Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends Towards Future Drugs

Page: [2389 - 2406] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: Cancer continues to be a global burden, despite the advancement of various technological and pharmaceutical improvements over the past two decades. Methods for treating cancer include surgery, radiotherapy and chemotherapy in addition to other specialized techniques. On the other hand, medicinal plants have been traditionally employed either as the complementary medicine or dietary agents in the treatment and management of cancer. Medicinal plants are a rich source of secondary metabolites with interesting biological and pharmacological activities. Among these metabolites, glycosides are naturally occurring substances and have outstanding therapeutic potential and clinical utility.

Methods: Different medical research engines such as, GoogleScholar, PubMed, SpringerLink, ScienceDirect were used to collect related literature on the subject matter. In this regard, only peer-reviewed journals were considered.

Results: Emerging results showed that numerous glycosides isolated from various plants possessed marked anticancer activity against a variety of cancer cell lines. Accordingly, the aim of the present review is to shed light on the anticancer effects of glycosides, analyze possible mechanisms of action, and highlight the role of these natural agents as complementary and alternative medicine in combating and managing cancer.

Conclusion: The glycosides isolated from different plants demonstrated potent cytotoxic effects against various cancer cell lines in initial preclinical studies. The anticancer effect was mediated through multiple mechanisms; however further detailed studies are needed to understand the full potential of glycosides for clinical utility.

Keywords: Anticancer agents, glycosides, medicinal plants, derivatives, safety parameter, drugs of future.

[1]
[2]
Surya, S.P.; Jayanthi, G.; Smitha, K.R. In vitro evaluation of the anticancer effect of methanolic extract of Alstonia scholaris leaves on mammary carcinoma. J. Appl. Pharm. Sci., 2012, 2(5), 142-149.
[3]
D’Incalci, M.; Galmarini, C.M. A review of trabectedin (ET-743): A unique mechanism of action. Mol. Cancer Ther., 2010, 9(8), 2157-2163. [http://dx.doi.org/10.1158/1535-7163.MCT-10-0263]. [PMID: 20647340].
[4]
Patil, A.; Vadera, K.; Patil, D.; Phatak, A.; Juvekar, A.; Chandra, N. In vitro anticancer activity of Argemone mexicana L. seeds and Alstonia scholaris (l.) R. Br. bark on different human cancer cell lines. World J. Pharm. Pharm. Sci., 2014, 3(11), 706-722.
[5]
Jeremić, M.; Pešić, M.; Dinić, J.; Banković, J.; Novaković, I.; Šegan, D.; Sladić, D. Simple avarone mimetics as selective agents against multidrug resistant cancer cells. Eur. J. Med. Chem., 2016, 118, 107-120. [http://dx.doi.org/10.1016/j.ejmech.2016.04.011]. [PMID: 27128177].
[6]
Doroshow, J.H. Overcoming resistance to targeted anticancer drugs. N. Engl. J. Med., 2013, 369(19), 1852-1853. [http://dx.doi.org/10.1056/NEJMe1311325]. [PMID: 24180495].
[7]
Jagetia, G.C.; Baliga, M.S.; Venkatesh, P. Effect of Sapthaparna (Alstonia scholaris Linn) in modulating the benzo(a)pyrene-induced forestomach carcinogenesis in mice. Toxicol. Lett., 2003, 144(2), 183-193. [http://dx.doi.org/10.1016/S0378-4274(03)00205-4]. [PMID: 12927362].
[8]
Khattak, S.; Khan, H. Anti-cancer potential of phyto-alkaloids: A prospective review. Curr. Cancer Ther. Rev., 2016, 12(1), 66-75. [http://dx.doi.org/10.2174/1573394712666160617081638].
[9]
Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J-M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; Arslan, Ö.; Sanz, M.A.; Bergeron, J.; Demirkan, F.; Lech-Maranda, E.; Rambaldi, A.; Thomas, X.; Horst, H-A.; Brüggemann, M.; Klapper, W.; Wood, B.L.; Fleishman, A.; Nagorsen, D.; Holland, C.; Zimmerman, Z.; Topp, M.S. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med., 2017, 376(9), 836-847. [http://dx.doi.org/10.1056/NEJMoa1609783]. [PMID: 28249141].
[10]
Khan, H. Medicinal plants need biological screening: A future treasure as therapeutic agents. Biol. Med. (Aligarh), 2014, 6e110. [http://dx.doi.org/10.4172/0974-8369.1000e110]
[11]
Save, S.A.; Lonkhande, R.S.; Chowdhary, A.S. Thevetia peruviana: The good luck tree. Innov. Pharm. Pharmacother., 2015, 3(3), 586-606.
[12]
Khan, H. Medicinal plants in light of history recognized therapeutic modality. J. Evid. Based Complementary Altern. Med., 2014, 19(3), 216-219. [http://dx.doi.org/10.1177/2156587214533346]. [PMID: 24789912].
[13]
Aboul-enein, A.M. Adu el-ela, F.; Shalaby, E.; El-shemy, H. Potent anticancer and antioxidant activities of active ingredients separated from Solanum nigrum and Cassia italica Extracts. J. Afrid Land Studies, 2014, 24(1), 145-152.
[14]
Bohé, L.; Crich, D. 6.01 Synthesis of Glycosides A2 - Knochel, Paul, 2nd ed; Comprehensive Organic Synthesis II, , 2014; pp. 1-33.
[15]
Khattak, S.; Khan, H. Phyto-glycosides as therapeutic target in the treatment of diabetes. Mini Rev. Med. Chem., 2018, 18(3), 208-215. [http://dx.doi.org/10.2174/1389557516666160909112751]. [PMID: 27629995].
[16]
Lindhorst, T.K. Essentials of Carbohydrate Chemistry and Biochemistry, 3rd ed; Wiley-VCH Weinheim, 2007.
[17]
Zahid, N.I.; Conn, C.E.; Brooks, N.J.; Ahmad, N.; Seddon, J.M.; Hashim, R. Investigation of the effect of sugar stereochemistry on biologically relevant lyotropic phases from branched-chain synthetic glycolipids by small-angle X-ray scattering. Langmuir, 2013, 29(51), 15794-15804. [http://dx.doi.org/10.1021/la4040134]. [PMID: 24274824].
[18]
Rathore, H.; From, A.H.; Ahmed, K.; Fullerton, D.S. Cardiac glycosides. 7. Sugar stereochemistry and cardiac glycoside activity. J. Med. Chem., 1986, 29(10), 1945-1952. [http://dx.doi.org/10.1021/jm00160a025]. [PMID: 3020248].
[19]
Schneider, N.F.Z.; Cerella, C.; Simões, C.M.O.; Diederich, M. Anticancer and immunogenic properties of cardiac glycosides. Molecules, 2017, 22(11), 1932. [http://dx.doi.org/10.3390/molecules22111932]. [PMID: 29117117].
[20]
Langenhan, J.M.; Peters, N.R.; Guzei, I.A.; Hoffmann, F.M.; Thorson, J.S. Enhancing the anticancer properties of cardiac glycosides by neoglycorandomization. Proc. Natl. Acad. Sci. USA, 2005, 102(35), 12305-12310. [http://dx.doi.org/10.1073/pnas.0503270102]. [PMID: 16105948].
[21]
Park, E-H.; Kim, Y-J.; Yamabe, N.; Park, S-H.; Kim, H-K.; Jang, H-J.; Kim, J.H.; Cheon, G.J.; Ham, J.; Kang, K.S. Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell. J. Ginseng Res., 2014, 38(1), 22-27. [http://dx.doi.org/10.1016/j.jgr.2013.11.007]. [PMID: 24558306].
[22]
Jeong, S.M.; Lee, J-H.; Kim, J-H.; Lee, B-H.; Yoon, I-S.; Lee, J-H.; Kim, D-H.; Rhim, H.; Kim, Y.; Nah, S-Y. Stereospecificity of ginsenoside Rg3 action on ion channels. Mol. Cells, 2004, 18(3), 383-389. [PMID: 15650337].
[23]
Bustos-Brito, C.; Sánchez-Castellanos, M.; Esquivel, B.; Calderón, J.S.; Calzada, F.; Yépez-Mulia, L.; Joseph-Nathan, P.; Cuevas, G.; Quijano, L. ent-Kaurene Glycosides from Ageratina cylindrica. J. Nat. Prod., 2015, 78(11), 2580-2587. [http://dx.doi.org/10.1021/acs.jnatprod.5b00488]. [PMID: 26517282].
[24]
Okoye, F.B.C.; Sawadogo, W.R.; Sendker, J.; Aly, A.H.; Quandt, B.; Wray, V.; Hensel, A.; Esimone, C.O.; Debbab, A.; Diederich, M.; Proksch, P. Flavonoid glycosides from Olax mannii: Structure elucidation and effect on the nuclear factor kappa B pathway. J. Ethnopharmacol., 2015, 176, 27-34.
[25]
Kereru, P.G.; Keriko, J.M.; Gachanja, A.N.; Keni, G.M. Direct detection of triterpinoids saponin in medicinal plant. Afr. J. Trad. Compliment. Altern. Med., 2008, 5(1), 56-60.
[26]
Pan, L-L.; Fang, P-L.; Zhang, X-J.; Ni, W.; Li, L.; Yang, L-M.; Chen, C-X.; Zheng, Y-T.; Li, C-T.; Hao, X-J.; Liu, H-Y. Tigliane-type diterpenoid glycosides from Euphorbia fischeriana. J. Nat. Prod., 2011, 74(6), 1508-1512. [http://dx.doi.org/10.1021/np200058c]. [PMID: 21534540].
[27]
Mshvildadze, V.; Legault, J.; Lavoie, S.; Gauthier, C.; Pichette, A. Anticancer diarylheptanoid glycosides from the inner bark of Betula papyrifera. Phytochemistry, 2007, 68(20), 2531-2536. [http://dx.doi.org/10.1016/j.phytochem.2007.05.018]. [PMID: 17599372].
[28]
Gan, Y.J.; Mei, W.L.; Zhao, Y.X.; Dai, H.F. A new cytotoxic cardenolide from the latex of Antiaris toxicaria. Chin. Chem. Lett., 2009, 20(4), 450-452. [http://dx.doi.org/10.1016/j.cclet.2008.12.043].
[29]
Sun, L.; Zhao, Y.; Yuan, H.; Li, X.; Cheng, A.; Lou, H. Solamargine, a steroidal alkaloid glycoside, induces oncosis in human K562 leukemia and squamous cell carcinoma KB cells. Cancer Chemother. Pharmacol., 2011, 67(4), 813-821. [http://dx.doi.org/10.1007/s00280-010-1387-9]. [PMID: 20563579].
[30]
Liu, Q.; Tang, J-S.; Hu, M-J.; Liu, J.; Chen, H-F.; Gao, H.; Wang, G-H.; Li, S-L.; Hao, X-J.; Zhang, X-K.; Yao, X.S. Antiproliferative cardiac glycosides from the latex of Antiaris toxicaria. J. Nat. Prod., 2013, 76(9), 1771-1780. [http://dx.doi.org/10.1021/np4005147]. [PMID: 24033101].
[31]
Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as cytotoxic agents: A review. Phytochem. Rev., 2010, 9(3), 425-474. [http://dx.doi.org/10.1007/s11101-010-9183-z]. [PMID: 20835386].
[32]
Sun, J.; Lou, H.; Dai, S.; Xu, H.; Zhao, F.; Liu, K. Indole alkoloids from Nauclea officinalis with weak antimalarial activity. Phytochemistry, 2008, 69(6), 1405-1410. [http://dx.doi.org/10.1016/j.phytochem.2008.01.008]. [PMID: 18328515].
[33]
El-Seedi, H.R.; Burman, R.; Mansour, A.; Turki, Z.; Boulos, L.; Gullbo, J.; Göransson, U. The traditional medical uses and cytotoxic activities of sixty-one Egyptian plants: discovery of an active cardiac glycoside from Urginea maritima. J. Ethnopharmacol., 2013, 145(3), 746-757. [http://dx.doi.org/10.1016/j.jep.2012.12.007]. [PMID: 23228916].
[34]
Xue, R.; Han, N.; Ye, C.; Wang, L.; Yang, J.; Wang, Y.; Yin, J. The cytotoxic activities of cardiac glycosides from Streptocaulon juventas and the structure-activity relationships. Fitoterapia, 2014, 98, 228-233. [http://dx.doi.org/10.1016/j.fitote.2014.08.008]. [PMID: 25128424].
[35]
Zhang, J.; Kurita, M.; Shinozaki, T.; Ukiya, M.; Yasukawa, K.; Shimizu, N.; Tokuda, H.; Masters, E.T.; Akihisa, M.; Akihisa, T. Triterpene glycosides and other polar constituents of shea (Vitellaria paradoxa) kernels and their bioactivities. Phytochemistry, 2014, 108, 157-170. [http://dx.doi.org/10.1016/j.phytochem.2014.09.017]. [PMID: 25446237].
[36]
Zhong, R.; Guo, Q.; Zhou, G.; Fu, H.; Wan, K. Three new labdane-type diterpene glycosides from fruits of Rubus chingii and their cytotoxic activities against five humor cell lines. Fitoterapia, 2015, 102, 23-26. [http://dx.doi.org/10.1016/j.fitote.2015.01.007]. [PMID: 25598186].
[37]
Li, Y-W.; Qi, J.; Zhang, Y-Y.; Huang, Z.; Kou, J-P.; Zhou, S-P.; Zhang, Y.; Yu, B-Y. Novel cytotoxic steroidal glycosides from the roots of Liriope muscari. Chin. J. Nat. Med., 2015, 13(6), 461-466. [http://dx.doi.org/10.1016/S1875-5364(15)30040-6]. [PMID: 26073343].
[38]
Raees, M.A.; Hussain, H.; Rehman, N.U.; Khan, H.Y.; Abbas, G.; Al-Rawahi, A.; Elyassi, A.; Al-Amri, I.S.; Green, I.R.; Al-Broumi, M.A.; Mahmood, T.; Al-Harrasi, A. Desmiflavasides A and B: Two new bioactive pregnane glycosides from the sap of Desmidorchis flava. Phytochem. Lett., 2015, 12, 153-157. [http://dx.doi.org/10.1016/j.phytol.2015.03.013].
[39]
Fan, B-Y.; Li, Z-R.; Ma, T.; Gu, Y-C.; Zhao, H-J.; Luo, J-G.; Kong, L-Y. Further screening of the resin glycosides in the edible water spinach and characterisation on their mechanism of anticancer potential. J. Funct. Foods, 2015, 19, 141-154. [http://dx.doi.org/10.1016/j.jff.2015.09.027].
[40]
Jia, S.; Liu, X.; Dai, R.; Meng, W.; Chen, Y.; Deng, Y.; Lv, F. Six new polyhydroxy steroidal glycosides from Dregea sinensis Hemsl. Phytochem. Lett., 2015, 11, 209-214. [http://dx.doi.org/10.1016/j.phytol.2014.12.016].
[41]
Xue, R.; Han, N.; Xia, M.; Ye, C.; Hao, Z.; Wang, L.; Wang, Y.; Yang, J.; Saiki, I.; Yin, J. TXA9, a cardiac glycoside from Streptocaulon juventas, exerts a potent anti-tumor activity against human non-small cell lung cancer cells in vitro and in vivo. Steroids, 2015, 94, 51-59. [http://dx.doi.org/10.1016/j.steroids.2014.12.015]. [PMID: 25555472].
[42]
Rascón-Valenzuela, L.; Velázquez, C.; Garibay-Escobar, A.; Medina-Juárez, L.A.; Vilegas, W.; Robles-Zepeda, R.E. Antiproliferative activity of cardenolide glycosides from Asclepias subulata. J. Ethnopharmacol., 2015, 171, 280-286. [http://dx.doi.org/10.1016/j.jep.2015.05.057]. [PMID: 26068432].
[43]
Park, S.; Nhiem, N.X.; Lee, T.H.; Kim, N.; Kim, S.Y.; Chae, H-J.; Kim, S.H. Isolation of two new bioactive sesquiterpene lactone glycosides from the roots of Ixeris dentata. Bioorg. Med. Chem. Lett., 2015, 25(20), 4562-4566. [http://dx.doi.org/10.1016/j.bmcl.2015.08.061]. [PMID: 26341134].
[44]
Zheng, J-Y.; Wang, Q.; Iu, L. Z.X.; Liu, C.X.; Guo, Z.Y.; Zhang, H.Q.; He, H.B.; Tu, X.; Zou, K. Two new steroidal glycosides with unique structural feature of 14α-hydroxy-5β-steroids from Reineckia carnea. Fitoterapia, 2016, 115, 19-23. [http://dx.doi.org/10.1016/j.fitote.2016.09.014]. [PMID: 27693739].
[45]
Xue, Z.; Yan, R.; Yang, B. Phenylethanoid glycosides and phenolic glycosides from stem bark of Magnolia officinalis. Phytochemistry, 2016, 127, 50-62. [http://dx.doi.org/10.1016/j.phytochem.2016.03.011]. [PMID: 27086163].
[46]
Raees, M.A.; Hussain, H.; Al-Rawahi, A.; Csuk, R.; Muhammad, S.A.; Khan, H.Y.; Rehman, N.U.; Abbas, G.; Al-Broumi, M.A.; Green, I.R.; Elyassi, A.; Mahmood, T.; Al-Harrasi, A. Anti-proliferative and computational studies of two new pregnane glycosides from Desmidorchis flava. Bioorg. Chem., 2016, 67, 95-104. [http://dx.doi.org/10.1016/j.bioorg.2016.05.008]. [PMID: 27299811].
[47]
Shah, Z.A.; Hameed, A.; Ahmed, A.; Simjee, S.U.; Jabeen, A.; Ullah, A.; Shaheen, F. Cytotoxic and anti-inflammatory salicin glycosides from leaves of Salix acmophylla. Phytochem. Lett., 2016, 17, 107-113. [http://dx.doi.org/10.1016/j.phytol.2016.07.013].
[48]
Verma, A.; Ahmed, B.; Anwar, F.; Rahman, M.; Patel, D.K.; Kaithwas, G.; Rani, R.; Bhatt, P.C.; Kumar, V. Novel glycoside from Wedelia calendulacea inhibits diethyl nitrosamine-induced renal cancer via downregulating the COX-2 and PEG2 through nuclear factor-κB pathway. Inflammopharmacology, 2017, 25(1), 159-175. [http://dx.doi.org/10.1007/s10787-017-0310-y]. [PMID: 28155120].
[49]
Shahzad, N.; Khan, W.; Md, S.; Ali, A.; Saluja, S.S.; Sharma, S.; Al-Allaf, F.A.; Abduljaleel, Z.; Ibrahim, I.A.A.; Abdel-Wahab, A.F.; Afify, M.A.; Al-Ghamdi, S.S. Phytosterols as a natural anticancer agent: Current status and future perspective. Biomed. Pharmacother., 2017, 88, 786-794. [http://dx.doi.org/10.1016/j.biopha.2017.01.068]. [PMID: 28157655].
[50]
Guo, L.; Lv, G.; Qiu, L.; Yang, H.; Zhang, L.; Yu, H.; Zou, M.; Lin, J. Insights into anticancer activity and mechanism of action of a ruthenium(II) complex in human esophageal squamous carcinoma EC109 cells. Eur. J. Pharmacol., 2016, 786, 60-71. [http://dx.doi.org/10.1016/j.ejphar.2016.05.042]. [PMID: 27262377].
[51]
Lei, Y.; Zhang, D.; Yu, J.; Dong, H.; Zhang, J.; Yang, S. Targeting autophagy in cancer stem cells as an anticancer therapy. Cancer Lett., 2017, 393, 33-39. [http://dx.doi.org/10.1016/j.canlet.2017.02.012]. [PMID: 28216370].
[52]
Cerella, C.; Dicato, M.; Diederich, M. Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion, 2013, 13(3), 225-234. [http://dx.doi.org/10.1016/j.mito.2012.06.003]. [PMID: 22735572].
[53]
Cham, B.E. Drug therapy: Solamargine and other solasodine rhamnosyl glycosides as anticancer agents. Modern Chemother., 2013, 2(2), 33-49. [http://dx.doi.org/10.4236/mc.2013.22005].
[54]
Allan, G.; Ouadid-Ahidouch, H.; Sanchez-Fernandez, E.M.; Risquez-Cuadro, R.; Fernandez, J.M.G.; Ortiz-Mellet, C.; Ahidouch, A. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells. PLoS One, 2013, 8(10)e76411 [http://dx.doi.org/10.1371/journal.pone.0076411]. [PMID: 24124558].
[55]
Patel, S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed. Pharmacother., 2016, 84, 1036-1041. [http://dx.doi.org/10.1016/j.biopha.2016.10.030]. [PMID: 27780131].
[56]
Song, Z.; Xu, X. Advanced research on anti-tumor effects of amygdalin. J. Cancer Res. Ther., 2014, 10(Suppl. 1), 3-7. [http://dx.doi.org/10.4103/0973-1482.139743]. [PMID: 25207888].
[57]
Leu, W-J.; Chang, H-S.; Chan, S-H.; Hsu, J-L.; Yu, C-C.; Hsu, L-C.; Chen, I.S.; Guh, J-H.; Reevesioside, A. Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of G1 arrest of the cell cycle. PLoS One, 2014, 9(1)e87323 [http://dx.doi.org/10.1371/journal.pone.0087323]. [PMID: 24475272].
[58]
Rascón Valenzuela, L.A.; Jiménez Estrada, M.; Velázquez Contreras, C.A.; Garibay Escobar, A.; Medina Juárez, L.A.; Gámez Meza, N.; Robles Zepeda, R.E. Antiproliferative and apoptotic activities of extracts of Asclepias subulata. Pharm. Biol., 2015, 53(12), 1741-1751. [http://dx.doi.org/10.3109/13880209.2015.1005752]. [PMID: 25853961].
[59]
Rascón-Valenzuela, L.A.; Velázquez, C.; Garibay-Escobar, A.; Vilegas, W.; Medina-Juárez, L.A.; Gámez-Meza, N.; Robles-Zepeda, R.E. Apoptotic activities of cardenolide glycosides from Asclepias subulata. J. Ethnopharmacol., 2016, 193, 303-311. [http://dx.doi.org/10.1016/j.jep.2016.08.022]. [PMID: 27545974].
[60]
Fan, B-Y.; Li, Z-R.; Ma, T.; Gu, Y-C.; Zhao, H-J.; Luo, J-G.; Kong, L-Y. Further screening of the resin glycosides in the edible water spinach and characterisation on their mechanism of anticancer potential. J. Funct. Foods, 2015, 19, 141-154. [http://dx.doi.org/10.1016/j.jff.2015.09.027].
[61]
Aminin, D.L.; Menchinskaya, E.S.; Pisliagin, E.A.; Silchenko, A.S.; Avilov, S.A.; Kalinin, V.I. Anticancer activity of sea cucumber triterpene glycosides. Mar. Drugs, 2015, 13(3), 1202-1223. [http://dx.doi.org/10.3390/md13031202]. [PMID: 25756523].
[62]
Okoye, F.B.; Sawadogo, W.R.; Sendker, J.; Aly, A.H.; Quandt, B.; Wray, V.; Hensel, A.; Esimone, C.O.; Debbab, A.; Diederich, M.; Proksch, P. Flavonoid glycosides from Olax mannii: Structure elucidation and effect on the nuclear factor kappa B pathway. J. Ethnopharmacol., 2015, 176, 27-34. [http://dx.doi.org/10.1016/j.jep.2015.10.019]. [PMID: 26475120].
[63]
Polkowski, K.; Popiołkiewicz, J.; Krzeczyński, P.; Ramza, J.; Pucko, W.; Zegrocka-Stendel, O.; Boryski, J.; Skierski, J.S.; Mazurek, A.P.; Grynkiewicz, G. Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Lett., 2004, 203(1), 59-69. [http://dx.doi.org/10.1016/j.canlet.2003.08.023]. [PMID: 14670618].
[64]
Lamartiniere, C.A. Protection against breast cancer with genistein: A component of soy. Am. J. Clin. Nutr., 2000, 71(6)(Suppl.), 1705S-1707S. [http://dx.doi.org/10.1093/ajcn/71.6.1705S]. [PMID: 10837323].
[65]
Messina, M.J.; Persky, V.; Setchell, K.D.; Barnes, S. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr. Cancer, 1994, 21(2), 113-131. [http://dx.doi.org/10.1080/01635589409514310]. [PMID: 8058523].
[66]
Morabito, N.; Crisafulli, A.; Vergara, C.; Gaudio, A.; Lasco, A.; Frisina, N.; D’Anna, R.; Corrado, F.; Pizzoleo, M.A.; Cincotta, M.; Altavilla, D.; Ientile, R.; Squadrito, F. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: A randomized double-blind placebo-controlled study. J. Bone Miner. Res., 2002, 17(10), 1904-1912. [http://dx.doi.org/10.1359/jbmr.2002.17.10.1904]. [PMID: 12369794].
[67]
Squadrito, F.; Altavilla, D.; Morabito, N.; Crisafulli, A.; D’Anna, R.; Corrado, F.; Ruggeri, P.; Campo, G.M.; Calapai, G.; Caputi, A.P.; Squadrito, G. The effect of the phytoestrogen genistein on plasma nitric oxide concentrations, endothelin-1 levels and endothelium dependent vasodilation in postmenopausal women. Atherosclerosis, 2002, 163(2), 339-347. [http://dx.doi.org/10.1016/S0021-9150(02)00013-8]. [PMID: 12052481].
[68]
Popiołkiewicz, J.; Polkowski, K.; Skierski, J.S.; Mazurek, A.P. In vitro toxicity evaluation in the development of new anticancer drugs-genistein glycosides. Cancer Lett., 2005, 229(1), 67-75. [http://dx.doi.org/10.1016/j.canlet.2005.01.014]. [PMID: 16157220].
[69]
Iyer, A.K.; Zhou, M.; Azad, N.; Elbaz, H.; Wang, L.; Rogalsky, D.K.; Rojanasakul, Y.; O’Doherty, G.A.; Langenhan, J.M. A direct comparison of the anticancer activities of digitoxin MeON-neoglycosides and O-Glycosides: Oligosaccharide chain length-dependent induction of caspase-9-mediated apoptosis. ACS Med. Chem. Lett., 2010, 1(7), 326-330. [http://dx.doi.org/10.1021/ml1000933]. [PMID: 21103068].
[70]
Nandurkar, N.S.; Zhang, J.; Ye, Q.; Ponomareva, L.V.; She, Q.B.; Thorson, J.S. The identification of perillyl alcohol glycosides with improved antiproliferative activity. J. Med. Chem., 2014, 57(17), 7478-7484. [http://dx.doi.org/10.1021/jm500870u]. [PMID: 25121720].
[71]
Bkhaitan, M.M.; Mirza, A.Z.; Shamshad, H.; Ali, H.I. Identification of potent virtual leads and ADME prediction of isoxazolidine podophyllotoxin derivatives as topoisomerase II and tubulin inhibitors. J. Mol. Graph. Model., 2017, 73, 74-93. [http://dx.doi.org/10.1016/j.jmgm.2017.01.015]. [PMID: 28242581].
[72]
Chen, C.; Yu, Y.; Wang, X.; Shi, P.; Wang, Y.; Wang, P. Manipulation of pH-Sensitive interactions between podophyllotoxin-chitosan for enhanced controlled drug release. Int. J. Biol. Macromol., 2017, 95, 451-461. [http://dx.doi.org/10.1016/j.ijbiomac.2016.11.053]. [PMID: 27867056].
[73]
Zhang, L.; Liu, L.; Zheng, C.; Wang, Y.; Nie, X.; Shi, D.; Chen, Y.; Wei, G.; Wang, J. Synthesis and biological evaluation of novel podophyllotoxin-NSAIDs conjugates as multifunctional anti-MDR agents against resistant human hepatocellular carcinoma Bel-7402/5-FU cells. Eur. J. Med. Chem., 2017, 131, 81-91. [http://dx.doi.org/10.1016/j.ejmech.2017.03.011]. [PMID: 28301815].
[74]
Zi, C-T.; Yang, D.; Dong, F-W.; Li, G-T.; Li, Y.; Ding, Z-T.; Zhou, J.; Jiang, Z-H.; Hu, J-M. Synthesis and antitumor activity of novel per-butyrylated glycosides of podophyllotoxin and its derivatives. Bioorg. Med. Chem., 2015, 23(7), 1437-1446. [http://dx.doi.org/10.1016/j.bmc.2015.02.021]. [PMID: 25744190].
[75]
Sun, W-X.; Ji, Y-J.; Wan, Y.; Han, H-W.; Lin, H-Y.; Lu, G-H.; Qi, J-L.; Wang, X-M.; Yang, Y-H. Design and synthesis of piperazine acetate podophyllotoxin ester derivatives targeting tubulin depolymerization as new anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(17), 4066-4074. [http://dx.doi.org/10.1016/j.bmcl.2017.07.047]. [PMID: 28757065].
[76]
Zhang, X.; Rakesh, K.P.; Shantharam, C.S.; Manukumar, H.M.; Asiri, A.M.; Marwani, H.M.; Qin, H-L. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg. Med. Chem., 2018, 26(2), 340-355. [http://dx.doi.org/10.1016/j.bmc.2017.11.026]. [PMID: 29269253].
[77]
Khan, N.; Sharma, S.; Sultana, S. Amelioration of ferric nitrilotriacetate (Fe-NTA) induced renal oxidative stress and tumor promotion response by coumarin (1,2-benzopyrone) in Wistar rats. Cancer Lett., 2004, 210(1), 17-26. [http://dx.doi.org/10.1016/j.canlet.2004.01.011]. [PMID: 15172116].
[78]
Verma, A.; Bhatt, P.C.; Kaithwas, G.; Sethi, N.; Rashid, M.; Singh, Y.; Rahman, M.; Al-Abbasi, F.; Anwar, F.; Kumar, V. Chemomodulatory effect Melastoma Malabathricum Linn against chemically induced renal carcinogenesis rats via attenuation of inflammation, oxidative stress, and early markers of tumor expansion. Inflammopharmacology, 2016, 24(5), 233-251. [http://dx.doi.org/10.1007/s10787-016-0276-1]. [PMID: 27628241].
[79]
Sablina, A.A.; Budanov, A.V.; Ilyinskaya, G.V.; Agapova, L.S.; Kravchenko, J.E.; Chumakov, P.M. The antioxidant function of the p53 tumor suppressor. Nat. Med., 2005, 11(12), 1306-1313. [http://dx.doi.org/10.1038/nm1320]. [PMID: 16286925].
[80]
Maran, J.P.; Priya, B.; Manikandan, S. Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp. J. Food Sci. Technol., 2014, 51(9), 1938-1946. [http://dx.doi.org/10.1007/s13197-013-1237-y]. [PMID: 25190849].
[81]
Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Pressurized hot water extraction (PHWE). J. Chromatogr. A, 2010, 1217(16), 2484-2494. [http://dx.doi.org/10.1016/j.chroma.2009.12.050]. [PMID: 20060531].
[82]
Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. Trends Analyt. Chem., 2015, 71, 39-54. [http://dx.doi.org/10.1016/j.trac.2015.02.022].
[83]
Liau, B-C.; Ponnusamy, V.K.; Lee, M-R.; Jong, T-T.; Chen, J-H. Development of pressurized hot water extraction for five flavonoid glycosides from defatted Camellia oleifera seeds (byproducts). Ind. Crops Prod., 2017, 95, 296-304. [http://dx.doi.org/10.1016/j.indcrop.2016.10.034].
[84]
Muilenburg, V.L.; Phelan, P.L.; Bonello, P.; Herms, D.A. Inter- and intra-specific variation in stem phloem phenolics of paper birch (Betula papyrifera) and European white birch (Betula pendula). J. Chem. Ecol., 2011, 37(11), 1193-1202. [http://dx.doi.org/10.1007/s10886-011-0028-z]. [PMID: 22012323].
[85]
Sun, X.; Huo, X.; Luo, T.; Li, M.; Yin, Y.; Jiang, Y. The anticancer flavonoid chrysin induces the unfolded protein response in hepatoma cells. J. Cell. Mol. Med., 2011, 15(11), 2389-2398. [http://dx.doi.org/10.1111/j.1582-4934.2010.01244.x]. [PMID: 21199322].
[86]
Lin, C-N.; Lu, C-M.; Cheng, M-K.; Gan, K-H.; Won, S-J. The cytotoxic principles of Solanum incanum. J. Nat. Prod., 1990, 53(2), 513-516. [http://dx.doi.org/10.1021/np50068a041]. [PMID: 2380724].
[87]
Shi, L-S.; Liao, Y-R.; Su, M-J.; Lee, A-S.; Kuo, P-C.; Damu, A.G.; Kuo, S-C.; Sun, H-D.; Lee, K-H.; Wu, T-S. Cardiac glycosides from Antiaris toxicaria with potent cardiotonic activity. J. Nat. Prod., 2010, 73(7), 1214-1222. [http://dx.doi.org/10.1021/np9005212]. [PMID: 20553004].
[88]
Tuncok, Y.; Kozan, O.; Cavdar, C.; Guven, H.; Fowler, J. Urginea maritima (squill) toxicity. J. Toxicol. Clin. Toxicol., 1995, 33(1), 83-86. [http://dx.doi.org/10.3109/15563659509020221]. [PMID: 7837318].
[89]
Ueda, J-Y.; Tezuka, Y.; Banskota, A.H.; Tran, Q.L.; Tran, Q.K.; Saiki, I.; Kadota, S. Constituents of the Vietnamese medicinal plant Streptocaulon juventas and their antiproliferative activity against the human HT-1080 fibrosarcoma cell line. J. Nat. Prod., 2003, 66(11), 1427-1433. [http://dx.doi.org/10.1021/np030177h]. [PMID: 14640513].
[90]
Ojo, O.; Nadro, M.; Tella, I. Protection of rats by extracts of some common Nigerian trees against acetaminophen-induced hepatotoxicity. Afr. J. Biotechnol., 2006, 5(9), 755-760.
[91]
Ohtani, K.; Yang, C-R.; Miyajima, C.; Zhou, J.; Tanaka, O. Labdane-type diterpene glycosides from fruits of Rubus foliolosus. Chem. Pharm. Bull. (Tokyo), 1991, 39(9), 2443-2445. [http://dx.doi.org/10.1248/cpb.39.2443].
[92]
Jiang, C.; Liu, Z-H.; Li, L.; Lin, B-B.; Yang, F.; Qin, M-J. A new eudesmane sesquiterpene glycosides from Liriope muscari. J. Asian Nat. Prod. Res., 2012, 14(5), 491-495. [http://dx.doi.org/10.1080/10286020.2012.668533]. [PMID: 22423627].
[93]
Hussain, H.; Raees, M.A.; Rehman, N.U.; Al-Rawahi, A.; Csuk, R.; Khan, H.Y.; Abbas, G.; Al-Broumi, M.A.; Green, I.R.; Elyassi, A.; Mahmood, T.; Al-Harrasi, A. Nizwaside: A new anticancer pregnane glycoside from the sap of Desmidorchis flava. Arch. Pharm. Res., 2015, 38(12), 2137-2142. [http://dx.doi.org/10.1007/s12272-015-0653-0]. [PMID: 26335549].
[94]
Fan, B-Y.; Gu, Y-C.; He, Y.; Li, Z-R.; Luo, J-G.; Kong, L-Y. Cytotoxic resin glycosides from Ipomoea aquatica and their effects on intracellular Ca2+ concentrations. J. Nat. Prod., 2014, 77(10), 2264-2272. [http://dx.doi.org/10.1021/np5005246]. [PMID: 25314138].
[95]
Liu, Y.; Tang, W.; Yu, S.; Qu, J.; Liu, J.; Liu, Y. Eight new C-21 steroidal glycosides from Dregea sinensis var. corrugata. Steroids, 2007, 72(6-7), 514-523. [http://dx.doi.org/10.1016/j.steroids.2007.03.002]. [PMID: 17482655].
[96]
Xue, R.; Han, N.; Ye, C.; Wang, H-B.; Yin, J. Cardenolide glycosides from root of Streptocaulon juventas. Phytochemistry, 2013, 88, 105-111. [http://dx.doi.org/10.1016/j.phytochem.2012.12.004]. [PMID: 23286880].
[97]
Fumiko, A.; Mori, Y.; Yamauchi, T. Cardenolide glycosides from the seeds of Asclepias curassavica. Chem. Pharm. Bull. (Tokyo), 1992, 40(11), 2917-2920. [http://dx.doi.org/10.1248/cpb.40.2917].
[98]
Song, X.; Zhang, D.; He, H.; Li, Y.; Yang, X.; Deng, C.; Tang, Z.; Cui, J.; Yue, Z. Steroidal glycosides from Reineckia carnea. Fitoterapia, 2015, 105, 240-245. [http://dx.doi.org/10.1016/j.fitote.2015.07.008]. [PMID: 26186990].
[99]
Nakazawa, T.; Yasuda, T.; Ohsawa, K. Metabolites of orally administered Magnolia officinalis extract in rats and man and its antidepressant-like effects in mice. J. Pharm. Pharmacol., 2003, 55(11), 1583-1591. [http://dx.doi.org/10.1211/0022357022188]. [PMID: 14713371].
[100]
Raees, M.A.; Hussain, H.; Rehman, N.U.; Khan, H.Y.; Abbas, G.; Al-Rawahi, A.; Elyassi, A.; Al-Amri, I.S.; Green, I.R.; Al-Broumi, M.A. Desmiflavasides A and B: Two new bioactive pregnane glycosides from the sap of Desmidorchis flava. Phytochem. Lett., 2015, 12, 153-157. [http://dx.doi.org/10.1016/j.phytol.2015.03.013].
[101]
Raees, M.A.; Hussain, H.; Al-Rawahi, A.; Csuk, R.; Muhammad, S.A.; Khan, H.Y.; Rehman, N.U.; Abbas, G.; Al-Broumi, M.A.; Green, I.R.; Elyassi, A.; Mahmood, T.; Al-Harrasi, A. Anti-proliferative and computational studies of two new pregnane glycosides from Desmidorchis flava. Bioorg. Chem., 2016, 67, 95-104. [http://dx.doi.org/10.1016/j.bioorg.2016.05.008]. [PMID: 27299811].
[102]
Salem, A-F.Z.; Salem, M.Z.; González-Ronquillo, M.; Camacho, L.; Cipriano, M. Major chemical constituents of Leucaena leucocephala and Salix babylonica leaf extracts. J. Trop. Agric., 2011, 49, 95-98.
[103]
Verma, A.; Singh, D.; Anwar, F.; Bhatt, P.C.; Al-Abbasi, F.; Kumar, V. Triterpenoids principle of Wedelia calendulacea attenuated diethynitrosamine-induced hepatocellular carcinoma via down-regulating oxidative stress, inflammation and pathology via NF-kB pathway. Inflammopharmacology, 2018, 26(1), 133-146.