The Design of New HIV-IN Tethered Bifunctional Inhibitors Using Multiple Microdomain Targeted Docking

Page: [2574 - 2600] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Currently, used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes changes these viral enzymes, which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects.

Keywords: HIV, Integrase, RT, ART, LTR, NTD, CCD, CTD.

[1]
Passos, D.O.; Li, M.; Yang, R.; Rebensburg, S.V.; Ghirlando, R.; Jeon, Y.; Shkriabai, N.; Kvaratskhelia, M.; Craigie, R.; Lyumkis, D. Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science, 2017, 355(6320), 89-92.
[http://dx.doi.org/10.1126/science.aah5163] [PMID: 28059769]
[2]
Buvé, A.; Laga, M. Epidemiological research in the HIV field: towards understanding what we do not know. AIDS, 2012, 26(10), 1203-1204.
[http://dx.doi.org/10.1097/QAD.0b013e328353bc36] [PMID: 22706006]
[3]
UNAIDS UNAIDS/ Fact sheet - Latest statistics on the status of the AIDS epidemic, http://www.unaids.org/en/resources/fact-sheet [Accessed November 2, 2017]
[4]
Adler, M. 25 years of AIDS. AIDS, 2012, 26(10), 1191.
[http://dx.doi.org/10.1097/QAD.0b013e328353efc3] [PMID: 22706000]
[5]
Gebo, K.A.; Fleishman, J.A.; Conviser, R.; Hellinger, J.; Hellinger, F.J.; Josephs, J.S.; Keiser, P.; Gaist, P.; Moore, R.D. Contemporary costs of HIV healthcare in the HAART era. AIDS, 2010, 24(17), 2705-2715.
[http://dx.doi.org/10.1097/QAD.0b013e32833f3c14] [PMID: 20859193]
[6]
Rizzuto, C.D.; Wyatt, R.; Hernández-Ramos, N.; Sun, Y.; Kwong, P.D.; Hendrickson, W.A.; Sodroski, J. A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science, 1998, 280(5371), 1949-1953.
[http://dx.doi.org/10.1126/science.280.5371.1949] [PMID: 9632396]
[7]
Deng, H.; Liu, R.; Ellmeier, W.; Choe, S.; Unutmaz, D.; Burkhart, M.; Di Marzio, P.; Marmon, S.; Sutton, R.E.; Hill, C.M.; Davis, C.B.; Peiper, S.C.; Schall, T.J.; Littman, D.R.; Landau, N.R. Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996, 381(6584), 661-666.
[http://dx.doi.org/10.1038/381661a0] [PMID: 8649511]
[8]
Dragic, T.; Litwin, V.; Allaway, G.P.; Martin, S.R.; Huang, Y.; Nagashima, K.A.; Cayanan, C.; Maddon, P.J.; Koup, R.A.; Moore, J.P.; Paxton, W.A. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996, 381(6584), 667-673.
[http://dx.doi.org/10.1038/381667a0] [PMID: 8649512]
[9]
Hughes, S.H. In Mobile DNA, 3rd Edition, ASM Press, 2015.
[10]
Roberts, J.D.; Bebenek, K.; Kunkel, T.A. The accuracy of reverse transcriptase from HIV-1. Science, 1988, 242(4882), 1171-1173.
[http://dx.doi.org/10.1126/science.2460925] [PMID: 2460925]
[11]
Brown, H.E.; Chen, H.; Engelman, A. Structure-based mutagenesis of the human immunodeficiency virus type 1 DNA attachment site: effects on integration and cDNA synthesis. J. Virol., 1999, 73(11), 9011-9020.
[PMID: 10516007]
[12]
Masuda, T.; Kuroda, M.J.; Harada, S. Specific and independent recognition of U3 and U5 att sites by human immunodeficiency virus type 1 integrase in vivo. J. Virol., 1998, 72(10), 8396-8402.
[PMID: 9733892]
[13]
Farnet, C.M.; Bushman, F.D. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell, 1997, 88(4), 483-492.
[http://dx.doi.org/10.1016/S0092-8674(00)81888-7] [PMID: 9038339]
[14]
Li, L.; Yoder, K.; Hansen, M.S.; Olvera, J.; Miller, M.D.; Bushman, F.D. Retroviral cDNA integration: stimulation by HMG I family proteins. J. Virol., 2000, 74(23), 10965-10974.
[http://dx.doi.org/10.1128/JVI.74.23.10965-10974.2000] [PMID: 11069991]
[15]
Miller, M.D.; Farnet, C.M.; Bushman, F.D. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J. Virol., 1997, 71(7), 5382-5390.
[PMID: 9188609]
[16]
Faure, A.; Calmels, C.; Desjobert, C.; Castroviejo, M.; Caumont-Sarcos, A.; Tarrago-Litvak, L.; Litvak, S.; Parissi, V. HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res., 2005, 33(3), 977-986.
[http://dx.doi.org/10.1093/nar/gki241] [PMID: 15718297]
[17]
Guiot, E.; Carayon, K.; Delelis, O.; Simon, F.; Tauc, P.; Zubin, E.; Gottikh, M.; Mouscadet, J.F.; Brochon, J.C.; Deprez, E. Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity. J. Biol. Chem., 2006, 281(32), 22707-22719.
[http://dx.doi.org/10.1074/jbc.M602198200] [PMID: 16774912]
[18]
McDonald, D.; Vodicka, M.A.; Lucero, G.; Svitkina, T.M.; Borisy, G.G.; Emerman, M.; Hope, T.J. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol., 2002, 159(3), 441-452.
[http://dx.doi.org/10.1083/jcb.200203150] [PMID: 12417576]
[19]
Fassati, A.; Görlich, D.; Harrison, I.; Zaytseva, L.; Mingot, J.M. Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7. EMBO J., 2003, 22(14), 3675-3685.
[http://dx.doi.org/10.1093/emboj/cdg357] [PMID: 12853482]
[20]
Christ, F.; Thys, W.; De Rijck, J.; Gijsbers, R.; Albanese, A.; Arosio, D.; Emiliani, S.; Rain, J.C.; Benarous, R.; Cereseto, A.; Debyser, Z. Transportin-SR2 imports HIV into the nucleus. Curr. Biol., 2008, 18(16), 1192-1202.
[http://dx.doi.org/10.1016/j.cub.2008.07.079] [PMID: 18722123]
[21]
Woodward, C.L.; Prakobwanakit, S.; Mosessian, S.; Chow, S.A. Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1. J. Virol., 2009, 83(13), 6522-6533.
[http://dx.doi.org/10.1128/JVI.02061-08] [PMID: 19369352]
[22]
Eidahl, J.O.; Crowe, B.L.; North, J.A.; McKee, C.J.; Shkriabai, N.; Feng, L.; Plumb, M.; Graham, R.L.; Gorelick, R.J.; Hess, S.; Poirier, M.G.; Foster, M.P.; Kvaratskhelia, M. Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res., 2013, 41(6), 3924-3936.
[http://dx.doi.org/10.1093/nar/gkt074] [PMID: 23396443]
[23]
van Nuland, R.; van Schaik, F.M.; Simonis, M.; van Heesch, S.; Cuppen, E.; Boelens, R.; Timmers, H.M.; van Ingen, H. Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics Chromatin, 2013, 6(1), 12.
[http://dx.doi.org/10.1186/1756-8935-6-12] [PMID: 23656834]
[24]
Engelman, A.; Craigie, R. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J. Virol., 1992, 66(11), 6361-6369.
[PMID: 1404595]
[25]
Engelman, A.; Hickman, A.B.; Craigie, R. The core and carboxyl-terminal domains of the integrase protein of human immunodeficiency virus type 1 each contribute to nonspecific DNA binding. J. Virol., 1994, 68(9), 5911-5917.
[PMID: 8057470]
[26]
Burke, C.J.; Sanyal, G.; Bruner, M.W.; Ryan, J.A.; LaFemina, R.L.; Robbins, H.L.; Zeft, A.S.; Middaugh, C.R.; Cordingley, M.G. Structural implications of spectroscopic characterization of a putative zinc finger peptide from HIV-1 integrase. J. Biol. Chem., 1992, 267(14), 9639-9644.
[PMID: 1577801]
[27]
Zheng, R.; Jenkins, T.M.; Craigie, R. Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc. Natl. Acad. Sci. USA, 1996, 93(24), 13659-13664.
[http://dx.doi.org/10.1073/pnas.93.24.13659] [PMID: 8942990]
[28]
Kulkosky, J.; Katz, R.A.; Merkel, G.; Skalka, A.M. Activities and substrate specificity of the evolutionarily conserved central domain of retroviral integrase. Virology, 1995, 206(1), 448-456.
[http://dx.doi.org/10.1016/S0042-6822(95)80060-3] [PMID: 7831800]
[29]
Nesmelova, I.V.; Hackett, P.B. DDE transposases: structural similarity and diversity. Adv. Drug Deliv. Rev., 2010, 62(12), 1187-1195.
[http://dx.doi.org/10.1016/j.addr.2010.06.006] [PMID: 20615441]
[30]
Rice, P.; Craigie, R.; Davies, D.R. Retroviral integrases and their cousins. Curr. Opin. Struct. Biol., 1996, 6(1), 76-83.
[http://dx.doi.org/10.1016/S0959-440X(96)80098-4] [PMID: 8696976]
[31]
Yang, W.; Hendrickson, W.A.; Crouch, R.J.; Satow, Y. Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. Science, 1990, 249(4975), 1398-1405.
[http://dx.doi.org/10.1126/science.2169648] [PMID: 2169648]
[32]
Hare, S.; Maertens, G.N.; Cherepanov, P. 3′-processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J., 2012, 31(13), 3020-3028.
[http://dx.doi.org/10.1038/emboj.2012.118] [PMID: 22580823]
[33]
Chen, J.C.; Krucinski, J.; Miercke, L.J.; Finer-Moore, J.S.; Tang, A.H.; Leavitt, A.D.; Stroud, R.M. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc. Natl. Acad. Sci. USA, 2000, 97(15), 8233-8238.
[http://dx.doi.org/10.1073/pnas.150220297] [PMID: 10890912]
[34]
Ellison, V.; Gerton, J.; Vincent, K.A.; Brown, P.O. An essential interaction between distinct domains of HIV-1 integrase mediates assembly of the active multimer. J. Biol. Chem., 1995, 270(7), 3320-3326.
[http://dx.doi.org/10.1074/jbc.270.7.3320] [PMID: 7852418]
[35]
Wang, J.Y.; Ling, H.; Yang, W.; Craigie, R. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J., 2001, 20(24), 7333-7343.
[http://dx.doi.org/10.1093/emboj/20.24.7333] [PMID: 11743009]
[36]
Di Santo, R. Inhibiting the HIV integration process: past, present, and the future. J. Med. Chem., 2014, 57(3), 539-566.
[http://dx.doi.org/10.1021/jm400674a] [PMID: 24025027]
[37]
Engelman, A.; Kessl, J.J.; Kvaratskhelia, M. Allosteric inhibition of HIV-1 integrase activity. Curr. Opin. Chem. Biol., 2013, 17(3), 339-345.
[http://dx.doi.org/10.1016/j.cbpa.2013.04.010] [PMID: 23647983]
[38]
Hajimahdi, Z.; Zarghi, A. Progress in HIV-1 integrase inhibitors: a review of their chemical structure diversity. Iran. J. Pharm. Res., 2016, 15(4), 595-628.
[PMID: 28243261]
[39]
Lesbats, P.; Engelman, A.N.; Cherepanov, P.; Retroviral, D.N. Retroviral DNA integration. Chem. Rev., 2016, 116(20), 12730-12757.
[http://dx.doi.org/10.1021/acs.chemrev.6b00125] [PMID: 27198982]
[40]
Nair, V.; Okello, M. Integrase inhibitor prodrugs: approaches to enhancing the anti-HIV activity of β-diketo acids. Molecules, 2015, 20(7), 12623-12651.
[http://dx.doi.org/10.3390/molecules200712623] [PMID: 26184144]
[41]
Deprez, E.; Barbe, S.; Kolaski, M.; Leh, H.; Zouhiri, F.; Auclair, C.; Brochon, J.C.; Le Bret, M.; Mouscadet, J.F. Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro. Mol. Pharmacol., 2004, 65(1), 85-98.
[http://dx.doi.org/10.1124/mol.65.1.85] [PMID: 14722240]
[42]
Mekouar, K.; Mouscadet, J.F.; Desmaële, D.; Subra, F.; Leh, H.; Savouré, D.; Auclair, C.; d’Angelo, J. Styrylquinoline derivatives: a new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J. Med. Chem., 1998, 41(15), 2846-2857.
[http://dx.doi.org/10.1021/jm980043e] [PMID: 9667973]
[43]
Bonnenfant, S.; Thomas, C.M.; Vita, C.; Subra, F.; Deprez, E.; Zouhiri, F.; Desmaële, D.; D’Angelo, J.; Mouscadet, J.F.; Leh, H. Styrylquinolines, integrase inhibitors acting prior to integration: a new mechanism of action for anti-integrase agents. J. Virol., 2004, 78(11), 5728-5736.
[http://dx.doi.org/10.1128/JVI.78.11.5728-5736.2004] [PMID: 15140970]
[44]
Zouhiri, F.; Danet, M.; Bénard, C.; Normand-Bayle, M.; Mouscadet, J-F.; Leh, H.; Marie Thomas, C.; Mbemba, G.; d’Angelo, J.; Desmaële, D. HIV-1 replication inhibitors of the styrylquinoline class: introduction of an additional carboxyl group at the C-5 position of the quinoline. Tetrahedron Lett., 2005, 46(13), 2201-2205.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.033]
[45]
Carayon, K.; Leh, H.; Henry, E.; Simon, F.; Mouscadet, J-F.; Deprez, E. A cooperative and specific DNA-binding mode of HIV-1 integrase depends on the nature of the metallic cofactor and involves the zinc-containing N-terminal domain. Nucleic Acids Res., 2010, 38(11), 3692-3708.
[http://dx.doi.org/10.1093/nar/gkq087] [PMID: 20164093]
[46]
Han, Y-S.; Xiao, W-L.; Quashie, P.K.; Mesplède, T.; Xu, H.; Deprez, E.; Delelis, O.; Pu, J-X.; Sun, H-D.; Wainberg, M.A. Development of a fluorescence-based HIV-1 integrase DNA binding assay for identification of novel HIV-1 integrase inhibitors. Antiviral Res., 2013, 98(3), 441-448.
[http://dx.doi.org/10.1016/j.antiviral.2013.04.001] [PMID: 23583286]
[47]
Quashie, P.K.; Han, Y-S.; Hassounah, S.; Mesplède, T.; Wainberg, M.A. Structural studies of the HIV-1 integrase protein: compound screening and characterization of a DNA-binding inhibitor. PLoS One, 2015, 10(6)e0128310
[http://dx.doi.org/10.1371/journal.pone.0128310] [PMID: 26046987]
[48]
Depienne, C.; Mousnier, A.; Leh, H.; Le Rouzic, E.; Dormont, D.; Benichou, S.; Dargemont, C. Characterization of the nuclear import pathway for HIV-1 integrase. J. Biol. Chem., 2001, 276(21), 18102-18107.
[http://dx.doi.org/10.1074/jbc.M009029200] [PMID: 11278458]
[49]
Hazuda, D.J.; Felock, P.; Witmer, M.; Wolfe, A.; Stillmock, K.; Grobler, J.A.; Espeseth, A.; Gabryelski, L.; Schleif, W.; Blau, C.; Miller, M.D. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science, 2000, 287(5453), 646-650.
[http://dx.doi.org/10.1126/science.287.5453.646] [PMID: 10649997]
[50]
Hazuda, D.J.; Anthony, N.J.; Gomez, R.P.; Jolly, S.M.; Wai, J.S.; Zhuang, L.; Fisher, T.E.; Embrey, M.; Guare, J.P., Jr; Egbertson, M.S.; Vacca, J.P.; Huff, J.R.; Felock, P.J.; Witmer, M.V.; Stillmock, K.A.; Danovich, R.; Grobler, J.; Miller, M.D.; Espeseth, A.S.; Jin, L.; Chen, I.W.; Lin, J.H.; Kassahun, K.; Ellis, J.D.; Wong, B.K.; Xu, W.; Pearson, P.G.; Schleif, W.A.; Cortese, R.; Emini, E.; Summa, V.; Holloway, M.K.; Young, S.D. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc. Natl. Acad. Sci. USA, 2004, 101(31), 11233-11238.
[http://dx.doi.org/10.1073/pnas.0402357101] [PMID: 15277684]
[51]
Guare, J.P.; Wai, J.S.; Gomez, R.P.; Anthony, N.J.; Jolly, S.M.; Cortes, A.R.; Vacca, J.P.; Felock, P.J.; Stillmock, K.A.; Schleif, W.A.; Moyer, G.; Gabryelski, L.J.; Jin, L.; Chen, I.W.; Hazuda, D.J.; Young, S.D. A series of 5-aminosubstituted 4-fluorobenzyl-8-hydroxy-[1,6]naphthyri-dine-7-carboxamide HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(11), 2900-2904.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.003] [PMID: 16554152]
[52]
Petrocchi, A.; Koch, U.; Matassa, V.G.; Pacini, B.; Stillmock, K.A.; Summa, V. From dihydroxypyrimidine carboxylic acids to carboxamide HIV-1 integrase inhibitors: SAR around the amide moiety. Bioorg. Med. Chem. Lett., 2007, 17(2), 350-353.
[http://dx.doi.org/10.1016/j.bmcl.2006.10.054] [PMID: 17107799]
[53]
Summa, V.; Petrocchi, A.; Bonelli, F.; Crescenzi, B.; Donghi, M.; Ferrara, M.; Fiore, F.; Gardelli, C.; Gonzalez Paz, O.; Hazuda, D.J.; Jones, P.; Kinzel, O.; Laufer, R.; Monteagudo, E.; Muraglia, E.; Nizi, E.; Orvieto, F.; Pace, P.; Pescatore, G.; Scarpelli, R.; Stillmock, K.; Witmer, M.V.; Rowley, M. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J. Med. Chem., 2008, 51(18), 5843-5855.
[http://dx.doi.org/10.1021/jm800245z] [PMID: 18763751]
[55]
Johnson, V.A.; Brun-Vézinet, F.; Clotet, B.; Günthard, H.F.; Kuritzkes, D.R.; Pillay, D.; Schapiro, J.M.; Richman, D.D. Update of the drug resistance mutations in HIV-1: December 2010. Top. HIV Med., 2010, 18(5), 156-163.
[PMID: 21245516]
[56]
Shimura, K.; Kodama, E.; Sakagami, Y.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K.; Watanabe, Y.; Ohata, Y.; Doi, S.; Sato, M.; Kano, M.; Ikeda, S.; Matsuoka, M. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J. Virol., 2008, 82(2), 764-774.
[http://dx.doi.org/10.1128/JVI.01534-07] [PMID: 17977962]
[57]
Klibanov, O.M. Elvitegravir, an oral HIV integrase inhibitor, for the potential treatment of HIV infection. Curr. Opin. Investig. Drugs, 2009, 10(2), 190-200.
[PMID: 19197797]
[58]
Lee, J.S.; Calmy, A.; Andrieux-Meyer, I.; Ford, N. Review of the safety, efficacy, and pharmacokinetics of elvitegravir with an emphasis on resource-limited settings. HIV AIDS (Auckl.), 2012, 4, 5-15.
[http://dx.doi.org/10.2147/HIV.S20993] [PMID: 22347806]
[59]
Hightower, K.E.; Wang, R.; Deanda, F.; Johns, B.A.; Weaver, K.; Shen, Y.; Tomberlin, G.H.; Carter, H.L., III; Broderick, T.; Sigethy, S.; Seki, T.; Kobayashi, M.; Underwood, M.R. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob. Agents Chemother., 2011, 55(10), 4552-4559.
[http://dx.doi.org/10.1128/AAC.00157-11] [PMID: 21807982]
[60]
Kobayashi, M.; Yoshinaga, T.; Seki, T.; Wakasa-Morimoto, C.; Brown, K.W.; Ferris, R.; Foster, S.A.; Hazen, R.J.; Miki, S.; Suyama-Kagitani, A.; Kawauchi-Miki, S.; Taishi, T.; Kawasuji, T.; Johns, B.A.; Underwood, M.R.; Garvey, E.P.; Sato, A.; Fujiwara, T. In vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob. Agents Chemother., 2011, 55(2), 813-821.
[http://dx.doi.org/10.1128/AAC.01209-10] [PMID: 21115794]
[61]
Min, S.; Song, I.; Borland, J.; Chen, S.; Lou, Y.; Fujiwara, T.; Piscitelli, S.C. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers. Antimicrob. Agents Chemother., 2010, 54(1), 254-258.
[http://dx.doi.org/10.1128/AAC.00842-09] [PMID: 19884365]
[62]
Yoshinaga, T.; Kobayashi, M.; Seki, T.; Miki, S.; Wakasa-Morimoto, C.; Suyama-Kagitani, A.; Kawauchi-Miki, S.; Taishi, T.; Kawasuji, T.; Johns, B.A.; Underwood, M.R.; Garvey, E.P.; Sato, A.; Fujiwara, T. Antiviral characteristics of GSK1265744, an HIV integrase inhibitor dosed orally or by long-acting injection. Antimicrob. Agents Chemother., 2015, 59(1), 397-406.
[http://dx.doi.org/10.1128/AAC.03909-14] [PMID: 25367908]
[63]
Margolis, D.A.; Gonzalez-Garcia, J.; Stellbrink, H.J.; Eron, J.J.; Yazdanpanah, Y.; Podzamczer, D.; Lutz, T.; Angel, J.B.; Richmond, G.J.; Clotet, B.; Gutierrez, F.; Sloan, L.; Clair, M.S.; Murray, M.; Ford, S.L.; Mrus, J.; Patel, P.; Crauwels, H.; Griffith, S.K.; Sutton, K.C.; Dorey, D.; Smith, K.Y.; Williams, P.E.; Spreen, W.R. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, open-label, phase 2b, non-inferiority trial. Lancet, 2017, 390(10101), 1499-1510.
[http://dx.doi.org/10.1016/S0140-6736(17)31917-7] [PMID: 28750935]
[64]
Markowitz, M.; Frank, I.; Grant, R.M.; Mayer, K.H.; Elion, R.; Goldstein, D.; Fisher, C.; Sobieszczyk, M.E.; Gallant, J.E.; Van Tieu, H.; Weinberg, W.; Margolis, D.A.; Hudson, K.J.; Stancil, B.S.; Ford, S.L.; Patel, P.; Gould, E.; Rinehart, A.R.; Smith, K.Y.; Spreen, W.R. Safety and tolerability of long-acting cabotegravir injections in HIV-uninfected men (ECLAIR): a multicentre, double-blind, randomised, placebo-controlled, phase 2a trial. Lancet HIV, 2017, 4(8), e331-e340.
[http://dx.doi.org/10.1016/S2352-3018(17)30068-1] [PMID: 28546090]
[65]
Hare, S.; Gupta, S.S.; Valkov, E.; Engelman, A.; Cherepanov, P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature, 2010, 464(7286), 232-236.
[http://dx.doi.org/10.1038/nature08784] [PMID: 20118915]
[66]
Hare, S.; Smith, S.J.; Métifiot, M.; Jaxa-Chamiec, A.; Pommier, Y.; Hughes, S.H.; Cherepanov, P. Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol. Pharmacol., 2011, 80(4), 565-572.
[http://dx.doi.org/10.1124/mol.111.073189] [PMID: 21719464]
[67]
Hare, S.; Vos, A.M.; Clayton, R.F.; Thuring, J.W.; Cummings, M.D.; Cherepanov, P. Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc. Natl. Acad. Sci. USA, 2010, 107(46), 20057-20062.
[http://dx.doi.org/10.1073/pnas.1010246107] [PMID: 21030679]
[68]
De Luca, L.; Ferro, S.; Gitto, R.; Barreca, M.L.; Agnello, S.; Christ, F.; Debyser, Z.; Chimirri, A. Small molecules targeting the interaction between HIV-1 integrase and LEDGF/p75 cofactor. Bioorg. Med. Chem., 2010, 18(21), 7515-7521.
[http://dx.doi.org/10.1016/j.bmc.2010.08.051] [PMID: 20850978]
[69]
Hayouka, Z.; Rosenbluh, J.; Levin, A.; Loya, S.; Lebendiker, M.; Veprintsev, D.; Kotler, M.; Hizi, A.; Loyter, A.; Friedler, A. Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proc. Natl. Acad. Sci. USA, 2007, 104(20), 8316-8321.
[http://dx.doi.org/10.1073/pnas.0700781104] [PMID: 17488811]
[70]
Cherepanov, P.; Maertens, G.; Proost, P.; Devreese, B.; Van Beeumen, J.; Engelborghs, Y.; De Clercq, E.; Debyser, Z. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem., 2003, 278(1), 372-381.
[http://dx.doi.org/10.1074/jbc.M209278200] [PMID: 12407101]
[71]
Engelman, A.; Cherepanov, P. The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog., 2008, 4(3)e1000046
[http://dx.doi.org/10.1371/journal.ppat.1000046] [PMID: 18369482]
[72]
Llano, M.; Saenz, D.T.; Meehan, A.; Wongthida, P.; Peretz, M.; Walker, W.H.; Teo, W.; Poeschla, E.M. An essential role for LEDGF/p75 in HIV integration. Science, 2006, 314(5798), 461-464.
[http://dx.doi.org/10.1126/science.1132319] [PMID: 16959972]
[73]
Shun, M.C.; Raghavendra, N.K.; Vandegraaff, N.; Daigle, J.E.; Hughes, S.; Kellam, P.; Cherepanov, P.; Engelman, A. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev., 2007, 21(14), 1767-1778.
[http://dx.doi.org/10.1101/gad.1565107] [PMID: 17639082]
[74]
Hare, S.; Di Nunzio, F.; Labeja, A.; Wang, J.; Engelman, A.; Cherepanov, P. Structural basis for functional tetramerization of lentiviral integrase. PLoS Pathog., 2009, 5(7)e1000515
[http://dx.doi.org/10.1371/journal.ppat.1000515] [PMID: 19609359]
[75]
Cherepanov, P.; Devroe, E.; Silver, P.A.; Engelman, A. Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J. Biol. Chem., 2004, 279(47), 48883-48892.
[http://dx.doi.org/10.1074/jbc.M406307200] [PMID: 15371438]
[76]
Cherepanov, P.; Ambrosio, A.L.; Rahman, S.; Ellenberger, T.; Engelman, A. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17308-17313.
[http://dx.doi.org/10.1073/pnas.0506924102] [PMID: 16260736]
[77]
Kessl, J.J.; Li, M.; Ignatov, M.; Shkriabai, N.; Eidahl, J.O.; Feng, L.; Musier-Forsyth, K.; Craigie, R.; Kvaratskhelia, M. FRET analysis reveals distinct conformations of IN tetramers in the presence of viral DNA or LEDGF/p75. Nucleic Acids Res., 2011, 39(20), 9009-9022.
[http://dx.doi.org/10.1093/nar/gkr581] [PMID: 21771857]
[78]
De Rijck, J.; Vandekerckhove, L.; Gijsbers, R.; Hombrouck, A.; Hendrix, J.; Vercammen, J.; Engelborghs, Y.; Christ, F.; Debyser, Z. Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication. J. Virol., 2006, 80(23), 11498-11509.
[http://dx.doi.org/10.1128/JVI.00801-06] [PMID: 16987986]
[79]
Du, L.; Zhao, Y.; Chen, J.; Yang, L.; Zheng, Y.; Tang, Y.; Shen, X.; Jiang, H. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75. Biochem. Biophys. Res. Commun., 2008, 375(1), 139-144.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.139] [PMID: 18691555]
[80]
De Luca, L.; Barreca, M.L.; Ferro, S.; Christ, F.; Iraci, N.; Gitto, R.; Monforte, A.M.; Debyser, Z.; Chimirri, A. Pharmacophore-based discovery of small-molecule inhibitors of protein-protein interactions between HIV-1 integrase and cellular cofactor LEDGF/p75. ChemMedChem, 2009, 4(8), 1311-1316.
[http://dx.doi.org/10.1002/cmdc.200900070] [PMID: 19565598]
[81]
Al-Mawsawi, L.Q.; Christ, F.; Dayam, R.; Debyser, Z.; Neamati, N. Inhibitory profile of a LEDGF/p75 peptide against HIV-1 integrase: insight into integrase-DNA complex formation and catalysis. FEBS Lett., 2008, 582(10), 1425-1430.
[http://dx.doi.org/10.1016/j.febslet.2008.02.076] [PMID: 18331842]
[82]
De Luca, L.; Ferro, S.; Morreale, F.; Christ, F.; Debyser, Z.; Chimirri, A.; Gitto, R. Fragment hopping approach directed at design of HIV IN-LEDGF/p75 interaction inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 1002-1009.
[http://dx.doi.org/10.3109/14756366.2012.703184] [PMID: 22803661]
[83]
Christ, F.; Voet, A.; Marchand, A.; Nicolet, S.; Desimmie, B.A.; Marchand, D.; Bardiot, D.; Van der Veken, N.J.; Van Remoortel, B.; Strelkov, S.V.; De Maeyer, M.; Chaltin, P.; Debyser, Z. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat. Chem. Biol., 2010, 6(6), 442-448.
[http://dx.doi.org/10.1038/nchembio.370] [PMID: 20473303]
[84]
Christ, F.; Shaw, S.; Demeulemeester, J.; Desimmie, B.A.; Marchand, A.; Butler, S.; Smets, W.; Chaltin, P.; Westby, M.; Debyser, Z.; Pickford, C. Small-molecule inhibitors of the LEDGF/p75 binding site of integrase block HIV replication and modulate integrase multimerization. Antimicrob. Agents Chemother., 2012, 56(8), 4365-4374.
[http://dx.doi.org/10.1128/AAC.00717-12] [PMID: 22664975]
[85]
Fenwick, C.; Tremblay, S.; Wardrop, E.; Bethell, R.; Coulomb, R.; Elston, R.; Faucher, A.M.; Mason, S.; Simoneau, B.; Tsantrizos, Y.; Yoakim, C. Resistance studies with HIV-1 non-catalytic site integrase inhibitors. Antiviral Therapies, 2011. 16(Suppl.1).
[86]
Kessl, J.J.; Jena, N.; Koh, Y.; Taskent-Sezgin, H.; Slaughter, A.; Feng, L.; de Silva, S.; Wu, L.; Le Grice, S.F.; Engelman, A.; Fuchs, J.R.; Kvaratskhelia, M. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J. Biol. Chem., 2012, 287(20), 16801-16811.
[http://dx.doi.org/10.1074/jbc.M112.354373] [PMID: 22437836]
[87]
Fenwick, C.; Amad, M.; Bailey, M.D.; Bethell, R.; Bös, M.; Bonneau, P.; Cordingley, M.; Coulombe, R.; Duan, J.; Edwards, P.; Fader, L.D.; Faucher, A.M.; Garneau, M.; Jakalian, A.; Kawai, S.; Lamorte, L.; LaPlante, S.; Luo, L.; Mason, S.; Poupart, M.A.; Rioux, N.; Schroeder, P.; Simoneau, B.; Tremblay, S.; Tsantrizos, Y.; Witvrouw, M.; Yoakim, C. Preclinical profile of BI 224436, a novel HIV-1 non-catalytic-site integrase inhibitor. Antimicrob. Agents Chemother., 2014, 58(6), 3233-3244.
[http://dx.doi.org/10.1128/AAC.02719-13] [PMID: 24663024]
[88]
Fader, L.D.; Malenfant, E.; Parisien, M.; Carson, R.; Bilodeau, F.; Landry, S.; Pesant, M.; Brochu, C.; Morin, S.; Chabot, C.; Halmos, T.; Bousquet, Y.; Bailey, M.D.; Kawai, S.H.; Coulombe, R.; LaPlante, S.; Jakalian, A.; Bhardwaj, P.K.; Wernic, D.; Schroeder, P.; Amad, M.; Edwards, P.; Garneau, M.; Duan, J.; Cordingley, M.; Bethell, R.; Mason, S.W.; Bös, M.; Bonneau, P.; Poupart, M.A.; Faucher, A.M.; Simoneau, B.; Fenwick, C.; Yoakim, C.; Tsantrizos, Y. Discovery of BI 224436, a Noncatalytic Site Integrase Inhibitor (NCINI) of HIV-1. ACS Med. Chem. Lett., 2014, 5(4), 422-427.
[http://dx.doi.org/10.1021/ml500002n] [PMID: 24900852]
[89]
Tsiang, M.; Jones, G.S.; Niedziela-Majka, A.; Kan, E.; Lansdon, E.B.; Huang, W.; Hung, M.; Samuel, D.; Novikov, N.; Xu, Y.; Mitchell, M.; Guo, H.; Babaoglu, K.; Liu, X.; Geleziunas, R.; Sakowicz, R. New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J. Biol. Chem., 2012, 287(25), 21189-21203.
[http://dx.doi.org/10.1074/jbc.M112.347534] [PMID: 22535962]
[90]
Gupta, K.; Brady, T.; Dyer, B.M.; Malani, N.; Hwang, Y.; Male, F.; Nolte, R.T.; Wang, L.; Velthuisen, E.; Jeffrey, J.; Van Duyne, G.D.; Bushman, F.D. Allosteric inhibition of human immunodeficiency virus integrase: late block during viral replication and abnormal multimerization involving specific protein domains. J. Biol. Chem., 2014, 289(30), 20477-20488.
[http://dx.doi.org/10.1074/jbc.M114.551119] [PMID: 24904063]
[91]
Gupta, K.; Turkki, V.; Sherrill-Mix, S.; Hwang, Y.; Eilers, G.; Taylor, L.; McDanal, C.; Wang, P.; Temelkoff, D.; Nolte, R.T.; Velthuisen, E.; Jeffrey, J.; Van Duyne, G.D.; Bushman, F.D. Structural basis for inhibitor-induced aggregation of HIV integrase. PLoS Biol., 2016, 14(12)e1002584
[http://dx.doi.org/10.1371/journal.pbio.1002584] [PMID: 27935939]
[92]
Le Rouzic, E.; Bonnard, D.; Chasset, S.; Bruneau, J-M.; Chevreuil, F.; Le Strat, F.; Nguyen, J.; Beauvoir, R.; Amadori, C.; Brias, J.; Vomscheid, S.; Eiler, S.; Lévy, N.; Delelis, O.; Deprez, E.; Saïb, A.; Zamborlini, A.; Emiliani, S.; Ruff, M.; Ledoussal, B.; Moreau, F.; Benarous, R. Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Retrovirology, 2013, 10, 144-144.
[http://dx.doi.org/10.1186/1742-4690-10-144] [PMID: 24261564]
[93]
Sharma, A.; Slaughter, A.; Jena, N.; Feng, L.; Kessl, J.J.; Fadel, H.J.; Malani, N.; Male, F.; Wu, L.; Poeschla, E.; Bushman, F.D.; Fuchs, J.R.; Kvaratskhelia, M. A new class of multimerization selective inhibitors of HIV-1 integrase. PLoS Pathog., 2014, 10(5)e1004171
[http://dx.doi.org/10.1371/journal.ppat.1004171] [PMID: 24874515]
[94]
Patel, P.A.; Kvaratskhelia, N.; Mansour, Y.; Antwi, J.; Feng, L.; Koneru, P.; Kobe, M.J.; Jena, N.; Shi, G.; Mohamed, M.S.; Li, C.; Kessl, J.J.; Fuchs, J.R. Indole-based allosteric inhibitors of HIV-1 integrase. Bioorg. Med. Chem. Lett., 2016, 26(19), 4748-4752.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.037] [PMID: 27568085]
[95]
De Luca, L.; De Grazia, S.; Ferro, S.; Gitto, R.; Christ, F.; Debyser, Z.; Chimirri, A. HIV-1 integrase strand-transfer inhibitors: design, synthesis and molecular modeling investigation. Eur. J. Med. Chem., 2011, 46(2), 756-764.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.012] [PMID: 21227550]
[96]
De Luca, L.; Gitto, R.; Christ, F.; Ferro, S.; De Grazia, S.; Morreale, F.; Debyser, Z.; Chimirri, A. 4-[1-(4-Fluorobenzyl)-4-hydroxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid as a prototype to develop dual inhibitors of HIV-1 integration process. Antiviral Res., 2011, 92(1), 102-107.
[http://dx.doi.org/10.1016/j.antiviral.2011.07.005] [PMID: 21767569]
[97]
Schrijvers, R.; De Rijck, J.; Demeulemeester, J.; Adachi, N.; Vets, S.; Ronen, K.; Christ, F.; Bushman, F.D.; Debyser, Z.; Gijsbers, R. LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog., 2012, 8(3)e1002558
[http://dx.doi.org/10.1371/journal.ppat.1002558] [PMID: 22396646]
[98]
Wang, H.; Jurado, K.A.; Wu, X.; Shun, M.C.; Li, X.; Ferris, A.L.; Smith, S.J.; Patel, P.A.; Fuchs, J.R.; Cherepanov, P.; Kvaratskhelia, M.; Hughes, S.H.; Engelman, A. HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor. Nucleic Acids Res., 2012, 40(22), 11518-11530.
[http://dx.doi.org/10.1093/nar/gks913] [PMID: 23042676]
[99]
Buchan, D.W.; Minneci, F.; Nugent, T.C.; Bryson, K.; Jones, D.T. Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res., 2013, 41W349-357
[http://dx.doi.org/10.1093/nar/gkt381]
[100]
Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5(4), 725-738.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[101]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[102]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[103]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[104]
Jiao, Z.G.; He, H.Q.; Zeng, C.C.; Tan, J.J.; Hu, L.M.; Wang, C.X. Design, synthesis and anti-HIV integrase evaluation of N-(5-chloro-8-hydroxy-2-styrylquinolin-7-yl)benzenesulfonamide derivatives. Molecules, 2010, 15(3), 1903-1917.
[http://dx.doi.org/10.3390/molecules15031903] [PMID: 20336021]
[105]
Humphrey, G.R.; Pye, P.J.; Zhong, Y-L.; Angelaud, R.; Askin, D.; Belyk, K.M.; Meligres, P.E.; Mancheno, D.E.; Miller, R.A.; Reamer, R.A.; Weissman, S.A. Development of a second-generation, highly efficient manufacturing route for the HIV integrase inhibitor Raltegravir potassium. Org. Process Res. Dev., 2011, 15(1), 73-83.
[http://dx.doi.org/10.1021/op100257r]
[106]
Brown, B.H.; Carra, E.A.; Wang, Y. Solid state forms of HIV inhibitor: hemi-succinate of (2S)-2-tert-butoxy-2-(4- (2,3-dihydropyrano[4,3,2-de]quinolin-7-yl)-2- methylquinolin-3-yl)acetic acid. WO Patent 2014055618, April 10, 2014.
[107]
De La Rosa, M.A.; Haydar, S.; Johns, B.A.; Velthuisen, E.J. Isoquinoline compounds and methods for treating HIV.WO Patent 2012102985, August 2, 2012.