Targeting Gap Junctions: New Insights into the Treatment of Major Depressive Disorder

Page: [3775 - 3791] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Major depressive disorder (MDD) is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and associated with excess mortality. Treatments for this disease are not effective in all patients showing the need to find new therapeutic targets.

Objective: This review aims to update our knowledge on the involvement of astroglial gap junctions and hemichannels in MDD and to show how they have become potential targets for the treatment of this pathology.

Methods: The method applied in this review includes a systematic compilation of the relevant literature.

Results and Conclusion: The use of rodent models of depression, gene analysis of hippocampal tissues of MDD patients and post-mortem studies on the brains from MDD patients suggest that astrocytic gap junction dysfunction may be a part of MDD etiologies. Chronic antidepressant treatments of rats, rat cultured cortical astrocytes and human astrocytoma cell lines support the hypothesis that the up-regulation of gap junctional coupling between astrocytes could be an underlying mechanism for the therapeutic effect of antidepressants. However, two recent functional studies suggest that connexin43 hemichannel activity is a part of several antidepressants’ mode of action and that astrocyte gap junctional intercellular communication and hemichannels exert different effects on antidepressant drug response. Even if they emerge as new therapeutic targets for new and more active treatments, further studies are needed to decipher the sophisticated and respective role of astrocytic gap junctions and hemichannels in MDD.

Keywords: Antidepressants, astrocytes, central nervous system, connexins, depressive disorder, gap junctions, hemichannels, pannexins.

[1]
Kupfer, D.J.; Frank, E.; Phillips, M.L. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet, 2012, 379(9820), 1045-1055.
[http://dx.doi.org/10.1016/S0140-6736(11)60602-8] [PMID: 22189047]
[2]
Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers, 2016, 2, 16065.
[http://dx.doi.org/10.1038/nrdp.2016.65] [PMID: 27629598]
[3]
American Psychiatric Association (APA). In: Diagnostic and statistical manual of mental disorders, 5th ed; APA: Washington, DC, 2013.
[4]
Sarrouilhe, D.; Dejean, C. [Gap junctions: A new therapeutic target in major depressive disorder?]. Rev. Neurol. (Paris), 2015, 171(11), 762-767.
[http://dx.doi.org/10.1016/j.neurol.2015.07.002] [PMID: 26318901]
[5]
Wang, Q.; Jie, W.; Liu, J.H.; Yang, J.M.; Gao, T.M. An astroglial basis of major depressive disorder? An overview. Glia, 2017, 65(8), 1227-1250.
[http://dx.doi.org/10.1002/glia.23143] [PMID: 28317185]
[6]
Rajkowska, G.; Stockmeier, C.A. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr. Drug Targets, 2013, 14(11), 1225-1236.
[http://dx.doi.org/10.2174/13894501113149990156] [PMID: 23469922]
[7]
Rouach, N.; Avignone, E.; Même, W.; Koulakoff, A.; Venance, L.; Blomstrand, F.; Giaume, C. Gap junctions and connexin expression in the normal and pathological central nervous system. Biol. Cell, 2002, 94(7-8), 457-475.
[http://dx.doi.org/10.1016/S0248-4900(02)00016-3] [PMID: 12566220]
[8]
Moore, K.B.; O’Brien, J. Connexins in neurons and glia: targets for intervention in disease and injury. Neural Regen. Res., 2015, 10(7), 1013-1017.
[http://dx.doi.org/10.4103/1673-5374.160092] [PMID: 26330808]
[9]
Xie, H.Y.; Cui, Y.; Deng, F.; Feng, J.C. Connexin: a potential novel target for protecting the central nervous system? Neural Regen. Res., 2015, 10(4), 659-666.
[http://dx.doi.org/10.4103/1673-5374.155444] [PMID: 26170830]
[10]
Sun, J.D.; Liu, Y.; Yuan, Y.H.; Li, J.; Chen, N.H. Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology, 2012, 37(5), 1305-1320.
[http://dx.doi.org/10.1038/npp.2011.319] [PMID: 22189291]
[11]
Fatemi, S.H.; Folsom, T.D.; Reutiman, T.J.; Pandian, T.; Braun, N.N.; Haug, K. Chronic psychotropic drug treatment causes differential expression of connexin 43 and GFAP in frontal cortex of rats. Schizophr. Res., 2008, 104(1-3), 127-134.
[http://dx.doi.org/10.1016/j.schres.2008.05.016] [PMID: 18585900]
[12]
Morioka, N.; Suekama, K.; Zhang, F.F.; Kajitani, N.; Hisaoka-Nakashima, K.; Takebayashi, M.; Nakata, Y. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway. Br. J. Pharmacol., 2014, 171(11), 2854-2867.
[http://dx.doi.org/10.1111/bph.12614] [PMID: 24641259]
[13]
Quesseveur, G.; Portal, B.; Basile, J.A.; Ezan, P.; Mathou, A.; Halley, H.; Leloup, C.; Fioramonti, X.; Déglon, N.; Giaume, C.; Rampon, C.; Guiard, B.P. Attenuated levels of hippocampal connexin43 and its phosphorylation correlate with antidepressant- and anxiolytic-like activities in mice. Front. Cell. Neurosci., 2015, 9, 490.
[http://dx.doi.org/10.3389/fncel.2015.00490] [PMID: 26733815]
[14]
Jeanson, T.; Pondaven, A.; Ezan, P.; Mouthon, F.; Charvériat, M.; Giaume, C. Antidepressants impact connexin43 channel functions in astrocytes. Front. Cell. Neurosci., 2016, 9, 495.
[http://dx.doi.org/10.3389/fncel.2015.00495] [PMID: 26778961]
[15]
Bernard, R.; Kerman, I.A.; Thompson, R.C.; Jones, E.G.; Bunney, W.E.; Barchas, J.D.; Schatzberg, A.F.; Myers, R.M.; Akil, H.; Watson, S.J. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol. Psychiatry, 2011, 16(6), 634-646.
[http://dx.doi.org/10.1038/mp.2010.44] [PMID: 20386568]
[16]
Lutz, S.E.; Zhao, Y.; Gulinello, M.; Lee, S.C.; Raine, C.S.; Brosnan, C.F. Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J. Neurosci., 2009, 29(24), 7743-7752.
[http://dx.doi.org/10.1523/JNEUROSCI.0341-09.2009] [PMID: 19535586]
[17]
Penninx, B.W.J.H. Depression and anxiety: their insidious dance. Lancet Psychiatry, 2015, 2(6), 479-480.
[http://dx.doi.org/10.1016/S2215-0366(15)00118-2] [PMID: 26360426]
[18]
Gaspersz, R.; Lamers, F.; Kent, J.M.; Beekman, A.T.F.; Smit, J.H.; van Hemert, A.M.; Schoevers, R.A.; Penninx, B.W.J.H. Anxious distress predicts subsequent treatment outcome and side effects in depressed patients starting antidepressant treatment. J. Psychiatr. Res., 2017, 84, 41-48.
[http://dx.doi.org/10.1016/j.jpsychires.2016.09.018] [PMID: 27693981]
[19]
Cramer, A.O.J.; van Borkulo, C.D.; Giltay, E.J.; van der Maas, H.L.J.; Kendler, K.S.; Scheffer, M.; Borsboom, D. Major depression as a complex dynamic system. PLoS One, 2016, 11(12), e0167490.
[http://dx.doi.org/10.1371/journal.pone.0167490] [PMID: 27930698]
[20]
Verduijn, J.; Verhoeven, J.E.; Milaneschi, Y.; Schoevers, R.A.; van Hemert, A.M.; Beekman, A.T.F.; Penninx, B.W.J.H. Reconsidering the prognosis of major depressive disorder across diagnostic boundaries: full recovery is the exception rather than the rule. BMC Med., 2017, 15(1), 215.
[http://dx.doi.org/10.1186/s12916-017-0972-8] [PMID: 29228943]
[21]
Treadway, M.T.; Pizzagalli, D.A. Imaging the pathophysiology of major depressive disorder - from localist models to circuit-based analysis. Biol. Mood Anxiety Disord., 2014, 4(1), 5.
[http://dx.doi.org/10.1186/2045-5380-4-5] [PMID: 24606595]
[22]
Martinot, J.L.; Hardy, P.; Feline, A.; Huret, J.D.; Mazoyer, B.; Attar-Levy, D.; Pappata, S.; Syrota, A. Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am. J. Psychiatry, 1990, 147(10), 1313-1317.
[http://dx.doi.org/10.1176/ajp.147.10.1313] [PMID: 2399999]
[23]
Liotti, M.; Mayberg, H.S.; McGinnis, S.; Brannan, S.L.; Jerabek, P. Unmasking disease-specific cerebral blood flow abnormalities: mood challenge in patients with remitted unipolar depression. Am. J. Psychiatry, 2002, 159(11), 1830-1840.
[http://dx.doi.org/10.1176/appi.ajp.159.11.1830] [PMID: 12411216]
[24]
Wang, L.; Leonards, C.O.; Sterzer, P.; Ebinger, M. White matter lesions and depression: a systematic review and meta-analysis. J. Psychiatr. Res., 2014, 56, 56-64.
[http://dx.doi.org/10.1016/j.jpsychires.2014.05.005] [PMID: 24948437]
[25]
Caspi, A.; Sugden, K.; Moffitt, T.E.; Taylor, A.; Craig, I.W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 2003, 301(5631), 386-389.
[http://dx.doi.org/10.1126/science.1083968] [PMID: 12869766]
[26]
Flint, J.; Kendler, K.S. The genetics of major depression. Neuron, 2014, 81(3), 484-503.
[http://dx.doi.org/10.1016/j.neuron.2014.01.027] [PMID: 24507187]
[27]
Miyata, S.; Hattori, T.; Shimizu, S.; Ito, A.; Tohyama, M. Disturbance of oligodendrocyte function plays a key role in the pathogenesis of schizophrenia and major depressive disorder. BioMed Res. Int., 2015, 2015492367.
[http://dx.doi.org/10.1155/2015/492367] [PMID: 25705664]
[28]
Vitalis, T.; Ansorge, M.S.; Dayer, A.G. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front. Cell. Neurosci., 2013, 7(93), 93.
[http://dx.doi.org/10.3389/fncel.2013.00093] [PMID: 23801939]
[29]
Léonard, B.E. The concept of depression as a dysfunction of the immune system. Curr. Immunol. Rev., 2010, 6(3), 205-212.
[http://dx.doi.org/10.2174/157339510791823835] [PMID: 21170282]
[30]
Wang, H.; Goehring, A.; Wang, K.H.; Penmatsa, A.; Ressler, R.; Gouaux, E. Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature, 2013, 503(7474), 141-145.
[http://dx.doi.org/10.1038/nature12648] [PMID: 24121440]
[31]
Larsen, M.A.B.; Plenge, P.; Andersen, J.; Eildal, J.N.N.; Kristensen, A.S.; Bøgesø, K.P.; Gether, U.; Strømgaard, K.; Bang-Andersen, B.; Loland, C.J. Structure-activity relationship studies of citalopram derivatives: examining substituents conferring selectivity for the allosteric site in the 5-HT transporter. Br. J. Pharmacol., 2016, 173(5), 925-936.
[http://dx.doi.org/10.1111/bph.13411] [PMID: 26699847]
[32]
Coleman, J.A.; Green, E.M.; Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature, 2016, 532(7599), 334-339.
[http://dx.doi.org/10.1038/nature17629] [PMID: 27049939]
[33]
Chilmonczyk, Z.; Bojarski, A.J.; Pilc, A.; Sylte, I. Functional selectivity and antidepressant activity of serotonin 1A receptor ligands. Int. J. Mol. Sci., 2015, 16(8), 18474-18506.
[http://dx.doi.org/10.3390/ijms160818474] [PMID: 26262615]
[34]
Celada, P.; Bortolozzi, A.; Artigas, F. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs, 2013, 27(9), 703-716.
[http://dx.doi.org/10.1007/s40263-013-0071-0] [PMID: 23757185]
[35]
Jayatissa, M.N.; Bisgaard, C.; Tingström, A.; Papp, M.; Wiborg, O. Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology, 2006, 31(11), 2395-2404.
[http://dx.doi.org/10.1038/sj.npp.1301041] [PMID: 16482085]
[36]
Tsuchioka, M.; Takebayashi, M.; Hisaoka, K.; Maeda, N.; Nakata, Y. Serotonin (5-HT) induces glial cell line-derived neurotrophic factor (GDNF) mRNA expression via the transactivation of fibroblast growth factor receptor 2 (FGFR2) in rat C6 glioma cells. J. Neurochem., 2008, 106(1), 244-257.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05357.x] [PMID: 18363829]
[37]
Björkholm, C.; Monteggia, L.M. BDNF - a key transducer of antidepressant effects. Neuropharmacology, 2016, 102, 72-79.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.034] [PMID: 26519901]
[38]
Quesseveur, G.; David, D.J.; Gaillard, M.C.; Pla, P.; Wu, M.V.; Nguyen, H.T.; Nicolas, V.; Auregan, G.; David, I.; Dranovsky, A.; Hantraye, P.; Hen, R.; Gardier, A.M.; Déglon, N.; Guiard, B.P. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl. Psychiatry, 2013, 3(4), e253.
[http://dx.doi.org/10.1038/tp.2013.30] [PMID: 23632457]
[39]
Hisaoka, K.; Takebayashi, M.; Tsuchioka, M.; Maeda, N.; Nakata, Y.; Yamawaki, S. Antidepressants increase glial cell line-derived neurotrophic factor production through monoamine-independent activation of protein tyrosine kinase and extracellular signal-regulated kinase in glial cells. J. Pharmacol. Exp. Ther., 2007, 321(1), 148-157.
[http://dx.doi.org/10.1124/jpet.106.116558] [PMID: 17210798]
[40]
Hisaoka-Nakashima, K.; Miyano, K.; Matsumoto, C.; Kajitani, N.; Abe, H.; Okada-Tsuchioka, M.; Yokoyama, A.; Uezono, Y.; Morioka, N.; Nakata, Y.; Takebayashi, M. Tricyclic antidepressant amitriptyline-induced glial cell line-derived neurotrophic factor production involves pertussis toxin-sensitive Gαi/o activation in astroglial cells. J. Biol. Chem., 2015, 290(22), 13678-13691.
[http://dx.doi.org/10.1074/jbc.M114.622415] [PMID: 25869129]
[41]
Sepede, G.; Corbo, M.; Fiori, F.; Martinotti, G. Reboxetine in clinical practice: a review. Clin. Ter., 2012, 163(4), e255-e262.
[PMID: 23007832]
[42]
Lai, C.H. The bupropion-related subcortical changes in a depression patient. Aust. N. Z. J. Psychiatry, 2015, 49(12), 1224.
[http://dx.doi.org/10.1177/0004867415580819] [PMID: 25834136]
[43]
Skolnick, P.; Basile, A.S. Triple reuptake inhibitors (“broad spectrum” antidepressants). CNS Neurol. Disord. Drug Targets, 2007, 6(2), 141-149.
[http://dx.doi.org/10.2174/187152707780363285] [PMID: 17430151]
[44]
Korte, S.M.; Prins, J.; Krajnc, A.M.; Hendriksen, H.; Oosting, R.S.; Westphal, K.G.; Korte-Bouws, G.A.; Olivier, B. The many different faces of major depression: it is time for personalized medicine. Eur. J. Pharmacol., 2015, 753, 88-104.
[http://dx.doi.org/10.1016/j.ejphar.2014.11.045] [PMID: 25592320]
[45]
Golembiowska, K.; Kowalska, M.; Bymaster, F.P. Effects of the triple reuptake inhibitor amitifadine on extracellular levels of monoamines in rat brain regions and on locomotor activity. Synapse, 2012, 66(5), 435-444.
[http://dx.doi.org/10.1002/syn.21531] [PMID: 22213370]
[46]
Miller, L.L.; Leitl, M.D.; Banks, M.L.; Blough, B.E.; Negus, S.S. Effects of the triple monoamine uptake inhibitor amitifadine on pain-related depression of behavior and mesolimbic dopamine release in rats. Pain, 2015, 156(1), 175-184.
[http://dx.doi.org/10.1016/j.pain.0000000000000018] [PMID: 25599313]
[47]
Andersen, J.; Ladefoged, L.K.; Wang, D.; Kristensen, T.N.; Bang-Andersen, B.; Kristensen, A.S.; Schiøtt, B.; Strømgaard, K. Binding of the multimodal antidepressant drug vortioxetine to the human serotonin transporter. ACS Chem. Neurosci., 2015, 6(11), 1892-1900.
[http://dx.doi.org/10.1021/acschemneuro.5b00225] [PMID: 26389667]
[48]
Papakostas, G.I.; Fava, M. A meta-analysis of clinical trials comparing the serotonin (5HT)-2 receptor antagonists trazodone and nefazodone with selective serotonin reuptake inhibitors for the treatment of major depressive disorder. Eur. Psychiatry, 2007, 22(7), 444-447.
[http://dx.doi.org/10.1016/j.eurpsy.2007.01.1220] [PMID: 17418537]
[49]
Chiuccariello, L.; Cooke, R.G.; Miler, L.; Levitan, R.D.; Baker, G.B.; Kish, S.J.; Kolla, N.J.; Rusjan, P.M.; Houle, S.; Wilson, A.A.; Meyer, J.H. Monoamine oxidase-A occupancy by moclobemide and phenelzine: implications for the development of monoamine oxidase inhibitors. Int. J. Neuropsychopharmacol, 2015, 19(1)pii, pyv078..
[http://dx.doi.org/10.1093/ijnp/pyv078] [PMID: 26316187]
[50]
Guaiana, G.; Gupta, S.; Chiodo, D.; Davies, S.J.C.; Haederle, K.; Koesters, M. Agomelatine versus other antidepressive agents for major depression. (review) Cochrane Database Syst. Rev., 2013, 12(12), CD008851.
[http://dx.doi.org/10.1002/14651858.CD008851.pub2] [PMID: 24343836]
[51]
Kikuchi, T.; Suzuki, T.; Uchida, H.; Watanabe, K.; Mimura, M. Coping strategies for antidepressant side effects: An Internet survey. J. Affect. Disord., 2012, 143(1-3), 89-94.
[http://dx.doi.org/10.1016/j.jad.2012.04.039] [PMID: 22842022]
[52]
Bet, P.M.; Hugtenburg, J.G.; Penninx, B.W.; Hoogendijk, W.J. Side effects of antidepressants during long-term use in a naturalistic setting. Eur. Neuropsychopharmacol., 2013, 23(11), 1443-1451.
[http://dx.doi.org/10.1016/j.euroneuro.2013.05.001] [PMID: 23726508]
[53]
Tundo, A.; de Filippis, R.; Proietti, L. Pharmacologic approaches to treatment resistant depression: Evidences and personal experience. World J. Psychiatry, 2015, 5(3), 330-341.
[http://dx.doi.org/10.5498/wjp.v5.i3.330] [PMID: 26425446]
[54]
Niciu, M.J.; Ionescu, D.F.; Richards, E.M.; Zarate, C.A., Jr Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder. J. Neural Transm. (Vienna), 2014, 121(8), 907-924.
[http://dx.doi.org/10.1007/s00702-013-1130-x] [PMID: 24318540]
[55]
Rajkowska, G.; Miguel-Hidalgo, J.J. Gliogenesis and glial pathology in depression. CNS Neurol. Disord. Drug Targets, 2007, 6(3), 219-233.
[http://dx.doi.org/10.2174/187152707780619326] [PMID: 17511618]
[56]
Kumar, N.M.; Gilula, N.B. The gap junction communication channel. Cell, 1996, 84(3), 381-388.
[http://dx.doi.org/10.1016/S0092-8674(00)81282-9] [PMID: 8608591]
[57]
Goldberg, G.S.; Valiunas, V.; Brink, P.R. Selective permeability of gap junction channels. Biochim. Biophys. Acta, 2004, 1662(1-2), 96-101.
[http://dx.doi.org/10.1016/j.bbamem.2003.11.022] [PMID: 15033581]
[58]
Willecke, K.; Eiberger, J.; Degen, J.; Eckardt, D.; Romualdi, A.; Güldenagel, M.; Deutsch, U.; Söhl, G. Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem., 2002, 383(5), 725-737.
[http://dx.doi.org/10.1515/BC.2002.076] [PMID: 12108537]
[59]
Söhl, G.; Willecke, K. An update on connexin genes and their nomenclature in mouse and man. Cell Commun. Adhes., 2003, 10(4-6), 173-180.
[http://dx.doi.org/10.1080/cac.10.4-6.173.180] [PMID: 14681012]
[60]
Solan, J.L.; Lampe, P.D. Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics. Biochim. Biophys. Acta Biomembr., 2018, 1860(1), 83-90.
[http://dx.doi.org/10.1016/j.bbamem.2017.04.008] [PMID: 28414037]
[61]
Hervé, J.C.; Derangeon, M.; Sarrouilhe, D.; Giepmans, B.N.; Bourmeyster, N. Gap junctional channels are parts of multiprotein complexes. Biochim. Biophys. Acta, 2012, 1818(8), 1844-1865.
[http://dx.doi.org/10.1016/j.bbamem.2011.12.009] [PMID: 22197781]
[62]
Aasen, T.; Mesnil, M.; Naus, C.C.; Lampe, P.D.; Laird, D.W. Gap junctions and cancer: communicating for 50 years. Nat. Rev. Cancer, 2016, 16(12), 775-788.
[http://dx.doi.org/10.1038/nrc.2016.105] [PMID: 27782134]
[63]
Berthoud, V.M.; Ngezahayo, A. Focus on lens connexins. BMC Cell Biol., 2017, 18(Suppl. 1), 6.
[http://dx.doi.org/10.1186/s12860-016-0116-6] [PMID: 28124626]
[64]
Jagger, D.J.; Forge, A. Connexins and gap junctions in the inner ear--it’s not just about K+ recycling. Cell Tissue Res., 2015, 360(3), 633-644.
[http://dx.doi.org/10.1007/s00441-014-2029-z] [PMID: 25381570]
[65]
Leo-Macias, A.; Agullo-Pascual, E.; Delmar, M. The cardiac connexome: Non-canonical functions of connexin43 and their role in cardiac arrhythmias. Semin. Cell Dev. Biol., 2016, 50, 13-21.
[http://dx.doi.org/10.1016/j.semcdb.2015.12.002] [PMID: 26673388]
[66]
Leybaert, L.; Lampe, P.D.; Dhein, S.; Kwak, B.R.; Ferdinandy, P.; Beyer, E.C.; Laird, D.W.; Naus, C.C.; Green, C.R.; Schulz, R. Connexins in cardiovascular and neurovascular health and disease: pharmacological implications. Pharmacol. Rev., 2017, 69(4), 396-478.
[http://dx.doi.org/10.1124/pr.115.012062] [PMID: 28931622]
[67]
Meda, P. Gap junction proteins are key drivers of endocrine function. Biochim. Biophys. Acta Biomembr., 2018, 1860(1), 124-140.
[http://dx.doi.org/10.1016/j.bbamem.2017.03.005] [PMID: 28284720]
[68]
Laird, D.W.; Naus, C.C.; Lampe, P.D. SnapShot: Connexins and Disease. Cell, 2017, 170(6), 1260-1260.e1.
[http://dx.doi.org/10.1016/j.cell.2017.08.034] [PMID: 28886388]
[69]
Giaume, C.; Liu, X. From a glial syncytium to a more restricted and specific glial networking. J. Physiol. Paris, 2012, 106(1-2), 34-39.
[http://dx.doi.org/10.1016/j.jphysparis.2011.09.001] [PMID: 21979115]
[70]
Nakase, T.; Naus, C.C. Gap junctions and neurological disorders of the central nervous system. Biochim. Biophys. Acta, 2004, 1662(1-2), 149-158.
[http://dx.doi.org/10.1016/j.bbamem.2004.01.009] [PMID: 15033585]
[71]
Orthmann-Murphy, J.L.; Enriquez, A.D.; Abrams, C.K.; Scherer, S.S. Loss-of-function GJA12/Connexin47 mutations cause Pelizaeus-Merzbacher-like disease. Mol. Cell. Neurosci., 2007, 34(4), 629-641.
[http://dx.doi.org/10.1016/j.mcn.2007.01.010] [PMID: 17344063]
[72]
Peinado, A.; Yuste, R.; Katz, L.C. Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron, 1993, 10(1), 103-114.
[http://dx.doi.org/10.1016/0896-6273(93)90246-N] [PMID: 8427699]
[73]
Fushiki, S.; Perez Velazquez, J.L.; Zhang, L.; Bechberger, J.F.; Carlen, P.L.; Naus, C.C. Changes in neuronal migration in neocortex of connexin43 null mutant mice. J. Neuropathol. Exp. Neurol., 2003, 62(3), 304-314.
[http://dx.doi.org/10.1093/jnen/62.3.304] [PMID: 12638734]
[74]
Naus, C.C.; Bani-Yaghoub, M.; Rushlow, W.; Bechberger, J.F. Consequences of impaired gap junctional communication in glial cells. Adv. Exp. Med. Biol., 1999, 468, 373-381.
[http://dx.doi.org/10.1007/978-1-4615-4685-6_29] [PMID: 10635043]
[75]
Elias, L.A.; Wang, D.D.; Kriegstein, A.R. Gap junction adhesion is necessary for radial migration in the neocortex. Nature, 2007, 448(7156), 901-907.
[http://dx.doi.org/10.1038/nature06063] [PMID: 17713529]
[76]
Cina, C.; Maass, K.; Theis, M.; Willecke, K.; Bechberger, J.F.; Naus, C.C. Involvement of the cytoplasmic C-terminal domain of connexin43 in neuronal migration. J. Neurosci., 2009, 29(7), 2009-2021.
[http://dx.doi.org/10.1523/JNEUROSCI.5025-08.2009] [PMID: 19228955]
[77]
Deans, M.R.; Gibson, J.R.; Sellitto, C.; Connors, B.W.; Paul, D.L. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron, 2001, 31(3), 477-485.
[http://dx.doi.org/10.1016/S0896-6273(01)00373-7] [PMID: 11516403]
[78]
Belluardo, N.; Trovato-Salinaro, A.; Mudò, G.; Hurd, Y.L.; Condorelli, D.F. Structure, chromosomal localization, and brain expression of human Cx36 gene. J. Neurosci. Res., 1999, 57(5), 740-752.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990901)57:5<740:AID-JNR16>3.0.CO;2-Z] [PMID: 10462698]
[79]
Schock, S.C.; Leblanc, D.; Hakim, A.M.; Thompson, C.S. ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro. Biochem. Biophys. Res. Commun., 2008, 368(1), 138-144.
[http://dx.doi.org/10.1016/j.bbrc.2008.01.054] [PMID: 18211823]
[80]
Valiunas, V. Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J. Gen. Physiol., 2002, 119(2), 147-164.
[http://dx.doi.org/10.1085/jgp.119.2.147] [PMID: 11815665]
[81]
Eugenin, E.A.; Basilio, D.; Sáez, J.C.; Orellana, J.A.; Raine, C.S.; Bukauskas, F.; Bennett, M.V.; Berman, J.W. The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J. Neuroimmune Pharmacol., 2012, 7(3), 499-518.
[http://dx.doi.org/10.1007/s11481-012-9352-5] [PMID: 22438035]
[82]
Giaume, C.; Venance, L. Intercellular calcium signaling and gap junctional communication in astrocytes. Glia, 1998, 24(1), 50-64.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199809)24:1<50:AID-GLIA6>3.0.CO;2-4] [PMID: 9700489]
[83]
Rodríguez-Sinovas, A.; Cabestrero, A.; López, D.; Torre, I.; Morente, M.; Abellán, A.; Miró, E.; Ruiz-Meana, M.; García-Dorado, D. The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. Prog. Biophys. Mol. Biol., 2007, 94(1-2), 219-232.
[http://dx.doi.org/10.1016/j.pbiomolbio.2007.03.003] [PMID: 17462722]
[84]
Pannasch, U.; Freche, D.; Dallérac, G.; Ghézali, G.; Escartin, C.; Ezan, P.; Cohen-Salmon, M.; Benchenane, K.; Abudara, V.; Dufour, A.; Lübke, J.H.; Déglon, N.; Knott, G.; Holcman, D.; Rouach, N. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat. Neurosci., 2014, 17(4), 549-558.
[http://dx.doi.org/10.1038/nn.3662] [PMID: 24584052]
[85]
Contreras, J.E.; Sánchez, H.A.; Véliz, L.P.; Bukauskas, F.F.; Bennett, M.V.; Sáez, J.C. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res. Brain Res. Rev., 2004, 47(1-3), 290-303.
[http://dx.doi.org/10.1016/j.brainresrev.2004.08.002] [PMID: 15572178]
[86]
Retamal, M.A.; Cortés, C.J.; Reuss, L.; Bennett, M.V.; Sáez, J.C. S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc. Natl. Acad. Sci. USA, 2006, 103(12), 4475-4480.
[http://dx.doi.org/10.1073/pnas.0511118103] [PMID: 16537412]
[87]
Giaume, C.; Leybaert, L.; Naus, C.C.; Sáez, J.C. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front. Pharmacol., 2013, 4, 88.
[http://dx.doi.org/10.3389/fphar.2013.00088] [PMID: 23882216]
[88]
Baroja-Mazo, A.; Barberà-Cremades, M.; Pelegrín, P. The participation of plasma membrane hemichannels to purinergic signaling. Biochim. Biophys. Acta, 2013, 1828(1), 79-93.
[http://dx.doi.org/10.1016/j.bbamem.2012.01.002] [PMID: 22266266]
[89]
Froger, N.; Orellana, J.A.; Calvo, C.F.; Amigou, E.; Kozoriz, M.G.; Naus, C.C.; Sáez, J.C.; Giaume, C. Inhibition of cytokine-induced connexin43 hemichannel activity in astrocytes is neuroprotective. Mol. Cell. Neurosci., 2010, 45(1), 37-46.
[http://dx.doi.org/10.1016/j.mcn.2010.05.007] [PMID: 20684043]
[90]
Svenningsen, P.; Burford, J.L.; Peti-Peterdi, J. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct. Front. Physiol., 2013, 4, 292.
[http://dx.doi.org/10.3389/fphys.2013.00292] [PMID: 24137132]
[91]
Duffy, H.S.; Ashton, A.W.; O’Donnell, P.; Coombs, W.; Taffet, S.M.; Delmar, M.; Spray, D.C. Regulation of connexin43 protein complexes by intracellular acidification. Circ. Res., 2004, 94(2), 215-222.
[http://dx.doi.org/10.1161/01.RES.0000113924.06926.11] [PMID: 14699011]
[92]
Adermark, L.; Lovinger, D.M. Electrophysiological properties and gap junction coupling of striatal astrocytes. Neurochem. Int., 2008, 52(7), 1365-1372.
[http://dx.doi.org/10.1016/j.neuint.2008.02.006] [PMID: 18396351]
[93]
Nielsen, M.S.; Axelsen, L.N.; Sorgen, P.L.; Verma, V.; Delmar, M.; Holstein-Rathlou, N.H. Gap junctions. Compr. Physiol., 2012, 2(3), 1981-2035.
[http://dx.doi.org/10.1002/cphy.c110051] [PMID: 23723031]
[94]
Retamal, M.A.; Froger, N.; Palacios-Prado, N.; Ezan, P.; Sáez, P.J.; Sáez, J.C.; Giaume, C. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J. Neurosci., 2007, 27(50), 13781-13792.
[http://dx.doi.org/10.1523/JNEUROSCI.2042-07.2007] [PMID: 18077690]
[95]
Abudara, V.; Roux, L.; Dallérac, G.; Matias, I.; Dulong, J.; Mothet, J.P.; Rouach, N.; Giaume, C. Activated microglia impairs neuroglial interaction by opening Cx43 hemichannels in hippocampal astrocytes. Glia, 2015, 63(5), 795-811.
[http://dx.doi.org/10.1002/glia.22785] [PMID: 25643695]
[96]
Giaume, C.; Theis, M. Pharmacological and genetic approaches to study connexin-mediated channels in glial cells of the central nervous system. Brain Res. Brain Res. Rev., 2010, 63(1-2), 160-176.
[http://dx.doi.org/10.1016/j.brainresrev.2009.11.005] [PMID: 19963007]
[97]
Orellana, J.A.; Martinez, A.D.; Retamal, M.A. Gap junction channels and hemichannels in the CNS: regulation by signaling molecules. Neuropharmacology, 2013, 75, 567-582.
[http://dx.doi.org/10.1016/j.neuropharm.2013.02.020] [PMID: 23499663]
[98]
Rouach, N.; Glowinski, J.; Giaume, C. Activity-dependent neuronal control of gap-junctional communication in astrocytes. J. Cell Biol., 2000, 149(7), 1513-1526.
[http://dx.doi.org/10.1083/jcb.149.7.1513] [PMID: 10871289]
[99]
Roux, L.; Madar, A.; Lacroix, M.M.; Yi, C.; Benchenane, K.; Giaume, C. Astroglial connexin 43 hemichannels modulate olfactory bulb slow oscillations. J. Neurosci., 2015, 35(46), 15339-15352.
[http://dx.doi.org/10.1523/JNEUROSCI.0861-15.2015] [PMID: 26586821]
[100]
Bergoffen, J.; Scherer, S.S.; Wang, S.; Scott, M.O.; Bone, L.J.; Paul, D.L.; Chen, K.; Lensch, M.W.; Chance, P.F.; Fischbeck, K.H. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science, 1993, 262(5142), 2039-2042.
[http://dx.doi.org/10.1126/science.8266101] [PMID: 8266101]
[101]
Uhlenberg, B.; Schuelke, M.; Rüschendorf, F.; Ruf, N.; Kaindl, A.M.; Henneke, M.; Thiele, H.; Stoltenburg-Didinger, G.; Aksu, F.; Topaloğlu, H.; Nürnberg, P.; Hübner, C.; Weschke, B.; Gärtner, J. Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am. J. Hum. Genet., 2004, 75(2), 251-260.
[http://dx.doi.org/10.1086/422763] [PMID: 15192806]
[102]
Schalper, K.A.; Orellana, J.A.; Berthoud, V.M.; Sáez, J.C. Dysfunctions of the diffusional membrane pathways mediated by hemichannels in inherited and acquired human diseases. Curr. Vasc. Pharmacol., 2009, 7(4), 486-505.
[http://dx.doi.org/10.2174/157016109789043937] [PMID: 19485891]
[103]
Frantseva, M.V.; Kokarovtseva, L.; Naus, C.G.; Carlen, P.L.; MacFabe, D.; Perez Velazquez, J.L. Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury. J. Neurosci., 2002, 22(3), 644-653.
[http://dx.doi.org/10.1523/JNEUROSCI.22-03-00644.2002] [PMID: 11826094]
[104]
de Pina-Benabou, M.H.; Szostak, V.; Kyrozis, A.; Rempe, D.; Uziel, D.; Urban-Maldonado, M.; Benabou, S.; Spray, D.C.; Federoff, H.J.; Stanton, P.K.; Rozental, R. Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke, 2005, 36(10), 2232-2237.
[http://dx.doi.org/10.1161/01.STR.0000182239.75969.d8] [PMID: 16179575]
[105]
Rawanduzy, A.; Hansen, A.; Hansen, T.W.; Nedergaard, M. Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke. J. Neurosurg., 1997, 87(6), 916-920.
[http://dx.doi.org/10.3171/jns.1997.87.6.0916] [PMID: 9384404]
[106]
Rami, A.; Volkmann, T.; Winckler, J. Effective reduction of neuronal death by inhibiting gap junctional intercellular communication in a rodent model of global transient cerebral ischemia. Exp. Neurol., 2001, 170(2), 297-304.
[http://dx.doi.org/10.1006/exnr.2001.7712] [PMID: 11476596]
[107]
Ohara, P.T.; Vit, J.P.; Bhargava, A.; Jasmin, L. Evidence for a role of connexin 43 in trigeminal pain using RNA interference in vivo. J. Neurophysiol., 2008, 100(6), 3064-3073.
[http://dx.doi.org/10.1152/jn.90722.2008] [PMID: 18715894]
[108]
Chen, G.; Park, C.K.; Xie, R.G.; Berta, T.; Nedergaard, M.; Ji, R.R. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain, 2014, 137(Pt 8), 2193-2209.
[http://dx.doi.org/10.1093/brain/awu140] [PMID: 24919967]
[109]
Lee, I.H.; Lindqvist, E.; Kiehn, O.; Widenfalk, J.; Olson, L. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury. J. Comp. Neurol., 2005, 489(1), 1-10.
[http://dx.doi.org/10.1002/cne.20567] [PMID: 15977163]
[110]
Chen, M.J.; Kress, B.; Han, X.; Moll, K.; Peng, W.; Ji, R.R.; Nedergaard, M. Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia, 2012, 60(11), 1660-1670.
[http://dx.doi.org/10.1002/glia.22384] [PMID: 22951907]
[111]
O’Carroll, S.J.; Gorrie, C.A.; Velamoor, S.; Green, C.R.; Nicholson, L.F. Connexin43 mimetic peptide is neuroprotective and improves function following spinal cord injury. Neurosci. Res., 2013, 75(3), 256-267.
[http://dx.doi.org/10.1016/j.neures.2013.01.004] [PMID: 23403365]
[112]
Hang, L.H.; Li, S.N.; Luo, H.; Shu, W.W.; Mao, Z.M.; Chen, Y.F.; Shi, L.L.; Shao, D.H. Connexin 43 Mediates CXCL12 Production from Spinal Dorsal Horn to Maintain Bone Cancer Pain in Rats. Neurochem. Res., 2016, 41(5), 1200-1208.
[http://dx.doi.org/10.1007/s11064-015-1815-7] [PMID: 26721509]
[113]
Yoon, S.Y.; Robinson, C.R.; Zhang, H.; Dougherty, P.M. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. J. Pain, 2013, 14(2), 205-214.
[http://dx.doi.org/10.1016/j.jpain.2012.11.002] [PMID: 23374942]
[114]
Dublin, P.; Hanani, M. Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav. Immun., 2007, 21(5), 592-598.
[http://dx.doi.org/10.1016/j.bbi.2006.11.011] [PMID: 17222529]
[115]
Hanani, M.; Caspi, A.; Belzer, V. Peripheral inflammation augments gap junction-mediated coupling among satellite glial cells in mouse sympathetic ganglia. Neuron Glia Biol., 2010, 6(1), 85-89.
[http://dx.doi.org/10.1017/S1740925X10000025] [PMID: 20202288]
[116]
Spataro, L.E.; Sloane, E.M.; Milligan, E.D.; Wieseler-Frank, J.; Schoeniger, D.; Jekich, B.M.; Barrientos, R.M.; Maier, S.F.; Watkins, L.R. Spinal gap junctions: potential involvement in pain facilitation. J. Pain, 2004, 5(7), 392-405.
[http://dx.doi.org/10.1016/j.jpain.2004.06.006] [PMID: 15501197]
[117]
Roh, D.H.; Yoon, S.Y.; Seo, H.S.; Kang, S.Y.; Han, H.J.; Beitz, A.J.; Lee, J.H. Intrathecal injection of carbenoxolone, a gap junction decoupler, attenuates the induction of below-level neuropathic pain after spinal cord injury in rats. Exp. Neurol., 2010, 224(1), 123-132.
[http://dx.doi.org/10.1016/j.expneurol.2010.03.002] [PMID: 20226782]
[118]
Huang, C.; Han, X.; Li, X.; Lam, E.; Peng, W.; Lou, N.; Torres, A.; Yang, M.; Garre, J.M.; Tian, G.F.; Bennett, M.V.; Nedergaard, M.; Takano, T. Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury. J. Neurosci., 2012, 32(10), 3333-3338.
[http://dx.doi.org/10.1523/JNEUROSCI.1216-11.2012] [PMID: 22399755]
[119]
Jasmin, L.; Vit, J.P.; Bhargava, A.; Ohara, P.T. Can satellite glial cells be therapeutic targets for pain control? Neuron Glia Biol., 2010, 6(1), 63-71.
[http://dx.doi.org/10.1017/S1740925X10000098] [PMID: 20566001]
[120]
Mika, J.; Zychowska, M.; Popiolek-Barczyk, K.; Rojewska, E.; Przewlocka, B. Importance of glial activation in neuropathic pain. Eur. J. Pharmacol., 2013, 716(1-3), 106-119.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.072] [PMID: 23500198]
[121]
Morioka, N.; Zhang, F.F.; Nakamura, Y.; Kitamura, T.; Hisaoka-Nakashima, K.; Nakata, Y. Tumor necrosis factor-mediated downregulation of spinal astrocytic connexin43 leads to increased glutamatergic neurotransmission and neuropathic pain in mice. Brain Behav. Immun., 2015, 49, 293-310.
[http://dx.doi.org/10.1016/j.bbi.2015.06.015] [PMID: 26116449]
[122]
Zhang, F.F.; Morioka, N.; Kitamura, T.; Fujii, S.; Miyauchi, K.; Nakamura, Y.; Hisaoka-Nakashima, K.; Nakata, Y. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression. Life Sci., 2016, 155, 116-122.
[http://dx.doi.org/10.1016/j.lfs.2016.05.021] [PMID: 27197028]
[123]
Sarrouilhe, D.; Dejean, C.; Mesnil, M. Involvement of gap junction channels in the pathophysiology of migraine with aura. Front. Physiol., 2014, 5, 78.
[http://dx.doi.org/10.3389/fphys.2014.00078] [PMID: 24611055]
[124]
Rajkowska, G.; Miguel-Hidalgo, J.J.; Wei, J.; Dilley, G.; Pittman, S.D.; Meltzer, H.Y.; Overholser, J.C.; Roth, B.L.; Stockmeier, C.A. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry, 1999, 45(9), 1085-1098.
[http://dx.doi.org/10.1016/S0006-3223(99)00041-4] [PMID: 10331101]
[125]
Ernst, C.; Nagy, C.; Kim, S.; Yang, J.P.; Deng, X.; Hellstrom, I.C.; Choi, K.H.; Gershenfeld, H.; Meaney, M.J.; Turecki, G. Dysfunction of astrocyte connexins 30 and 43 in dorsal lateral prefrontal cortex of suicide completers. Biol. Psychiatry, 2011, 70(4), 312-319.
[http://dx.doi.org/10.1016/j.biopsych.2011.03.038] [PMID: 21571253]
[126]
Miguel-Hidalgo, J.J.; Wilson, B.A.; Hussain, S.; Meshram, A.; Rajkowska, G.; Stockmeier, C.A. Reduced connexin 43 immunolabeling in the orbitofrontal cortex in alcohol dependence and depression. J. Psychiatr. Res., 2014, 55, 101-109.
[http://dx.doi.org/10.1016/j.jpsychires.2014.04.007] [PMID: 24774648]
[127]
Celano, C.M.; Freudenreich, O.; Fernandez-Robles, C.; Stern, T.A.; Caro, M.A.; Huffman, J.C. Depressogenic effects of medications: a review. Dialogues Clin. Neurosci., 2011, 13(1), 109-125.
[PMID: 21485751]
[128]
Nevin, R.L. Mefloquine blockade of connexin 36 and connexin 43 gap junctions and risk of suicide. Biol. Psychiatry, 2012, 71(1), e1-e2.
[http://dx.doi.org/10.1016/j.biopsych.2011.07.026] [PMID: 21861987]
[129]
Nagy, C.; Torres-Platas, S.G.; Mechawar, N.; Turecki, G. Repression of astrocytic connexins in cortical and subcortical brain regions and prefrontal enrichment of H3K9me3 in depression and suicide. Int. J. Neuropsychopharmacol., 2017, 20(1), 50-57.
[http://dx.doi.org/10.1093/ijnp/pyw071] [PMID: 27516431]
[130]
Li, D.Q.; Li, X.J.; Duan, J.F.; Cai, W. Wuling Capsule promotes hippocampal neurogenesis by improving expression of connexin 43 in rats exposed to chronic unpredictable mild stress. J. Chin. Integr. Med., 2010, 8(7), 662-669.
[http://dx.doi.org/10.3736/jcim20100710] [PMID: 20619143]
[131]
Mostafavi, H.; Khaksarian, M.; Joghataei, M.T.; Hassanzadeh, G.; Soleimani, M.; Eftekhari, S.; Soleimani, M.; Mousavizadeh, K.; Hadjighassem, M.R. Fluoxetin upregulates connexin 43 expression in astrocyte. Basic Clin. Neurosci., 2014, 5(1), 74-79.
[PMID: 25436087]
[132]
Scemes, E.; Giaume, C. Astrocyte calcium waves: what they are and what they do. Glia, 2006, 54(7), 716-725.
[http://dx.doi.org/10.1002/glia.20374] [PMID: 17006900]
[133]
Ren, Q.; Wang, Z.Z.; Chu, S.F.; Xia, C.Y.; Chen, N.H. Gap junction channels as potential targets for the treatment of major depressive disorder. Psychopharmacology (Berl.), 2018, 235(1), 1-12.
[http://dx.doi.org/10.1007/s00213-017-4782-7] [PMID: 29178009]
[134]
Hirschfeld, R.M. History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry, 2000, 61(Suppl. 6), 4-6.
[PMID: 10775017]
[135]
Sarrouilhe, D.; Clarhaut, J.; Defamie, N.; Mesnil, M. Serotonin and cancer: what is the link? Curr. Mol. Med., 2015, 15(1), 62-77.
[http://dx.doi.org/10.2174/1566524015666150114113411] [PMID: 25601469]
[136]
Derangeon, M.; Bozon, V.; Defamie, N.; Peineau, N.; Bourmeyster, N.; Sarrouilhe, D.; Argibay, J.A.; Hervé, J.C. 5-HT4 and 5-HT2 receptors antagonistically influence gap junctional coupling between rat auricular myocytes. J. Mol. Cell. Cardiol., 2010, 48(1), 220-229.
[http://dx.doi.org/10.1016/j.yjmcc.2009.07.005] [PMID: 19615378]
[137]
Hervé, J.C.; Sarrouilhe, D. Connexin-made channels as pharmacological targets. Curr. Pharm. Des., 2005, 11(15), 1941-1958.
[http://dx.doi.org/10.2174/1381612054021060] [PMID: 15974969]
[138]
Hung, C.I.; Liu, C.Y.; Cheng, Y.T.; Wang, S.J. Migraine: a missing link between somatic symptoms and major depressive disorder. J. Affect. Disord., 2009, 117(1-2), 108-115.
[http://dx.doi.org/10.1016/j.jad.2008.12.015] [PMID: 19167091]
[139]
Hung, C.I.; Liu, C.Y.; Chen, C.Y.; Yang, C.H.; Wang, S.J. The impacts of migraine and anxiety disorders on painful physical symptoms among patients with major depressive disorder. J. Headache Pain, 2014, 15(1), 73.
[http://dx.doi.org/10.1186/1129-2377-15-73] [PMID: 25382691]
[140]
Kanner, A.M. Psychiatric issues in epilepsy: the complex relation of mood, anxiety disorders, and epilepsy. Epilepsy Behav., 2009, 15(1), 83-87.
[http://dx.doi.org/10.1016/j.yebeh.2009.02.034] [PMID: 19245845]
[141]
Kanner, A.M.; Schachter, S.C.; Barry, J.J.; Hesdorffer, D.C.; Mula, M.; Trimble, M.; Hermann, B.; Ettinger, A.E.; Dunn, D.; Caplan, R.; Ryvlin, P.; Gilliam, F.; LaFrance, W.C., Jr Depression and epilepsy: epidemiologic and neurobiologic perspectives that may explain their high comorbid occurrence. Epilepsy Behav., 2012, 24(2), 156-168.
[http://dx.doi.org/10.1016/j.yebeh.2012.01.007] [PMID: 22632406]
[142]
Mylvaganam, S.; Ramani, M.; Krawczyk, M.; Carlen, P.L. Roles of gap junctions, connexins, and pannexins in epilepsy. Front. Physiol., 2014, 5, 172.
[http://dx.doi.org/10.3389/fphys.2014.00172] [PMID: 24847276]