The Established Nuclear Medicine Modalities for Imaging of Bone Metastases

Page: [819 - 830] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: The skeleton is one of the frequent site of metastases in advanced cancer. Prostate, breast and renal cancers mostly metastasize to bone.

Discussion: Malignant tumors lead to significant morbidity and mortality. Identification of bone lesions is a crucial step in diagnosis of disease at early stage, monitoring of disease progression and evaluation of therapy. Diagnosis of cancer metastases is based on uptake of bone-targeted radioactive tracer at different bone remodeling sites.

Conclusion: This manuscript summarizes already established and evolving nuclear medicine modalities (e.g. bone scan, SPECT, SPECT/CT, PET, PET/CT) for imaging of bone metastases.

Keywords: Malignant tumors, morbidity, mortality, bone lesion, diagnosis, cancer metastasis, radioactive tracer.

Graphical Abstract

[1]
Ozgenc, E.; Ekinci, M.; Ilem-Ozdemir, D. Radiolabeling and in vitro evaluation of 99mTc-methotrexate on breast cancer cell line. J. Radioanal. Nucl. Chem., 2016, 307(1), 627-633.
[http://dx.doi.org/10.1007/s10967-015-4210-6]
[2]
Mundy, G.R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer, 2002, 2(8), 584-593.
[http://dx.doi.org/10.1038/nrc867] [PMID: 12154351]
[3]
Nayir, E. Pathogenesis of bone metastasis. J Oncol Sci, 2016, 1, 13-16.
[http://dx.doi.org/10.1016/j.jons.2015.11.004]
[4]
Cuccurullo, V.; Cascini, G.L.; Tamburrini, O.; Rotondo, A.; Mansi, L. Bone metastases radiopharmaceuticals: an overview. Curr. Radiopharm., 2013, 6(1), 41-47.
[http://dx.doi.org/10.2174/1874471011306010007] [PMID: 23470032]
[5]
Qiu, L.; Cheng, W.; Lin, J. Synthesis and evaluation of a series of 99mTc-labelled zoledronic acid derivatives as potential bone seeking agents. J. Radioanal. Nucl. Chem., 2013, 295(1), 545-552.
[http://dx.doi.org/10.1007/s10967-012-1883-y]
[6]
Berenson, J.R.; Rajdev, L.; Broder, M. Pathophysiology of bone metastases. Cancer Biol. Ther., 2006, 5(9), 1078-1081.
[http://dx.doi.org/10.4161/cbt.5.9.3306] [PMID: 17012831]
[7]
Ibrahim, A.; Sakr, T.; Khoweysa, O. Formulation and preclinical evaluation of 99mTc–gemcitabine as a novel radiopharmaceutical for solid tumor imaging. J. Radioanal. Nucl. Chem., 2014, 302(1), 179-186.
[http://dx.doi.org/10.1007/s10967-014-3233-8]
[8]
Yang, H-L.; Liu, T.; Wang, X-M.; Xu, Y.; Deng, S.M. Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur. Radiol., 2011, 21(12), 2604-2617.
[http://dx.doi.org/10.1007/s00330-011-2221-4] [PMID: 21887484]
[9]
Galasko, C.S.B. Diagnosis of skeletal metastases and assessment of response to treatment. In: Diel, I.J.; Kaufmann, M.; Bastert, G., Eds.;Metastatic Bone Disease; Berlin, Heidelberg. , 1994; pp. 93-108.
[http://dx.doi.org/10.1007/978-3-642-78596-2_8]
[10]
Hamaoka, T.; Madewell, J.E.; Podoloff, D.A.; Hortobagyi, G.N.; Ueno, N.T. Bone imaging in metastatic breast cancer. J. Clin. Oncol., 2004, 22(14), 2942-2953.
[http://dx.doi.org/10.1200/JCO.2004.08.181] [PMID: 15254062]
[11]
Evangelista, L.; Bertoldo, F.; Boccardo, F. Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(8), 1546-1562.
[http://dx.doi.org/10.1007/s00259-016-3350-4] [PMID: 26956538]
[12]
Shibata, H.; Kato, S.; Sekine, I. Diagnosis and treatment of bone metastasis: comprehensive guideline of the Japanese society of medical oncology, Japanese orthopedic association, Japanese urological association, and Japanese society for radiation oncology. ESMO Open, 2016, 1(2)e000037
[http://dx.doi.org/10.1136/esmoopen-2016-000037] [PMID: 27843593]
[13]
Jacobson, A; Fogelman, I; Rosenthall, L Bone scanning in metastatic disease. Skeletal nuclear medicine, 1996, 87-123.
[14]
Kosuda, S.; Kaji, T.; Yokoyama, H. Does bone SPECT actually have lower sensitivity for detecting vertebral metastasis than MRI? J. Nucl. Med., 1996, 37(6), 975-978.
[PMID: 8683325]
[15]
Roland, J.; van den Weyngaert, D.; Krug, B.; Brans, B.; Scalliet, P.; Vandevivere, J. Metastases seen on SPECT imaging despite a normal planar bone scan. Clin. Nucl. Med., 1995, 20(12), 1052-1054.
[http://dx.doi.org/10.1097/00003072-199512000-00002] [PMID: 8674288]
[16]
Sedonja, I.; Budihna, N.V. The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin. Nucl. Med., 1999, 24(6), 407-413.
[http://dx.doi.org/10.1097/00003072-199906000-00006] [PMID: 10361935]
[17]
Iagaru, A.; Mittra, E.; Dick, D.W.; Gambhir, S.S. Prospective evaluation of (99m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol. Imaging Biol., 2012, 14(2), 252-259.
[http://dx.doi.org/10.1007/s11307-011-0486-2] [PMID: 21479710]
[18]
Schirrmeister, H.; Glatting, G.; Hetzel, J. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J. Nucl. Med., 2001, 42(12), 1800-1804.
[PMID: 11752076]
[19]
Even-Sapir, E.; Metser, U.; Mishani, E.; Lievshitz, G.; Lerman, H.; Leibovitch, I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J. Nucl. Med., 2006, 47(2), 287-297.
[PMID: 16455635]
[20]
Yen, R-F.; Chen, C-Y.; Cheng, M-F. The diagnostic and prognostic effectiveness of F-18 sodium fluoride PET-CT in detecting bone metastases for hepatocellular carcinoma patients. Nucl. Med. Commun., 2010, 31(7), 637-645.
[http://dx.doi.org/10.1097/MNM.0b013e3283399120] [PMID: 20389259]
[21]
Nakamoto, Y.; Osman, M.; Wahl, R.L. Prevalence and patterns of bone metastases detected with positron emission tomography using F-18 FDG. Clin. Nucl. Med., 2003, 28(4), 302-307.
[http://dx.doi.org/10.1097/01.RLU.0000057556.54046.7A] [PMID: 12642709]
[22]
Karsenty, G. The complexities of skeletal biology. Nature, 2003, 423(6937), 316-318.
[http://dx.doi.org/10.1038/nature01654] [PMID: 12748648]
[23]
Yin, J.J.; Pollock, C.B.; Kelly, K. Mechanisms of cancer metastasis to the bone. Cell Res., 2005, 15(1), 57-62.
[http://dx.doi.org/10.1038/sj.cr.7290266] [PMID: 15686629]
[24]
Boyde, A.; Maconnachie, E.; Reid, S.A.; Delling, G.; Mundy, G.R. Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan. Electron Microsc., 1986, (Pt 4), 1537-1554.
[PMID: 3544196]
[25]
Stewart, A.F.; Vignery, A.; Silverglate, A. Quantitative bone histomorphometry in humoral hypercalcemia of malignancy: uncoupling of bone cell activity. J. Clin. Endocrinol. Metab., 1982, 55(2), 219-227.
[http://dx.doi.org/10.1210/jcem-55-2-219] [PMID: 7085851]
[26]
Charhon, S.A.; Chapuy, M.C.; Delvin, E.E.; Valentin-Opran, A.; Edouard, C.M.; Meunier, P.J. Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma special reference to osteomalacia. Cancer, 1983, 51(5), 918-924.
[http://dx.doi.org/10.1002/1097-0142(19830301)51:5<918:AID-CNCR2820510526>3.0.CO;2-J] [PMID: 6681595]
[27]
Raubenheimer, E.J.; Noffke, C.E. Pathogenesis of bone metastasis: a review. J. Oral Pathol. Med., 2006, 35(3), 129-135.
[http://dx.doi.org/10.1111/j.1600-0714.2006.00360.x] [PMID: 16454807]
[28]
Coleman, R.E. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev., 2001, 27(3), 165-176.
[http://dx.doi.org/10.1053/ctrv.2000.0210] [PMID: 11417967]
[29]
Coleman, R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res., 2006, 12(20 Pt 2), 6243s-6249s.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0931] [PMID: 17062708]
[30]
Eastley, N.; Newey, M.; Ashford, R.U. Skeletal metastases - the role of the orthopaedic and spinal surgeon. Surg. Oncol., 2012, 21(3), 216-222.
[http://dx.doi.org/10.1016/j.suronc.2012.04.001] [PMID: 22554913]
[31]
Nielsen, O.S. Palliative radiotherapy of bone metastases: there is now evidence for the use of single fractions. Radiother. Oncol., 1999, 52(2), 95-96.
[PMID: 10577693]
[32]
Bubendorf, L.; Schöpfer, A.; Wagner, U. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum. Pathol., 2000, 31(5), 578-583.
[http://dx.doi.org/10.1053/hp.2000.6698] [PMID: 10836297]
[33]
Lee, Y.T.N.M. Breast carcinoma: pattern of metastasis at autopsy. J. Surg. Oncol., 1983, 23(3), 175-180.
[http://dx.doi.org/10.1002/jso.2930230311] [PMID: 6345937]
[34]
Ulmert, D.; Solnes, L.; Thorek, D.Lj. Contemporary approaches for imaging skeletal metastasis. Bone Res., 2015, 3, 15024.
[http://dx.doi.org/10.1038/boneres.2015.24] [PMID: 26273541]
[35]
Hernandez, R.K.; Wade, S.W.; Reich, A. Incidence of bone metastases in US patients with solid tumors. J. Clin. Oncol., 2016, 34e13099
[36]
Averbuch, S.D. New bisphosphonates in the treatment of bone metastases. Cancer, 1993, 72(11), 3443-3452.
[http://dx.doi.org/10.1002/1097-0142(19931201)72:11+<3443:AID-CNCR2820721611>3.0.CO;2-3] [PMID: 8242577]
[37]
Galasko, C.S. The value of scintigraphy in malignant disease. Cancer Treat. Rev., 1975, 2(4), 225-272.
[http://dx.doi.org/10.1016/S0305-7372(75)80008-9] [PMID: 766965]
[38]
Muindi, J.; Coombes, R.C.; Golding, S.; Powles, T.J.; Khan, O.; Husband, J. The role of computed tomography in the detection of bone metastases in breast cancer patients. Br. J. Radiol., 1983, 56(664), 233-236.
[http://dx.doi.org/10.1259/0007-1285-56-664-233] [PMID: 6831145]
[39]
Perez, D.J.; Powles, T.J.; Milan, J. Detection of breast carcinoma metastases in bone: relative merits of X-rays and skeletal scintigraphy. Lancet, 1983, 2(8350), 613-616.
[http://dx.doi.org/10.1016/S0140-6736(83)90692-X] [PMID: 6136757]
[40]
Even-Sapir, E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J. Nucl. Med., 2005, 46(8), 1356-1367.
[PMID: 16085595]
[41]
Vinholes, J.J.F. Effects of bone metastases on bone metabolism: implications for assessment of response to bisphosphonates and systemic anti-cancer therapy.. PhD thesis, University of Sheffield, Sheffield, UK, 1996.
[42]
Bickels, J.; Dadia, S.; Lidar, Z. Surgical management of metastatic bone disease. J. Bone Joint Surg. Am., 2009, 91(6), 1503-1516.
[http://dx.doi.org/10.2106/JBJS.H.00175] [PMID: 19487532]
[43]
Mahnken, A.H.; Wildberger, J.E.; Gehbauer, G. Multidetector CT of the spine in multiple myeloma: comparison with MR imaging and radiography. AJR Am. J. Roentgenol., 2002, 178(6), 1429-1436.
[http://dx.doi.org/10.2214/ajr.178.6.1781429] [PMID: 12034612]
[44]
Rybak, L.D.; Rosenthal, D.I. Radiological imaging for the diagnosis of bone metastases. Q. J. Nucl. Med., 2001, 45(1), 53-64.
[PMID: 11456376]
[45]
Krasnow, A.Z.; Hellman, R.S.; Timins, M.E. Diagnostic bone scanning in oncology. Semin. Nucl. Med., 1997, 27(2), 107-141.
[http://dx.doi.org/10.1016/S0001-2998(97)80043-8]
[46]
Petrén-Mallmin, M.; Andréasson, I.; Nyman, R.; Hemmingsson, A. Detection of breast cancer metastases in the cervical spine. Acta Radiol., 1993, 34(6), 543-548.
[http://dx.doi.org/10.1177/028418519303400603] [PMID: 8240885]
[47]
Sanders, T.G.; Parsons, T.W., III Radiographic imaging of musculoskeletal neoplasia. Cancer Contr., 2001, 8(3), 221-231.
[http://dx.doi.org/10.1177/107327480100800302] [PMID: 11378648]
[48]
Glaudemans, A.W.; Signore, A. In:Vassiliou V, Chow E, Kardamakis D, Ed.Bone Metastases; Berlin: Springer. , 2014, pp. 71-94.
[http://dx.doi.org/10.1007/978-94-007-7569-5_5]
[49]
Qu, X.; Huang, X.; Yan, W.; Wu, L.; Dai, K. A meta-analysis of 18FDG-PET-CT, 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with lung cancer. Eur. J. Radiol., 2012, 81(5), 1007-1015.
[http://dx.doi.org/10.1016/j.ejrad.2011.01.126] [PMID: 21354739]
[50]
Shen, G.; Deng, H.; Hu, S.; Jia, Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol., 2014, 43(11), 1503-1513.
[http://dx.doi.org/10.1007/s00256-014-1903-9] [PMID: 24841276]
[51]
Jambor, I.; Kuisma, A.; Ramadan, S. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: skeleta clinical trial. Acta Oncol., 2016, 55(1), 59-67.
[http://dx.doi.org/10.3109/0284186X.2015.1027411] [PMID: 25833330]
[52]
Ota, N.; Kato, K.; Iwano, S. Comparison of 18F-fluoride PET/CT, 18F-FDG PET/CT and bone scintigraphy (planar and SPECT) in detection of bone metastases of differentiated thyroid cancer: a pilot study. Br. J. Radiol., 2014, 87(1034)20130444
[http://dx.doi.org/10.1259/bjr.20130444] [PMID: 24297809]
[53]
Cook, G.J.; Houston, S.; Rubens, R.; Maisey, M.N.; Fogelman, I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J. Clin. Oncol., 1998, 16(10), 3375-3379.
[http://dx.doi.org/10.1200/JCO.1998.16.10.3375] [PMID: 9779715]
[54]
Schirrmeister, H. Detection of bone metastases in breast cancer by positron emission tomography. PET Clin., 2006, 1(1), 25-32.
[http://dx.doi.org/10.1016/j.cpet.2005.09.005] [PMID: 27156956]
[55]
Uematsu, T.; Yuen, S.; Yukisawa, S. Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. AJR Am. J. Roentgenol., 2005, 184(4), 1266-1273.
[http://dx.doi.org/10.2214/ajr.184.4.01841266] [PMID: 15788608]
[56]
Ellmann, S.; Beck, M.; Kuwert, T.; Uder, M.; Bäuerle, T. Multimodal imaging of bone metastases: from preclinical to clinical applications. J. Orthop. Translat., 2015, 3(4), 166-177.
[http://dx.doi.org/10.1016/j.jot.2015.07.004] [PMID: 30035055]
[57]
Gallowitsch, H-J.; Kresnik, E.; Gasser, J. F-18 fluorodeoxyglucose positron-emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest. Radiol., 2003, 38(5), 250-256.
[http://dx.doi.org/10.1097/01.RLI.0000063983.86229.f2] [PMID: 12750613]
[58]
Kao, C-H.; Hsieh, J-F.; Tsai, S-C.; Ho, Y.J.; Yen, R.F. Comparison and discrepancy of 18F-2-deoxyglucose positron emission tomography and Tc-99m MDP bone scan to detect bone metastases. Anticancer Res., 2000, 20(3B), 2189-2192.
[PMID: 10928175]
[59]
Liu, T.; Cheng, T.; Xu, W.; Yan, W.L.; Liu, J.; Yang, H.L. A meta-analysis of 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with breast cancer. Skeletal Radiol., 2011, 40(5), 523-531.
[http://dx.doi.org/10.1007/s00256-010-0963-8] [PMID: 20495798]
[60]
Brown, D.H.; Leakos, M. The value of a routine bone scan in a metastatic survey. J. Otolaryngol., 1998, 27(4), 187-189.
[PMID: 9711511]
[61]
Hahn, S.; Heusner, T.; Kümmel, S. Comparison of FDG-PET/CT and bone scintigraphy for detection of bone metastases in breast cancer. Acta Radiol., 2011, 52(9), 1009-1014.
[http://dx.doi.org/10.1258/AR.2011.100507] [PMID: 21969709]
[62]
Nakai, T.; Okuyama, C.; Kubota, T. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur. J. Nucl. Med. Mol. Imaging, 2005, 32(11), 1253-1258.
[http://dx.doi.org/10.1007/s00259-005-1842-8] [PMID: 16133397]
[63]
Bury, T.; Barreto, A.; Daenen, F.; Barthelemy, N.; Ghaye, B.; Rigo, P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur. J. Nucl. Med., 1998, 25(9), 1244-1247.
[http://dx.doi.org/10.1007/s002590050291] [PMID: 9724372]
[64]
Drubach, L.A.; Connolly, S.A.; Palmer, E.L., III Skeletal scintigraphy with 18F-NaF PET for the evaluation of bone pain in children. AJR Am. J. Roentgenol., 2011, 197(3), 713-719.
[http://dx.doi.org/10.2214/AJR.11.6670] [PMID: 21862816]
[65]
McAfee, J.G.; Singh, A.; Roskopf, M. Experimental drug-induced changes in renal function and biodistribution of 99mTc-MDP. Invest. Radiol., 1983, 18(5), 470-478.
[http://dx.doi.org/10.1097/00004424-198309000-00013] [PMID: 6227584]
[66]
Mintz, D.N.; Hwang, S. Bone tumor imaging, then and now: review article. HSS J., 2014, 10(3), 230-239.
[http://dx.doi.org/10.1007/s11420-014-9403-y] [PMID: 25264439]
[67]
Sorensen, L.B.; Archambault, M. Visualization of the liver by scanning with Mo99 (molybdate) as tracer. J. Lab. Clin. Med., 1963, 62(2), 330-340.
[PMID: 14057883]
[68]
Guérin, B.; Tremblay, S.; Rodrigue, S. Cyclotron production of 99mTc: an approach to the medical isotope crisis. J. Nucl. Med., 2010, 51(4), 13N-16N.
[PMID: 20351346]
[69]
Lin, J.H. Bisphosphonates: a review of their pharmacokinetic properties. Bone, 1996, 18(2), 75-85.
[http://dx.doi.org/10.1016/8756-3282(95)00445-9] [PMID: 8833200]
[70]
Russell, R.G.; Rogers, M.J. Bisphosphonates: from the laboratory to the clinic and back again. Bone, 1999, 25(1), 97-106.
[http://dx.doi.org/10.1016/S8756-3282(99)00116-7] [PMID: 10423031]
[71]
Brown, J.E.; Neville-Webbe, H.; Coleman, R.E. The role of bisphosphonates in breast and prostate cancers. Endocr. Relat. Cancer, 2004, 11(2), 207-224.
[http://dx.doi.org/10.1677/erc.0.0110207] [PMID: 15163299]
[72]
Arteaga de Murphy, C.; Meléndez-Alafort, L.; Montoya-Molina, C.E.; Sepúlveda-Méndez, J. Radiopharmacokinetic data for 99mTc-ABP--a new radiopharmaceutical for bone scanning: comparison with 99mTc-MDP. Nucl. Med. Biol., 1997, 24(1), 27-33.
[http://dx.doi.org/10.1016/S0969-8051(96)00151-5] [PMID: 9080472]
[73]
Fleisch, H. Bisphosphonates in osteoporosis: an introduction. Osteoporos. Int., 1993, 3(3), S3-S5.
[http://dx.doi.org/10.1007/BF01623000] [PMID: 8298201]
[74]
Watts, N.B. Treatment of osteoporosis with bisphosphonates. Endocrinol. Metab. Clin. North Am., 1998, 27(2), 419-439.
[http://dx.doi.org/10.1016/S0889-8529(05)70014-1] [PMID: 9669147]
[75]
Gundogdu, E.; Ilem-Ozdemir, D.; Asikoglu, M. In vitro incorporation studies of 99mTc–alendronate sodium at different bone cell lines. J. Radioanal. Nucl. Chem., 2014, 299(3), 1255-1260.
[http://dx.doi.org/10.1007/s10967-013-2833-z]
[76]
Asikoğlu, M.; Özgüney, I.; Özcan, I. The absorption of (99m)Tc-alendronate given by rectal route in rabbits. Pharm. Dev. Technol., 2008, 13(3), 213-220.
[http://dx.doi.org/10.1080/10837450801949509] [PMID: 18484490]
[77]
Ogawa, K.; Mukai, T.; Inoue, Y.; Ono, M.; Saji, H. Development of a novel 99mTc-chelate-conjugated bisphosphonate with high affinity for bone as a bone scintigraphic agent. J. Nucl. Med., 2006, 47(12), 2042-2047.
[PMID: 17138748]
[78]
Fakhari, A.; Jalilian, A.R.; Johari-Daha, F.; Shafiee-Ardestani, M.; Khalaj, A. Preparation and biological study of 68Ga-DOTA-alendronate. Asia Ocean. J. Nucl. Med. Biol., 2016, 4(2), 98-105.
[PMID: 27408898]
[79]
Fakhari, A.; Jalilian, A.R.; Yousefnia, H. Radiolabeling and evaluation of two 177Lu-labeled bis-phosphonates. Iran. J. Nucl. Med., 2015, 23(2), 108-115.
[80]
Dogan, I; Cansiz, T; Uslu, I I, et al. 99m Tc labelling of alendronate: A new potent biphosphonate. IAEA 2005, 37(8), 212.
[81]
Fellner, M.; Baum, R.P.; Kubícek, V. PET/CT imaging of osteoblastic bone metastases with (68)Ga-bisphosphonates: first human study. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(4), 834-4.
[http://dx.doi.org/10.1007/s00259-009-1355-y] [PMID: 20069291]
[82]
Fellner, M.; Biesalski, B.; Bausbacher, N. (68)Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter. Nucl. Med. Biol., 2012, 39(7), 993-999.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.04.007] [PMID: 22633217]
[83]
Poulsen, M.H.; Petersen, H.; Høilund-Carlsen, P.F. Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [(18) F]choline positron emission tomography(PET)/computed tomography (CT) and [(18) F]NaF PET/CT. BJU Int., 2014, 114(6), 818-823.
[http://dx.doi.org/10.1111/bju.12599] [PMID: 24314065]
[84]
Garcia, J.R.; Moreno, C.; Valls, E. [Diagnostic performance of bone scintigraphy and (11)C-Choline PET/CT in the detection of bone metastases in patients with biochemical recurrence of prostate cancer> Rev. Esp. Med. Nucl. Imagen Mol., 2015, 34(3), 155-161.
[PMID: 25443648]
[85]
Lange, M.B.; Nielsen, M.L.; Andersen, J.D.; Lilholt, H.J.; Vyberg, M.; Petersen, L.J. Diagnostic accuracy of imaging methods for the diagnosis of skeletal malignancies: a retrospective analysis against a pathology-proven reference. Eur. J. Radiol., 2016, 85(1), 61-67.
[http://dx.doi.org/10.1016/j.ejrad.2015.10.012] [PMID: 26724650]
[86]
Minamimoto, R.; Loening, A.; Jamali, M. Prospective comparison of 99mTc-MDP scintigraphy, combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate cancer. J. Nucl. Med., 2015, 56(12), 1862-1868.
[http://dx.doi.org/10.2967/jnumed.115.162610] [PMID: 26405167]
[87]
Damle, N.A.; Bal, C.; Bandopadhyaya, G.P. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn. J. Radiol., 2013, 31(4), 262-269.
[http://dx.doi.org/10.1007/s11604-013-0179-7] [PMID: 23377765]
[88]
Palmedo, H.; Marx, C.; Ebert, A. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(1), 59-67.
[http://dx.doi.org/10.1007/s00259-013-2532-6] [PMID: 23974666]
[89]
Liu, T.; Xu, J-Y.; Xu, W.; Bai, Y.R.; Yan, W.L.; Yang, H.L. Fluorine-18 deoxyglucose positron emission tomography, magnetic resonance imaging and bone scintigraphy for the diagnosis of bone metastases in patients with lung cancer: which one is the best? -a meta-analysis. Clin. Oncol. (R. Coll. Radiol.), 2011, 23(5), 350-358.
[http://dx.doi.org/10.1016/j.clon.2010.10.002] [PMID: 21094027]
[90]
Beheshti, M.; Vali, R.; Waldenberger, P. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(10), 1766-1774.
[http://dx.doi.org/10.1007/s00259-008-0788-z] [PMID: 18465129]
[91]
Fuccio, C.; Castellucci, P.; Schiavina, R. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann. Nucl. Med., 2010, 24(6), 485-492.
[http://dx.doi.org/10.1007/s12149-010-0390-x] [PMID: 20544323]
[92]
Withofs, N.; Grayet, B.; Tancredi, T. 18F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl. Med. Commun., 2011, 32(3), 168-176.
[http://dx.doi.org/10.1097/MNM.0b013e3283412ef5] [PMID: 21076343]
[93]
Langsteger, W.; Balogova, S.; Huchet, V. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q. J. Nucl. Med. Mol. Imaging, 2011, 55(4), 448-457.
[94]
Takesh, M.; Odat Allh, K.; Adams, S. Diagnostic role of 18 F-FECH-PET/CT compared with bone scan in evaluating the prostate cancer patients referring with biochemical recurrence. ISRN Oncol., 2012, 2012815234
[95]
Picchio, M.; Spinapolice, E.G.; Fallanca, F. [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(1), 13-26.
[http://dx.doi.org/10.1007/s00259-011-1920-z] [PMID: 21932120]
[96]
Abikhzer, G.; Srour, S.; Fried, G. Prospective comparison of whole-body bone SPECT and sodium 18F-fluoride PET in the detection of bone metastases from breast cancer. Nucl. Med. Commun., 2016, 37(11), 1160-1168.
[http://dx.doi.org/10.1097/MNM.0000000000000568] [PMID: 27536906]