.J.; Chung, D.S.; Kim, Y.H.; Park, C.E. The effect of branched versus linear alkyl side chains on the bulk heterojunction photovoltaic performance of small molecules containing both benzodithiophene and thienopyrroledione. Phys. Chem. Chem. Phys., 2014, 16, 19874-19883.
[23]
Dutta, P.; Kim, J.; Eom, S.H.; Lee, W.H.; Kang, I.N.; Lee, S.H. An easily accessible donor-pi-acceptor-conjugated small molecule from a 4,8-dialkoxybenzo[1,2-b:4,5-b′]dithiophene unit for efficient solution processed organic solar cells. ACS Appl. Mater. Interfaces, 2012, 4, 6669-6675.
[24]
Liang, L.; Wang, J.T.; Xiang, X.; Ling, J.; Zhao, F.G.; Li, W.S. Influence of moiety sequence on the performance of small molecular photovoltaic materials. J. Mater. Chem. A, 2014, 2, 15396-15405.
[25]
Guerrero, A.; Loser, S.; Garcia-Belmonte, G.; Bruns, C.J.; Smith, J.; Miyauchi, H.; Stupp, S.I.; Bisquert, J.; Marks, T.J. Solution-processed small molecule: Fullerene bulk-heterojunction solar cells: Impedance spectroscopy deduced bulk and interfacial limits to fill-factors. Phys. Chem. Chem. Phys., 2013, 15, 16456-16462.
[26]
Li, C.; Chen, Y.; Zhao, Y.; Wang, H.; Zhang, W.; Li, Y.; Yang, X.; Ma, C.; Chen, L.; Zhu, X.; Tu, Y. Acceptor-donor-acceptor-based small molecules with varied crystallinity: Processing additive-induced nanofibril in blend film for photovoltaic applications. Nanoscale, 2013, 5, 9536-9540.
[27]
Walker, B.; Liu, J.; Kim, C.; Welch, G.C.; Park, J.K.; Lin, J.; Zalar, P.; Proctor, C.M.; Seo, J.H.; Bazan, G.C.; Nguyen, T.Q. Optimization of energy levels by molecular design: Evaluation of bisdiketopyrrolopyrrole molecular donor materials for bulk heterojunction solar cells. Energy Environ. Sci., 2013, 6, 952-962.
[28]
Kumar, C.V.; Cabau, L.; Viterisi, A.; Biswas, S.; Sharma, G.D.; Palomares, E. Solvent annealing control of bulk heterojunction organic solar cells with 6.6% efficiency based on a benzodithiophene donor core and dicyano acceptor units. J. Phys. Chem. C, 2015, 119, 20871-20879.
[29]
Du, Z.; Chen, W.; Qiu, M.; Chen, Y.; Wang, N.; Wang, T.; Sun, M.; Yu, D.; Yang, R. Utilizing alkoxyphenyl substituents for side-chain engineering of efficient benzo[1,2-b:4,5-b′]dithiophene-based small molecule organic solar cells. Phys. Chem. Chem. Phys., 2015, 17, 17391-17398.
[30]
Qiu, B.; Yuan, J.; Xiao, X.; He, D.; Qiu, L.; Zou, Y.; Zhang, Z.G.; Li, Y. Effect of fluorine substitution on photovoltaic properties ofalkoxyphenyl substituted benzo[1,2-b:4,5-b′]dithiophene-based small molecules. ACS Appl. Mater. Interfaces, 2015, 7, 25237-25246.
[31]
Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y. Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J. Am. Chem. Soc., 2013, 135, 8484-8487.
[32]
Kan, B.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Yang, X.; Zhang, M.; Zhang, H.; Russell, T.P.; Chen, Y. Small molecules based on alkyl/alkylthio-thieno[3,2-b]thiophene-substituted benzo[1,2-b:4,5-b′]dithiophene for solution-processed solar cells with high performance. Chem. Mater., 2015, 27, 8414-8423.
[33]
Liu, Y.; Chen, C.C.; Hong, Z.; Gao, J.; Yang, Y.M.; Zhou, H.; Dou, L.; Li, G.; Yang, Y. Solution-processed small-molecule solar cells: Breaking the 10% power conversion efficiency. Sci. Rep., 2013, 3, 3356.
[34]
Cui, C.; Xia, G.; Jie, M. Bing, Guo, X.C.; Maojie, Z.; Christoph, J.; Brabec, Li, Y. High-performance organic solar cells based on a small molecule with alkylthio-thienyl-conjugated side chains without extra treatments. Adv. Mater., 2015, 27, 7469-7475.
[35]
Ha, J.J.; Kim, Y.J.; Park, J.G.; An, T.K.; Kwon, S.K.; Park, C.E.; Kim, Y.H. Thieno[3,4-c]pyrrole-4,6-dione-based small molecules for highly efficient solution-processed organic solar cells. Chem. Asian J., 2014, 9, 1045-1053.
[36]
Kim, Y.J.; Baek, J.Y.; Ha, J.J.; Chung, D.S.; Kwon, S.K.; Park, C.E.; Kim, Y.H. A high-performance solution-processed small molecule: Alkylselenophene-substituted benzodithiophene organic solar cell. J. Mater. Chem. C, 2014, 2, 4937-4946.
[37]
Deng, D.; Zhang, Y.J.; Yuan, L.; He, C.; Lu, K.; Wei, Z.X. Effects of shortened alkyl chains on solution-processable small molecules with oxo-alkylated nitrile end-capped acceptors for high-performance organic solar cells. Adv. Energy Mater., 2014, 4, 1400538.
[38]
Du, Z.; Chen, W.; Chen, Y.; Qiao, S.; Bao, X.; Wen, S.; Sun, M.; Han, L.; Yang, R. High efficiency solution-processed two-dimensional small molecule organic solar cells obtained via low-temperature thermal annealing. J. Mater. Chem. A, 2014, 2, 15904-15911.
[39]
Lin, Y.Z.; Ma, L.C.; Li, Y.F.; Liu, Y.Q.; Zhu, D.B.; Zhan, X.W. Small-molecule solar cells with fill factors up to 0.75 via a layer-by-layer solution process. Adv. Energy Mater., 2014, 4, 1300626.
[40]
Sun, K.; Xiao, Z.; Lu, S.; Zajaczkowski, W.; Pisula, W.; Hanssen, E.; White, J.M.; Williamson, R.M.; Subbiah, J.; Ouyang, J.; Holmes, A.B.; Wong, W.W.; Jones, D.J. A molecular nematic liquid crystallinematerial for high-performance organic photovoltaics. Nat. Commun., 2015, 6, 6013.
[41]
Patra, D.; Huang, T.Y.; Chiang, C.C.; Maturana, R.O.; Pao, C.W.; Ho, K.C.; Wei, K.H.; Chu, C.W. 2-Alkyl-5-thienyl-substituted benzo[1,2-b:4,5-b′]dithiophene-based donor molecules for solutionprocessed organic solar cells. ACS Appl. Mater. Interfaces, 2013, 5, 9494-9500.
[42]
Deng, D.; Zhang, Y.; Zhu, L.; Zhang, J.; Lu, K.; Wei, Z. Effects of end-capped acceptors subject to subtle structural changes on solution processable small molecules for organic solar cells. Phys. Chem. Chem. Phys., 2015, 17, 8894-8900.
[43]
Chen, Y.; Yan, Y.; Du, Z.; Bao, X.; Liu, Q.; Roy, V.A.L.; Sun, M.; Yang, R.; Lee, C.S. Two-dimensional benzodithiophene and benzothiadiazole based solution-processed small molecular organic field-effect transistors & solar cells. J. Mater. Chem. C, 2014, 2, 3921-3927.
[44]
Wang, K.; Guo, B.; Xu, Z.; Guo, X.; Zhang, M.; Li, Y. Solution-processable organic molecule for high-performance organic solar cells with low acceptor content. ACS Appl. Mater. Interfaces, 2015, 7, 24686-24693.
[45]
Yuan, L.; Zhao, Y.; Zhang, J.; Zhang, Y.; Zhu, L.; Lu, K.; Yan, W.; Wei, Z. Oligomeric donor material for high-efficiency organic solar cells: Breaking down a polymer. Adv. Mater., 2015, 27, 4229-4233.
[46]
Lin, Y.; Ma, L.; Li, Y.; Liu, Y.; Zhu, D.; Zhan, X. A solution-processable small molecule based on benzodithiophene and diketopyrrolopyrrole for high-performance organic solar cells. Adv. Energy Mater., 2013, 3, 1166-1170.
[47]
Shin, W.; Yasuda, T.; Hidaka, Y.; Watanabe, G.; Arai, R.; Nasu, K.; Yamaguchi, T.; Murakami, W.; Makita, K.; Adachi, C. pi-Extended narrow-bandgap diketopyrrolopyrrole-based oligomers for solution-processed inverted organic solar cells. Adv. Energy Mater., 2014, 4, 1400879.
[48]
Tang, A.L.; Zhan, C.L.; Yao, J.N. Comparative study of effects of terminal non-alkyl aromatic and alkyl groups on small-molecule solar cell performance. Adv. Energy Mater., 2015, 5, 1500059.
[49]
Tang, Z.; Liu, B.; Melianas, A.; Bergqvist, J.; Tress, W.; Bao, Q.; Qian, D.; Inganäs, O.; Zhang, F. A new fullerene-free bulk heterojunction system for efficient high-voltage and high-fill factor solution-processed organic photovoltaics. Adv. Mater., 2015, 27, 1900-1907.
[50]
Tang, A.; Lu, Z.; Bai, S.; Huang, J.; Chen, Y.; Shi, Q.; Zhan, C.; Yao, J. Photocurrent enhancement in diketopyrrolopyrrole solar cells by manipulating dipolar anchoring terminals on alkyl-chain spacers. Chem. Asian J., 2014, 9, 883-892.
[51]
Zhang, S.; Wang, X.; Tang, A.; Huang, J.; Zhan, C.; Yao, J. Tuning morphology and photovoltaic properties of diketopyrrolopyrrole-based small-molecule solar cells by taloring end-capped aromatic groups. Phys. Chem. Chem. Phys., 2014, 16, 4664-4671.
[52]
Wei, H.; Chen, W.; Han, L.; Wang, T.; Bao, X.; Li, X.; Liu, J.; Zhou, Y.; Yang, R. A Solution-processable molecule using thieno[3,2-b]thiophene as building block for efficient organic solar cells. Chem. Asian J., 2015, 10, 1791-1798.
[53]
Huang, J.; Wang, X.; Zhang, X.; Niu, Z.; Lu, Z.; Jiang, B.; Sun, Y.; Zhan, C.; Yao, J. Additive-assisted control over phase-separated nanostructures by manipulating alkylthienyl position at donor backbone for solution-processed, non-fullerene, all-small-molecule solar cells. ACS Appl. Mater. Interfaces, 2014, 6, 3853-3862.
[54]
Yi, Z.; Ni, W.; Zhang, Q.; Li, M.; Kan, B.; Wan, X.; Chen, Y. Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. J. Mater. Chem. C, 2014, 2, 7247.
[55]
Sheng, R.Y. Liu, Qian.; Qiu, M.; Gu, C.T.; Zhou, Y.H.; Ren, J.Z.; Sun, M.L.; Yang, R.Q. Synthesis and optical-electronic properties of a novel star-shaped benzodithiophene molecule. Chem. Lett., 2015, 44, 291-293.
[56]
Taybet, B.; Kerstin, S.; Tatjana, E.B.; Katrin, F.; Silvia, J. Solution processable TIPS-benzodithiophene small molecules with improved semiconducting properties in organic field effect transistors. Org. Electron., 2013, 14, 344-353.
[57]
Payne, A.J.; McCahill, J.S.J.; Welch, G.C. Indoloquinoxaline as a terminal building block for the construction of π-conjugated small molecules relevant to organic electronics. Dyes Pigments, 2015, 123, 139-146.
[58]
Kurokawa, A.; Matsumoto, Y.; Shibamoto, K.; Kajimoto, K.; Osuga, H.; Hideo, Y.K. Uno.; Tanakaa, I. Contact and channel resistances of organic field-effect transistors based on benzodithiophene-dimer films deposited on pentacene crystallinity control layers. Appl. Phys. Lett., 2009, 95, 263307.
[59]
Yamaguchi, K.; Takamiya, S.; Minami, M.; Doge, Y.; Nishide, Y. Crystallinity improvement of benzodithiophene-dimer films for organic field-effect transistors. Appl. Phys. Lett., 2008, 93, 043302-043303.
[60]
Mark, A.M.L.; Fabio, C.; Lucas, V.; Alexey, M.; Wojciech, P.; Johannes, G.; Jerome, C.; Anna, P.S.; Heiko, T.; Klaus, M.; Luisa, D.C. Electronic properties and supramolecular organization of terminal bis(alkylethynyl)-substituted benzodithiophenes. J. Phys. Chem. B, 2010, 114, 14614-14620.
[61]
Kumagai, J.; Hirano, K.; Satoh, T.; Seki, S.; Miura, M. Effect of the substitution pattern of alkyl side chain in a benzodithiophene core π-system on intra and inter-molecular charge carrier mobility. J. Phys. Chem. B, 2011, 115, 8446-8452.
[62]
Wang, C.H.; Hu, R.R.; Liang, S.; Chen, J.H.; Yang, Z. Pei. J. Linear C2-symmetric polycyclic benzodithiophene: Efficient, highly diversified approaches and the optical properties. Tetrahedron Lett., 2005, 46, 8153-8157.