Synthesis of Bi2O2CO3 Photocatalyst and Enhanced Performance for Environmental Applications

Page: [112 - 116] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Background: Bi2O2CO3 as a typical Aurivillius type bismuth-based layered structure photocatalyst material has received wide attention. It is very important to explore the improving strategy for Bi2O2CO3.

Methods: Herein, the preparation methods of Bi2O2CO3 and its application in environmental decontamination were summarized. Patents related to the subject were also reviewed. The modification methods for improving photocatalytic performance of Bi2O2CO3 were also analyzed, including morphology control, doping, fabricating of coupling semiconductors, carbon materials modification and others.

Results: Finally, the developments of challenges for the Bi2O2CO3-based photocatalyst were discussed.

Conclusion: Furthermore, the study on typical non-metallic oxyacid photocatalyst Bi2O2CO3 will provide fabricating high performance photocatalysts of the similar type for environmental decontamination.

Keywords: Bi2O2CO3, photocatalytic, modification, aurivillius, environmental decontamination, doping.

Graphical Abstract

[1]
J.G. Li, T. Ishigaki, and X.D. Sun, "Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties", J. Phys. Chem. C. vol. 111, pp. 4969-4976, March 2007.
[2]
R.C. Bhave, and B.I. Lee, "Experimental variables in the synthesis of brookite phase TiO2 nanoparticles", Mater. Sci. Eng. A. vol. 467, pp. 146-149, October 2007.
[3]
G.K. Zhang, X.M. Ding, F.S. He, X.Y. Yu, J. Zhou, Y.J. Hu, and J.W. Xie, "Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite", Langmuir. vol. 24, pp. 1026- 1030, February 2008.
[4]
K.C. Zhang, J.X. Shen, Y.F. Zhang, J.Y. Zhang, C.B. Wei, and X.W. Ma, "Controlled-fabrication, morphology formation mechanism of TiO2-B nanobelts with NiO-doping", Mater. Des.. vol. 88, pp. 713-719, December 2015.
[5]
X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang, and Z.Y. Fan, "Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts", ACS Appl. Mater. Interfaces. vol. 4, pp. 3944-3950, August 2012.
[6]
J.A. Mendoza, D.H. Lee, and J.H. Kang, "Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: Effect of surface modification", Chemosphere. vol. 182, pp. 539-546, September 2017.
[7]
W.W. Liu, H.Y. Zhang, H.G. Wang, M. Zhang, and M. Guo, "Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells", Appl. Surf. Sci.. vol. 422, pp. 304-315, November 2017.
[8]
H.H. Gan, G.K. Zhang, and Y.D. Guo, "Facile in situ synthesis of the bismuth oxychloride/bismuth niobate/TiO2 composite as a high efficient and stable visible light driven photocatalyst", J. Colloid Interface Sci.. vol. 386, pp. 373-380, November 2012.
[9]
Y. Zhou, H. Y. Wang, Q. Zhang, Y. H. Lin, Z. Zhang, Y. P. Wu, and Z. Y. Zhao, Method for preparing bismuth oxycarbonate nano-tablet at normal temperature. CN 102942219A, February 27, 2013.
[10]
Q. F. Han, L. L. Yang, J. Zhao, X. Wang, J. W. Zhu, X. D. Wu, F. L. Bei, and X. H. Liu, Bi2O2CO3 nanocrystal with unique morphology, and preparation method thereof. CN 105523584A, April 27, 2016.
[11]
Y.Y. Liu, Z.Y. Wang, B.B. Huang, K.S. Yang, X.Y. Zhang, X.Y. Qin, and Y. Dai, "Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet", Appl. Surf. Sci.. vol. 257, pp. 172-175, October 2010.
[12]
Y. Zheng, F. Duan, M.Q. Chen, and Y. Xie, "Synthetic Bi2O2CO3 nanostructures: Novel photocatalyst with controlled special surface exposed", J. Mol. Catal. Chem.. vol. 317, pp. 34-40, February 2010.
[13]
T.Y. Zhao, J.T. Zai, M. Xu, Q. Zou, Y.Z. Su, K.X. Wang, and X.F. Qian, "Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity", CrystEngComm. vol. 13, pp. 4010-4017, April 2011.
[14]
F. Dong, A.M. Zheng, Y.J. Sun, M. Fu, B.Q. Jiang, W.K. Ho, S.C. Lee, and Z.B. Wu, "One-pot template-free synthesis, growth mechanism and enhanced photocatalytic activity of monodisperse (BiO)2CO3 hierarchical hollow microspheres self-assembled with single-crystalline nanosheets", CrystEngComm. vol. 14, pp. 3534-3544, February 2012.
[15]
P. Innocenzi, L. Malfatti, and G.J.A.A. Soler-Illia, "Hierarchical Mesoporous Films: From Self-Assembly to Porosity with Different Length Scales", Chem. Mater.. vol. 23, pp. 2501-2509, May 2011.
[16]
Z. F. Zhou, H. J. Chen, S. Y. Shao, and Q. L. Wang, Cobalt oxide doped basic bismuth carbonate/bismuth oxychloride photocatalyst and preparation method thereof. CN 106824213A, June 13, 2017.
[17]
Q.Y. Li, H.T. Liu, F. Dong, and M. Fu, "Hydrothermal formation of N-doped (BiO)2CO3, honeycomb-like microspheres photocatalysts with bismuth citrate and dicyandiamide as precursors", J. Colloid Interface Sci.. vol. 408, pp. 33-42, October 2013.
[18]
Y. Zhou, Z.Y. Zhao, F. Wang, K. Cao, D.E. Doronkin, F. Dong, and J.D. Grunwaldt, "Facile synthesis of surface N-doped Bi2O2CO3: Origin of visible light photocatalytic activity and in situ DRIFTS studies", J. Hazard. Mater.. vol. 307, pp. 163-172, April 2016.
[19]
H.W. Huang, X.W. Li, J.J. Wang, F. Dong, P.K. Chu, T.R. Zhang, and Y.H. Zhang, "Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32- doped Bi2O2CO3", ACS Catal.. vol. 5, pp. 4094-4103, July 2015.
[20]
X.W. Huang, and H.F. Chen, "One-pot hydrothermal synthesis of Bi2O2CO3/Bi2WO6 visible light photocatalyst with enhanced photocatalytic activity", Appl. Surf. Sci.. vol. 284, pp. 843-848, November 2013.
[21]
Y.S. Xu, and W.D. Zhang, "Anion exchange strategy for construction of sesame-biscuit-like Bi2O2CO3/Bi2MoO6 nanocomposites with enhanced photocatalytic activity", Appl. Catal. BEnviron.. vol. 140, pp. 306-316, August-September 2013.
[22]
H.H. Gan, G.K. Zhang, and H.X. Huang, "Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites", J. Hazard. Mater.. vol. 250, pp. 131-137, April 2013.
[23]
W.J. Wang, H.F. Cheng, B.B. Huang, X.J. Lin, X.Y. Qin, X.Y. Zhang, and Y. Dai, "Synthesis of Bi2O2CO3/Bi2S3 hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants", J. Colloid Interface Sci.. vol. 402, pp. 34–39, July 2013
[24]
R.P. Hu, X. Xiao, S.H. Tu, X. Zuo, and J.M. Nan, "Synthesis of flower-like heterostructured Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and its visible-light-induced photocatalytic degradation of o-phenylphenol", Appl. Catal. BEnviron.. vol. 163, pp. 510-519, February 2015.
[25]
L. Jin, G.Q. Zhu, M. Hojamberdiev, X.C. Luo, C.W. Tan, J.H. Peng, X.M. Wei, J.P. Li, and P. Liu, "A plasmonic Ag–AgBr/Bi2O2CO3 composite photocatalyst with enhanced visible-light photocatalytic activity", Ind. Eng. Chem. Res.. vol. 53, pp. 13718-13727, September 2014.
[26]
N. Liang, M. Wang, L. Jin, S.S. Huang, W.L. Chen, M. Xu, Q.Q. He, J.T. Zai, N.H. Fang, and X.F. Qian, "Highly efficient Ag2O/Bi2O2CO3 p-n heterojunction photocatalysts with improved visible-light responsive activity", ACS Appl. Mater. Interfaces. vol. 6, pp. 11698-11705, July 2014.
[27]
T.T. Li, X.L. Hu, C.C. Liu, C.M. Tang, X.K. Wang, and S.L. Luo, "“Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation”, J Mol", Catal. A. vol. 425, pp. 124-135, December 2016.
[28]
L.L. Zhang, C. Hu, and H.H. Ji, "p-AgI anchored on 001 facets of n-Bi2O2CO3 sheets with enhanced photocatalytic activity and stability", Appl. Catal. B-Environ.. vol. 205, pp. 34-41, May 2017.
[29]
Y.C. Huang, W.J. Fan, B.L. Li, F.Y. Zhao, Z.L. Liu, Y.X. Tong, and H.B. Ji, "Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions", Appl. Catal. BEnviron.. vol. 185, pp. 68-76, May 2016.
[30]
L.H. Yu, X.Y. Zhang, G.W. Li, Y.T. Cao, Y. Shao, and D.Z. Li, "Highly efficient Bi2O2CO3/BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light", Appl. Catal. B-Environ.. ol. 187, pp. 301-309, July 2016.
[31]
L. Chen, S.F. Yin, S.L. Luo, R. Huang, Q. Zhang, T. Hong, and P.C.T. Au, "Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater", Ind. Eng. Chem. Res.. vol. 51, pp. 6760-6768, May 2012.
[32]
J. Ding, Z. Dai, F. Qin, H.P. Zhao, S. Zhao, and R. Chen, "Z-scheme BiO1-xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics", Appl. Catal. B-Environ.. vol. 205, pp. 281-291, May 2017.
[33]
X.T. Xu, F. Wang, Y.X. Ge, H.Y. Su, B. Li, M.G. Fan, and F.Y. Zhang, Preparation method of Bi2O2CO3/Bi3.84W0.16O6.24 through solvothermal method and application of preparation method. CN Patent 105032457 A, November 11, 2015.
[34]
F. Duan, Z. G. Ding, J. Wang, Q. J. Zhao, D. J. Shi, and M. Q. Chen, BiOCOOH-Bi2O2CO3 compound photocatalyst and preparation method thereof. CN Patent 106423286A, February 22, 2017.
[35]
S.L. Lin, W.Q. Cui, X.G. Li, H. Sui, and Z.S. Zhang, "Cu2O NPs/Bi2O2CO3 flower-like complex photocatalysts with enhanced visible light photocatalytic degradation of organic pollutants", Catal. Today. vol. 297, pp. 237-245, November 2017.
[36]
J. G. Zhou, M. M. Wei, L. Li, S. Fu, L. L. Liu, S. N. You, and F. Y. Zhao, Method used for synthesis of ball flower shaped Bi2O2CO3/BiPO4 heterojunction photocatalysis material via in-suit conversion. ” CN Patent 107185569A, September 22, 2017.
[37]
W. Zhao, Y. Wang, A. J. Wang, S. P. Dou, L. C. Wu, and Q. Wang, Bi2O2CO3/PPy/g-C3N4 compound photocatalyst and preparation method and application thereof. CN Patent 106984360A, July 28, 2017.
[38]
X. Zhang, S.J. Li, and S.W. Hu, "J. L. Chen W. Jiang,J. L. Zhang, L. L. Ji,L. Cai,Y. N. Wang, W. D. Song, and J. S. Liu, “Flower-like MWCNTs/Bi2O2CO3 composites with enhanced photocatalytic activity under simulated solar light irradiation", Mater. Lett.. vol. 185, pp. 50-53, December 2016.
[39]
Y.L. Zhang, D.Y. Li, Y.G. Zhang, X.F. Zhou, S.J. Guo, and L.B. Yang, "Graphene-wrapped Bi2O2CO3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process", J. Mater. Chem. A.. vol. 2, pp. 8273-8280, February 2014.
[40]
Z.Y. Wang, Y. Huang, W.K. Ho, J.J. Cao, Z.X. Shen, and S.C. Lee, "Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study", Appl. Catal. BEnviron.. vol. 199, pp. 123-133, December 2016.
[41]
Y. Liu, S. Yu, Z.Y. Zhao, F. Dong, X.A. Dong, and Y. Zhou, "N-doped Bi2O2CO3/graphene quantum dot composite photocatalyst: enhanced visible-light photocatalytic NO oxidation and in situ drifts studies", J. Phys. Chem. C. vol. 121, pp. 12168-12177, June 2017.