ABC Transporters in Extrahepatic Tissues: Pharmacological Regulation in Heart and Intestine

Page: [1155 - 1184] Pages: 30

  • * (Excluding Mailing and Handling)

Abstract

ATP binding cassette (ABC) transporters are transmembrane proteins expressed in secretory epithelia like the liver, kidneys and intestine, in the epithelia exhibiting barrier function such as the blood-brain barrier and placenta, and to a much lesser extent, in tissues like reproductive organs, lungs, heart and pancreas, among others. They regulate internal distribution of endogenous metabolites and xenobiotics including drugs of therapeutic use and also participate in their elimination from the body. We here describe the function and regulation of ABC transporters in the heart and small intestine, as examples of extrahepatic tissues, in which ABC proteins play clearly different roles. In the heart, they are involved in tissue pathogenesis as well as in protecting this organ against toxic compounds and druginduced oxidative stress. The small intestine is highly exposed to therapeutic drugs taken orally and, consequently, ABC transporters localized on its surface strongly influence drug absorption and pharmacokinetics. Examples of the ABC proteins currently described are Multidrug Resistance-associated Proteins 1 and 2 (MRP1 and 2) for heart and small intestine, respectively, and P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) for both organs.

Keywords: ATP binding cassette transporters, P-glycoprotein, multidrug resistance-associated proteins, breast cancer resistance protein, heart, intestine, drug transport.

[1]
Zhou, S.F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 2008, 38(7-8), 802-832.
[2]
Callen, D.F.; Baker, E.; Simmers, R.N.; Seshadri, R.; Roninson, I.B. Localization of the human multiple drug resistance gene, MDR1, to 7q21.1. Hum. Genet., 1987, 77(2), 142-144.
[3]
Hsu, S.I.; Lothstein, L.; Horwitz, S.B. Differential overexpression of three mdr gene family members in multidrugresistant J774.2 mouse cells. Evidence that distinct P-glycoprotein precursors are encoded by unique mdr genes. J. Biol. Chem., 1989, 264, 12053-12062.
[4]
Benet, L.Z. The drug transporter-metabolism alliance: uncovering and defining the interplay. Mol. Pharm., 2009, 6(6), 1631-1643.
[5]
Borst, P.; Evers, R.; Kool, M.; Wijnholds, J. A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Inst., 2000, 92(16), 1295-1302.
[6]
Cole, S.P.; Bhardwaj, G.; Gerlach, J.H.; Mackie, J.E.; Grant, C.E.; Almquist, K.C.; Stewart, A.J.; Kurz, E.U.; Duncan, A.M.; Deeley, R.G. Overexpression of a transporter gene in a multidrugresistant human lung cancer cell line. Science, 1992, 258, 1650-1654.
[7]
Leier, I.; Jedlitschky, G.; Buchholz, U.; Cole, S.P.; Deeley, R.G.; Keppler, D. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J. Biol. Chem., 1994, 269, 27807-27810.
[8]
Cole, S.P.; Deeley, R.G. Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. BioEssays, 1998, 20, 931-940.
[9]
Renes, J.; de Vries, E.E.; Hooiveld, G.J.; Krikken, I.; Jansen, P.L.; Müller, M. Multidrug resistance protein MRP1 protects against the toxicity of the major lipid peroxidation product 4-hydroxynonenal. Biochem. J., 2000, 350, 555-561.
[10]
Leslie, E.M.; Ito, K.; Upadhyaya, P.; Hecht, S.S.; Deeley, R.G.; Cole, S.P. Transport of the β-O-glucuronide conjugate of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by the multidrug resistance protein 1 (MRP1). Requirement for glutathione or a non-sulfur-containing analog. J. Biol. Chem., 2000, 276, 27846-27854.
[11]
Jungsuwadee, P.; Zhao, T.; Stolarczyk, E.I.; Paumi, C.M.; Butterfield, D.A.; St Clair, D.K.; Vore, M. The G671V variant of MRP1/ABCC1 links doxorubicin-induced acute cardiac toxicity to disposition of the glutathione conjugate of 4-hydroxy-2-trans-nonenal. Pharmacogenet. Genomics, 2012, 22, 273-284.
[12]
Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15665-15670.
[13]
Doyle, L.A.; Ross, D.D. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene, 2003, 22(47), 7340-7358.
[14]
Jani, M.; Ambrus, C.; Magnan, R.; Jakab, K.T.; Beéry, E.; Zolnerciks, J.K.; Krajcsi, P. Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch. Toxicol., 2014, 88(6), 1205-1248.
[15]
Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv. Drug Deliv. Rev., 2003, 55, 3-29.
[16]
Thiebaut, F.; Tsuruo, T.; Hamada, H.; Gottesman, M.M.; Pastan, I.; Willingham, M.C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA, 1987, 84(21), 7735-7738.
[17]
Schaub, T.P.; Kartenbeck, J.; König, J.; Vogel, O.; Witzgall, R.; Kriz, W.; Keppler, D. Expression of the conjugate export pump encoded by the mrp2 gene in the apical membrane of kidney proximal tubules. J. Am. Soc. Nephrol., 1997, 8, 1213-1221.
[18]
Belinsky, M.G.; Chen, Z.S.; Shchaveleva, I.; Zeng, H.; Kruh, G.D. Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res., 2002, 62(21), 6172-6177.
[19]
Borst, P.; van de Wetering, K.; Schlingemann, R. Does the absence of ABCC6 (multidrug resistance protein 6) in patients with Pseudoxanthoma elasticum prevent the liver from providing sufficient vitamin K to the periphery? Cell Cycle, 2008, 7(11), 1575-1579.
[20]
Huls, M.; Brown, C.D.; Windass, A.S.; Sayer, R.; van den Heuvel, J.J.; Heemskerk, S.; Russel, F.G.; Masereeuw, R. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int., 2008, 73(2), 220-225.
[21]
Woodward, O.M.; Kottgen, A.; Coresh, J.; Boerwinkle, E.; Guggino, W.B.; Köttgen, M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. USA, 2009, 106(25), 10338-10342.
[22]
Lepist, E.I.; Ray, A.S. Renal drug-drug interactions: what we have learned and where we are going. Expert Opin. Drug Metab. Toxicol., 2012, 8(4), 433-448.
[23]
Scherrmann, J.M. Expression and function of multidrug resistance transporters at the blood-brain barriers. Expert Opin. Drug Metab. Toxicol., 2005, 1, 233-246.
[24]
Bendayan, R.; Ronaldson, P.T.; Gingras, D.; Bendayan, M. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J. Histochem. Cytochem., 2006, 54, 1159-1167.
[25]
Cooray, H.C.; Blackmore, C.G.; Maskell, L.; Barrand, M.A. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport, 2002, 13, 2059-2063.
[26]
Lee, G.; Babakhanian, K.; Ramaswamy, M.; Prat, A.; Wosik, K.; Bendayan, R. Expression of the ATP-binding cassette membrane transporter, ABCG2, in human and rodent brain microvessel endothelial and glial cell culture systems. Pharm. Res., 2007, 24, 1262-1274.
[27]
Qosa, H.; Miller, D.S. Pasinelli, P3.; Trotti, D. Regulation of ABCefflux transporters at blood-brain barrier in health and neurological disorders. Brain Res., 2005, 1628, 298-316.
[28]
Gazzin, S.; Strazielle, N.; Schmitt, C.; Fevre-Montange, M.; Ostrow, J.D.; Tiribelli, C.; Ghersi-Egea, J.F. Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J. Comp. Neurol., 2008, 510, 497-507.
[29]
Daood, M.; Tsai, C.; Ahdab-Barmada, M.; Watchko, J.F. ABC transporter (P-gp/ABCB1,MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics, 2008, 39, 211-218.
[30]
Dallas, S.; Miller, D.S.; Bendayan, R. Multidrug resistance- associated proteins: expression and function in the central nervous system. Pharmacol. Rev., 2006, 58, 140-161.
[31]
Dallas, S.; Zhu, X.; Baruchel, S.; Schlichter, L.; Bendayan, R. Functional expression of the multidrug resistance protein 1 in microglia. J. Pharmacol. Exp. Ther., 2003, 307, 282-290.
[32]
Jones, D.P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol., 2008, 295, C849-C868.
[33]
Cole, S.P. Targeting the multidrug resistance protein (MRP1, ABCC1): past, present and future. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 95-117.
[34]
Lorico, A.; Rappa, G.; Finch, R.A.; Yang, D.; Flavell, R.A.; Sartorelli, A.C. Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Res., 1997, 57, 5238-5242.
[35]
Deng, J.; Coy, D.; Zhang, W.; Sunkara, M.; Morris, A.J.; Wang, C.; Chaiswing, L.; St Clair, D.; Vore, M.; Jungsuwadee, P. Elevated glutathione in multidrug resistance associated protein 1 (Mrp1/Abcc1) null mice does not protect against doxorubicin-induced nuclear damage in heart in multidrug resistance-associated protein 1 (Mrp1/Abcc1) null mice. J. Pharmacol. Exp. Ther., 2015, 355(2), 272-279.
[36]
Zhang, W.; Deng, J.; Sunkara, M.; Morris, A.J.; Wang, C.; St Clair, D.; Vore, M. Loss of multidrug resistance-associated protein 1 potentiates chronic doxorubicin-induced cardiac dysfunction in mice. J. Pharmacol. Exp. Ther., 2015, 355, 280-287.
[37]
Hirrlinger, J.; König, J.; Keppler, D.; Lindenau, J.; Schulz, J.B.; Dringen, R. The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J. Neurochem., 2001, 76, 627-636.
[38]
Minich, T.; Riemer, J.; Schulz, J.B.; Wielinga, P.; Wijnholds, J.; Dringen, R. The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J. Neurochem., 2006, 97, 373-384.
[39]
Cole, S.P.; Deeley, R.G. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol. Sci., 2006, 27, 438-446.
[40]
Zhang, W.; St Clair, D.; Butterfield, D.A.; Vore, M. Loss of Mrp1 potentiates Doxorubicin-induced cardiotoxicity in neonatal mouse cardiomyocytes and cardiac fibroblasts. Toxicol. Sci., 2016, 151, 44-56.
[41]
Wijnholds, J.; Mol, C.A.; van Deemter, L.; de Haas, M.; Scheffer, G.L.; Baas, F.; Beijnen, J.H.; Scheper, R.J.; Hatse, S.; De Clercq, E.; Balzarini, J.; Borst, P. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc. Natl. Acad. Sci. USA, 2000, 97, 7476-7481.
[42]
Sasabe, H.; Kato, Y.; Suzuki, T.; Hose, M.; Miyamoto, G.; Sugiyama, Y. Differential involvement of multidrug resistance-associated protein 1 and P-glycoprotein in tissue distribution and excretion of grepafloxacin in mice. J. Pharmacol. Exp. Ther., 2004, 310, 648-655.
[43]
Muramatsu, T.; Johnson, D.R.; Finch, R.A.; Johnson, L.K.; Leffert, J.J.; Lin, Z.P.; Pizzorno, G.; Sartorelli, A.C. Age-related differences in vincristine toxicity and biodistribution in wild-type and transporter-deficient mice. Oncol. Res., 2004, 14, 331-343.
[44]
Stride, B.D.; Grant, C.E.; Loe, D.W.; Hipfner, D.R.; Cole, S.P.; Deeley, R.G. Pharmacological characterization of the murine and human orthologs of multidrug-resistance protein in transfected human embryonic kidney cells. Mol. Pharmacol., 1997, 52, 344-353.
[45]
Volkel, W.; Alvarez-Sanchez, R.; Weick, I.; Mally, A.; Dekant, W.; Pahler, A. Glutathione conjugates of 4-hydroxy-2(E)-nonenal as biomarkers of hepatic oxidative stress-induced lipid peroxidation in rats. Free Radic. Biol. Med., 2005, 38(11), 1526-1536.
[46]
Wojnowski, L.; Kulle, B.; Schirmer, M.; Schlüter, G.; Schmidt, A.; Rosenberger, A. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation, 2005, 112, 3754-3762.
[47]
Jungsuwadee, P.; Cole, M.P.; Sultana, R.; Joshi, G.; Tangpong, J.; Butterfield, D.A.; St. Clair, D.K.; Vore, M. Increase in Mrp1 expression and 4-hydroxy-2-nonenal adduction in heart tissue of Adriamycin-treated C57BL/6 mice. Mol. Cancer Ther., 2006, 5, 2851-2860.
[48]
Semsei, A.F.; Erdelyi, D.J.; Ungvari, I.; Csagoly, E.; Hegyi, M.Z.; Kiszel, P.S. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol. Int., 2012, 36, 79-86.
[49]
Visscher, H.; Ross, C.J.; Rassekh, S.R.; Barhdadi, A.; Dubé, M.P.; Al-Saloos, H. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol., 2012, 30, 1422-1428.
[50]
Hayashi, A.; Suzuki, H.; Itoh, K.; Yamamoto, M.; Sugiyama, Y. Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein1 in mouse embryo fibroblasts. Biochem. Biophys. Res. Commun., 2003, 310, 824-829.
[51]
Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; O’Connor, T.; Yamamoto, M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells, 2003, 8, 379-391.
[52]
Nguyen, T.; Sherratt, P.J.; Nioi, P.; Yang, C.S.; Pickett, C.B. Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1. J. Biol. Chem., 2005, 280, 32485-32492.
[53]
Meissner, K.; Sperker, B.; Karsten, C.; Meyer, Z.; Schwabedissen, H.; Seeland, U.; Böhm, M.; Bien, S.; Dazert, P.; Kunert-Keil, C.; Vogelgesang, S.; Warzok, R.; Siegmund, W.; Cascorbi, I.; Wendt, M.; Kroemer, H.K. Expression and localization of Pglycoprotein in human heart: effects of cardiomyopathy. J. Histochem. Cytochem., 2002, 50, 1351-1356.
[54]
Lazarowski, A.J.; García Rivello, H.J.; Vera Janavel, G.L.; Cuniberti, L.A.; Cabeza Meckert, P.M.; Yannarelli, G.G.; Mele, A.; Crottogini, A.J.; Laguens, R.P. Cardiomyocytes of chronically ischemic pig hearts express the MDR-1 gene-encoded P-glycoprotein. J. Histochem. Cytochem., 2005, 53, 845-850.
[55]
Schinkel, A.H.; Smit, J.J.; van Tellingen, O.; Beijnen, J.H.; Wagenaar, E.; van Deemter, L.; Mol, C.A.; van der Valk, M.A.; Robanus-Maandag, E.C.; te Riele, H.P.; Berns, A.J.M.; Borst, P. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 1994, 77, 491-502.
[56]
Schinkel, A.H.; Wagenaar, E.; Mol, C.A.; van Deemter, L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest., 1996, 97, 2517-2524.
[57]
Cox, D.S.; Scott, K.R.; Gao, H.; Eddington, N.D. Effect of P-glycoprotein on the pharmacokinetics and tissue distribution of enaminone anticonvulsants: analysis by population and physiological approaches. J. Pharmacol. Exp. Ther., 2002, 302, 1096-1104.
[58]
Van Asperen, J.; van Tellingen, O.; Tijssen, F.; Schinkel, A.H.; Beijnen, J.H. Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br. J. Cancer, 1999, 79, 108-113.
[59]
Dell’Acqua, G.; Polishchuck, R.; Fallon, J.T.; Gordon, J.W. Cardiac resistance to adriamycin in transgenic mice expressing a rat alpha-cardiac myosin heavy chain/human multiple drug resistance 1 fusion gene. Hum. Gene Ther., 1999, 10, 1269-1279.
[60]
Estevez, M.D.; Wolf, A.; Schramm, U. Effect of PSC 833, verapamil and amiodarone on adriamycin toxicity in cultured rat cardiomyocytes. Toxicol. In Vitro, 2000, 14, 17-23.
[61]
Sridhar, R.; Dwivedi, C.; Anderson, J.; Baker, P.B.; Sharma, H.M.; Desai, P.; Engineer, F.N. Effects of verapamil on the acute toxicity of doxorubicin in vivo. J. Natl. Cancer Inst., 1992, 84, 1653-1660.
[62]
Bunting, K.D. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells, 2002, 20, 11-20.
[63]
Oyama, T.; Nagai, T.; Wada, H.; Naito, A.T.; Matsuura, K.; Iwanaga, K.; Takahashi, T.; Goto, M.; Mikami, Y.; Yasuda, N.; Akazawa, H.; Uezumi, A.; Takeda, S.; Komuro, I. Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J. Cell Biol., 2007, 176, 329-341.
[64]
Doyle, M.J.; Maher, T.J.; Li, Q.; Garry, M.G.; Sorrentino, B.P.; Martin, C.M. Abcg2-Labeled Cells Contribute to Different Cell Populations in the Embryonic and Adult Heart. Stem Cells Dev., 2016, 25, 277-284.
[65]
Higashikuni, Y.; Sainz, J.; Nakamura, K.; Takaoka, M.; Enomoto, S.; Iwata, H.; Sahara, M.; Tanaka, K.; Koibuchi, N.; Ito, S.; Kusuhara, H.; Sugiyama, Y.; Hirata, Y.; Nagai, R.; Sata, M. The ATP-binding cassette transporter BCRP1/ABCG2 plays a pivotal role in cardiac repair after myocardial infarction via modulation of microvascular endothelial cell survival and function. Arterioscler. Thromb. Vasc. Biol., 2010, 30, 2128-2135.
[66]
Higashikuni, Y.; Sainz, J.; Nakamura, K.; Takaoka, M.; Enomoto, S.; Iwata, H.; Tanaka, K.; Sahara, M.; Hirata, Y.; Nagai, R.; Sata, M. The ATP-binding cassette transporter ABCG2 protects against pressure overload-induced cardiac hypertrophy and heart failure by promoting angiogenesis and antioxidant response. Arterioscler. Thromb. Vasc. Biol., 2012, 32, 654-661.
[67]
Martin, C.M.; Ferdous, A.; Gallardo, T.; Humphries, C.; Sadek, H.; Caprioli, A.; Garcia, J.A.; Szweda, L.I.; Garry, M.G.; Garry, D.J. Hypoxia-inducible factor-2α transactivates Abcg2 and promotes cytoprotection in cardiac side population cells. Circ. Res., 2008, 102, 1075-1081.
[68]
Maher, T.J.; Ren, Y.; Li, Q.; Braunlin, E.; Garry, M.G.; Sorrentino, B.P.; Martin, C.M. ATP-binding cassette transporter Abcg2 lineage contributes to the cardiac vasculature after oxidative stress. Am. J. Physiol. Heart Circ. Physiol., 2014, 306, H1610-H1618.
[69]
Takeuchi, R.; Shinozaki, K.; Nakanishi, T.; Tamai, I. Local Drug-Drug Interaction of Donepezil with Cilostazol at Breast Cancer Resistance Protein (ABCG2) Increases Drug Accumulation in Heart. Drug Metab. Dispos., 2016, 44, 68-74.
[70]
Takaya, T.; Okamoto, M.; Yodoi, K.; Hata, K.; Kijima, Y.; Nakajima, H.; Nishikawa, Y.; Kita, T.; Ito, M.; Seo, T.; Kawashima, S. Torsades de Pointes with QT prolongation related to donepezil use. J. Cardiol., 2009, 54, 507-511.
[71]
Tanaka, A.; Koga, S.; Hiramatsu, Y. Donepezil-induced adverse side effects of cardiac rhythm: 2 cases report of atrioventricular block and Torsade de Pointes. Intern. Med., 2009, 48, 1219-1223.
[72]
Shinozaki, K. Shortening of donepezil-induced QTc prolongation with a change in the interacting drug, after electrocardiograph monitoring by community pharmacists: a case report. Yakugaku Zasshi, 2012, 132, 237-241.
[73]
Igeta, H. Suzuki., Y; Motegi., T; Sasaki., A; Yokoyama., Y; Someya., T. Deterioration in donepezil-induced PR prolongation after a coadministration of memantine in a patient with Alzheimer’s disease. Gen. Hosp. Psychiatry, 2013, 35, 680.
[74]
Mitani, A.; Nakahara, T.; Sakamoto, K.; Ishii, K. Expression of multidrug resistance protein 4 and 5 in the porcine coronary and pulmonary arteries. Eur. J. Pharmacol., 2003, 466, 223-224.
[75]
Dazert, P.; Meissner, K.; Vogelgesang, S.; Heydrich, B.; Eckel, L.; Böhm, M.; Warzok, R.; Kerb, R.; Brinkmann, U.; Schaeffeler, E.; Schwab, M.; Cascorbi, I.; Jedlitschky, G.; Kroemer, H.K. Expression and localization of the multidrug resistance protein 5 (MRP5/ ABCC5), a cellular export pump for cyclic nucleotides, in human heart. Am. J. Pathol., 2003, 163, 1567-1577.
[76]
Fojo, A.T.; Ueda, K.; Slamon, D.J.; Poplack, D.G.; Gottesman, M.M.; Pastan, I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA, 1987, 84(1), 265-269.
[77]
Taipalensuu, J.; Törnblom, H.; Lindberg, G.; Einarsson, C.; Sjöqvist, F.; Melhus, H.; Garberg, P.; Sjöström, B.; Lundgren, B.; Artursson, P. J. Pharmacol. Exp. Ther., 2001, 299, 164-170.
[78]
Burk, O.; Arnold, K.A.; Nussler, A.K.; Schaeffeler, E.; Efimova, E.; Avery, B.A.; Avery, M.A.; Fromm, M.F.; Eichelbaum, M. Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol. Pharmacol., 2005, 67(6), 1954-1965.
[79]
Ma, L.; Wei, S.; Yang, B.; Ma, W.; Wu, X.; Ji, H.; Sui, H.; Chen, J. Chrysosplenetin inhibits artemisinin efflux in P-gp-over-expressing Caco-2 cells and reverses P-gp/MDR1 mRNA up-regulated expression induced by artemisinin in mouse small intestine. Pharm. Biol., 2017, 55(1), 374-380.
[80]
Perdomo, V.G.; Rigalli, J.P.; Villanueva, S.S.; Ruiz, M.L.; Luquita, M.G.; Echenique, C.G.; Catania, V.A. Modulation of biotransformation systems and ABC transporters by benznidazole in rats. Antimicrob. Agents Chemother., 2013, 57(10), 4894-4902.
[81]
Rigalli, J.P.; Perdomo, V.G.; Luquita, M.G.; Villanueva, S.S.; Arias, A.; Theile, D.; Weiss, J.; Mottino, A.D.; Ruiz, M.L.; Catania, V.A. Regulation of biotransformation systems and ABC transporters by benznidazole in HepG2 cells: involvement of pregnane X-receptor. PLoS Negl. Trop. Dis., 2012, 6(12), e1951.
[82]
Schuetz, E.G.; Beck, W.T.; Schuetz, J.D. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol. Pharmacol., 1996, 49(2), 311-318.
[83]
Greiner, B.; Eichelbaum, M.; Fritz, P.; Kreichgauer, H.P.; von Richter, O.; Zundler, J.; Kroemer, H.K. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest., 1999, 104(2), 147-153.
[84]
Westphal, K.; Weinbrenner, A.; Zschiesche, M.; Franke, G.; Knoke, M.; Oertel, R.; Fritz, P.; von Richter, O.; Warzok, R.; Hachenberg, T.; Kauffmann, H.M.; Schrenk, D.; Terhaag, B.; Kroemer, H.K.; Siegmund, W. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin. Pharmacol. Ther., 2000, 68(4), 345-355.
[85]
Geick, A.; Eichelbaum, M.; Burk, O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem., 2001, 276(18), 14581-14587.
[86]
Haslam, I.S.; Jones, K.; Coleman, T.; Simmons, N.L. Rifampin and digoxin induction of MDR1 expression and function in human intestinal (T84) epithelial cells. Br. J. Pharmacol., 2008, 154(1), 246-255.
[87]
Naruhashi, K.; Kurahashi, Y.; Fujita, Y.; Kawakita, E.; Yamasaki, Y.; Hattori, K.; Nishimura, A.; Shibata, N. Comparison of the expression and function of ATP binding cassette transporters in Caco-2 and T84 cells on stimulation by selected endogenous compounds and xenobiotics. Drug Metab. Pharmacokinet., 2011, 26(2), 145-153.
[88]
Jin, S.; Scotto, K.W. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol. Cell. Biol., 1998, 18(7), 4377-4384.
[89]
Kwatra, D.; Vadlapudi, A.D.; Vadlapatla, R.K.; Khurana, V.; Pal, D.; Mitra, A.K. Binary and ternary combinations of anti-HIV protease inhibitors: effect on gene expression and functional activity of CYP3A4 and efflux transporters. Drug Metabol. Drug Interact., 2014, 29(2), 101-110.
[90]
Haslam, I.S.; Jones, K.; Coleman, T.; Simmons, N.L. Induction of P-glycoprotein expression and function in human intestinal epithelial cells (T84). Biochem. Pharmacol., 2008, 76(7), 850-861.
[91]
Weiss, J.; Herzog, M.; König, S.; Storch, C.H.; Ketabi-Kiyanvash, N.; Haefeli, W.E. Induction of multiple drug transporters by efavirenz. J. Pharmacol. Sci., 2009, 109(2), 242-250.
[92]
Perloff, M.D.; von Moltke, L.L.; Fahey, J.M.; Daily, J.P.; Greenblatt, D.J. Induction of P-glycoprotein expression by HIV protease inhibitors in cell culture. AIDS, 2000, 14(9), 1287-1289.
[93]
Weiss, J.; Haefeli, W.E. Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro. Int. J. Antimicrob. Agents, 2013, 41(5), 484-487.
[94]
Chin, K.V.; Chauhan, S.S.; Pastan, I.; Gottesman, M.M. Regulation of mdr RNA levels in response to cytotoxic drugs in rodent cells. Cell Growth Differ., 1990, 1(8), 361-365.
[95]
Harmsen, S.; Meijerman, I.; Febus, C.L.; Maas-Bakker, R.F.; Beijnen, J.H.; Schellens, J.H. PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line. Cancer Chemother. Pharmacol., 2010, 66(4), 765-771.
[96]
Silva, R.; Carmo, H.; Dinis-Oliveira, R.; Cordeiro-da-Silva, A.; Lima, S.C.; Carvalho, F.; Bastos, M.L.; Remião, F. In vitro study of P-glycoprotein induction as an antidotal pathway to prevent cytotoxicity in Caco-2 cells. Arch. Toxicol., 2011, 85(4), 315-326.
[97]
Wongwanakul, R.; Vardhanabhuti, N.; Siripong, P. ianmongkol, S. Effects of rhinacanthin-C on function and expression of drug efflux transporters in Caco-2 cells. Fitoterapia, 2013, 89, 80-85.
[98]
Lo, Y.L. A potential daidzein derivative enhances cytotoxicity of epirubicin on human colon adenocarcinoma Caco-2 cells. Int. J. Mol. Sci., 2012, 14(1), 158-176.
[99]
Harmsen, S.; Meijerman, I.; Maas-Bakker, R.F.; Beijnen, J.H.; Schellens, J.H. PXR-mediated P-glycoprotein induction by small molecule tyrosine kinase inhibitors. Eur. J. Pharm. Sci., 2013, 48(4-5), 644-649.
[100]
Theile, D.; Haefeli, W.E.; Weiss, J. Effects of adrenolytic mitotane on drug elimination pathways assessed in vitro. Endocrine, 2015, 49(3), 842-853.
[101]
Schrenk, D.; Michalke, A.; Gant, T.W.; Brown, P.C.; Silverman, J.A.; Thorgeirsson, S.S. Multidrug resistance gene expression in rodents and rodent hepatocytes treated with mitoxantrone. Biochem. Pharmacol., 1996, 52(9), 1453-1460.
[102]
Hartley, D.P.; Dai, X.; Yabut, J.; Chu, X.; Cheng, O.; Zhang, T.; He, Y.D.; Roberts, C.; Ulrich, R.; Evers, R.; Evans, D.C. Identification of potential pharmacological and toxicological targets differentiating structural analogs by a combination of transcriptional profiling and promoter analysis in LS-180 and Caco-2 adenocarcinoma cell lines. Pharmacogenet. Genomics, 2006, 16(8), 579-599.
[103]
Hariparsad, N.; Nallani, S.C.; Sane, R.S.; Buckley, D.J.; Buckley, A.R.; Desai, P.B. Induction of CYP3A4 by efavirenz in primary human hepatocytes: comparison with rifampin and phenobarbital. J. Clin. Pharmacol., 2004, 44(11), 1273-1281.
[104]
Anderle, P.; Niederer, E.; Rubas, W.; Hilgendorf, C.; Spahn-Langguth, H.; Wunderli-Allenspach, H.; Merkle, H.P.; Langguth, P. P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J. Pharm. Sci., 1998, 87(6), 757-762.
[105]
Shirasaka, Y.; Kawasaki, M.; Sakane, T.; Omatsu, H.; Moriya, Y.; Nakamura, T.; Sakaeda, T.; Okumura, K.; Langguth, P.; Yamashita, S. Induction of human P-glycoprotein in Caco-2 cells: development of a highly sensitive assay system for P-glycoprotein-mediated drug transport. Drug Metab. Pharmacokinet., 2006, 21(5), 414-423.
[106]
Chen, Q.; Bian, Y.; Zeng, S. Involvement of AP-1 and NF-κB in the up-regulation of P-gp in vinblastine resistant Caco-2 cells. Drug Metab. Pharmacokinet., 2014, 29(2), 223-226.
[107]
Haberl, I.; Swatonek, H.; Schaufler, K.; Ulsperger, E.; Wenzl, E.; Theyer, G.; Hamilton, G.; Thalhammer, T. P-glycoprotein-mediated multidrug resistance is modulated by pretreatment with chemosensitizers in HCT-8 carcinoma cells in vitro. Int. J. Oncol., 1998, 12(5), 1137-1142.
[108]
Herzog, C.E.; Tsokos, M.; Bates, S.E.; Fojo, A.T. Increased mdr-1/P-glycoprotein expression after treatment of human colon carcinoma cells with P-glycoprotein antagonists. J. Biol. Chem., 1993, 268(4), 2946-2952.
[109]
Maier, A.; Zimmermann, C.; Beglinger, C.; Drewe, J.; Gutmann, H. Effects of budesonide on P-glycoprotein expression in intestinal cell lines. Br. J. Pharmacol., 2007, 150(3), 361-368.
[110]
Lin, J.H.; Chiba, M.; Chen, I.W.; Nishime, J.A. Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450A and p-glycoprotein induction. Drug Metab. Dispos., 1999, 27(10), 1187-1193.
[111]
Mei, Q.; Richards, K.; Strong-Basalyga, K.; Fauty, S.E.; Taylor, A.; Yamazaki, M.; Prueksaritanont, T.; Lin, J.H.; Hochman, J. Using real-time quantitative TaqMan RT-PCR to evaluate the role of dexamethasone in gene regulation of rat P-glycoproteins mdr1a/1b and cytochrome P450 3A1/2. J. Pharm. Sci., 2004, 93(10), 2488-2496.
[112]
Martin, P.; Riley, R.; Back, D.J.; Owen, A. Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br. J. Pharmacol., 2008, 153(4), 805-819.
[113]
Abuznait, A.H.; Patrick, S.G.; Kaddoumi, A. Exposure of LS-180 cells to drugs of diverse physicochemical and therapeutic properties upregulates P-glycoprotein expression and activity. J. Pharm. Pharm. Sci., 2011, 14(2), 236-248.
[114]
Takara, K.; Hayashi, R.; Kokufu, M.; Yamamoto, K.; Kitada, N.; Ohnishi, N.; Yokoyama, T. Effects of nonsteroidal anti-inflammatory drugs on the expression and function of P-glycoprotein/MDR1 in Caco-2 cells. Drug Chem. Toxicol., 2009, 32(4), 332-337.
[115]
Arias, A.; Rigalli, J.P.; Villanueva, S.S.; Ruiz, M.L.; Luquita, M.G.; Perdomo, V.G.; Vore, M.; Catania, V.A.; Mottino, A.D. Regulation of expression and activity of multidrug resistance proteins MRP2 and MDR1 by estrogenic compounds in Caco-2 cells. Role in prevention of xenobioticinduced cytotoxicity. Toxicology, 2014, 320, 46-55.
[116]
Ghanem, C.I.; Gómez, P.C.; Arana, M.C.; Perassolo, M.; Carpini, G.D.; Luquita, M.G.; Veggi, L.M.; Catania, V.A.; Bengochea, L.A.; Mottino, A.D. Induction of Rat intestinal P-glycoprotein by spironolactone and its effect on absorption of orally administered digoxin. J. Pharmacol. Exp. Ther., 2006, 318(3), 1146-1152.
[117]
Sehirli, A.O.; Cetinel, S.; Ozkan, N.; Selman, S.; Tetik, S.; Yuksel, M.; Dulger, F.G.St. John’s wort may ameliorate 2,4,6-trinitrobenzenesulfonic acid colitis off rats through the induction of pregnane X receptors and/or P-glycoproteins. J. Physiol. Pharmacol., 2015, 66(2), 203-214.
[118]
Weiss, J.; Herzog, M.; Haefeli, W.E. Differential modulation of the expression of important drug metabolising enzymes and transporters by endothelin-1 receptor antagonists ambrisentan and bosentan in vitro. Eur. J. Pharmacol., 2011, 660(2-3), 298-304.
[119]
Weiss, J.; Theile, D.; Spalwisz, A.; Burhenne, J.; Riedel, K.D.; Haefeli, W.E. Influence of sildenafil and tadalafil on the enzyme- and transporter-inducing effects of bosentan and ambrisentan in LS180 cells. Biochem. Pharmacol., 2013, 85(2), 265-273.
[120]
Takara, K.; Tsujimoto, M.; Ohnishi, N.; Yokoyama, T. Digoxin Up-regulates MDR1 in human colon carcinoma caco-2 cells. Biochem. Biophys. Res. Commun., 2002, 292(1), 190-194.
[121]
Takara, K.; Takagi, K.; Tsujimoto, M.; Ohnishi, N.; Yokoyama, T. Digoxin up-regulates multidrug resistance transporter (MDR1) mRNA and simultaneously down-regulates steroid xenobiotic receptor mRNA. Biochem. Biophys. Res. Commun., 2003, 306(1), 116-120.
[122]
Collett, A.; Tanianis-Hughes, J.; Warhurst, G. Rapid induction of P-glycoprotein expression by high permeability compounds in colonic cells in vitro: a possible source of transporter mediated drug interactions? Biochem. Pharmacol., 2004, 68(4), 783-790.
[123]
Bhat, U.G.; Winter, M.A.; Pearce, H.L.; Beck, W.T. A structure-function relationship among reserpine and yohimbine analogues in their ability to increase expression of mdr1 and P-glycoprotein in a human colon carcinoma cell line. Mol. Pharmacol., 1995, 48(4), 682-689.
[124]
Giessmann, T.; May, K.; Modess, C.; Wegner, D.; Hecker, U.; Zschiesche, M.; Dazert, P.; Grube, M.; Schroeder, E.; Warzok, R.; Cascorbi, I.; Kroemer, H.K.; Siegmund, W. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin. Pharmacol. Ther., 2004, 76(3), 192-200.
[125]
Shen, S.; He, Y.; Zeng, S. Stereoselective regulation of MDR1 expression in Caco-2 cells by cetirizine enantiomers. Chirality, 2007, 19(6), 485-490.
[126]
Störmer, E.; von Moltke, L.L.; Perloff, M.D.; Greenblatt, D.J. P-glycoprotein interactions of nefazodone and trazodone in cell culture. J. Clin. Pharmacol., 2001, 41(7), 708-714.
[127]
Ehret, M.J.; Levin, G.M.; Narasimhan, M.; Rathinavelu, A. Venlafaxine induces P-glycoprotein in human Caco-2 cells. Hum. Psychopharmacol., 2007, 22(1), 49-53.
[128]
Sachs-Barrable, K.; Thamboo, A.; Lee, S.D.; Wasan, K.M. Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells. J. Pharm. Pharm. Sci., 2007, 10(3), 319-331.
[129]
Ghanem, C.I.; Arias, A.; Novak, A.; Carpini, G.D.; Villanueva, S.; Blazquez, A.G.; Marin, J.J.; Mottino, A.D.; Rubio, M.C. Acetaminophen-induced stimulation of MDR1 expression and activity in rat intestine and in LS 174T human intestinal cell line. Biochem. Pharmacol., 2011, 81(2), 244-250.
[130]
Luo, G.; Cunningham, M.; Kim, S.; Burn, T.; Lin, J.; Sinz, M.; Hamilton, G.; Rizzo, C.; Jolley, S.; Gilbert, D.; Downey, A.; Mudra, D.; Graham, R.; Carroll, K.; Xie, J.; Madan, A.; Parkinson, A.; Christ, D.; Selling, B.; LeCluyse, E.; Gan, L.S. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab. Dispos., 2002, 30(7), 795-804.
[131]
Perloff, M.D.; Von Moltke, L.L.; Marchand, J.E.; Greenblatt, D.J. Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-mediated activity in a human intestinal cell line. J. Pharm. Sci., 2001, 90(11), 1829-1837.
[132]
Svärd, J.; Spiers, J.P.; Mulcahy, F.; Hennessy, M. Nuclear receptor-mediated induction of CYP450 by antiretrovirals: functional consequences of NR1I2 (PXR) polymorphisms and differential prevalence in whites and sub-Saharan Africans. J. Acquir. Immune Defic. Syndr., 2010, 55(5), 536-549.
[133]
Faucette, S.R.; Zhang, T.C.; Moore, R.; Sueyoshi, T.; Omiecinski, C.J.; LeCluyse, E.L.; Negishi, M.; Wang, H. Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J. Pharmacol. Exp. Ther., 2007, 320(1), 72-80.
[134]
Osborn, M.T.; Chambers, T.C. Role of the stress-activated/c-Jun NH2-terminal protein kinase pathway in the cellular response to adriamycin and other chemotherapeutic drugs. J. Biol. Chem., 1996, 271(48), 30950-30955.
[135]
Ford, J.M.; Hait, W.N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev., 1990, 42(3), 155-199.
[136]
Zacherl, J.; Hamilton, G.; Thalhammer, T.; Riegler, M.; Cosentini, E.P.; Ellinger, A.; Bischof, G.; Schweitzer, M.; Teleky, B.; Koperna, T.; Wenzl, E. Inhibition of P-glycoprotein-mediated vinblastine transport across HCT-8 intestinal carcinoma monolayers by verapamil, cyclosporine A and SDZ PSC 833 in dependence on extracellular pH. Cancer Chemother. Pharmacol., 1994, 34(2), 125-132.
[137]
Song, C.W.; Lyons, J.C.; Luo, Y. Intra- and extracellular pH in solid tumors: influence on therapeutic response. In: Teicher BA (ed) Drug resistance in oncology. Marcel Dekker, New York Basel Hong Kong, 1993, p 25.
[138]
Yu, L.; Zeng, S. Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2. J. Pharm. Pharmacol., 2007, 59(5), 655-660.
[139]
O’Brian, C.A.; Liskamp, R.M.; Soloman, D.H.; Weinstein, I.B. Inhibition of protein kinase C by tamoxifen. Cancer Res., 1985, 45, 24462-2465.
[140]
Awad, S.; Yokozeki, H.; Miyazaki, Y.; Igawa, K.; Minatohara, K.; Satoh, T.; Nishioka, K. Glucocorticoids induced the production and gene expression of IL-1alpha through AP-1 and partially NF-kappaB activation in murine epidermal cells. J. Med. Dent. Sci., 2002, 49(1), 27-35.
[141]
Mottino, A.D.; Catania, V.A. Hepatic drug transporters and nuclear receptors: regulation by therapeutic agents. World J. Gastroenterol., 2008, 14(46), 7068-7074.
[142]
Burk, O.; Arnold, K.A.; Geick, A.; Tegude, H.; Eichelbaum, M. A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expression. Biol. Chem., 2005, 386(6), 503-513.
[143]
Priyamvada, S.; Anbazhagan, A.N.; Kumar, A.; Soni, V.; Alrefai, W.A.; Gill, R.K.; Dudeja, P.K.; Saksena, S. Lactobacillus acidophilus stimulates intestinal P-glycoprotein expression via a c-Fos/c-Jun-dependent mechanism in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 310(8), G599-G560.
[144]
Troutman, M.D.; Trakker, D.R. Rhodamine 123 requires carrier-mediated influx for its activity as a P-glycoprotein substrate in Caco-2 cells. Pharm. Res., 2003, 20, 1192-1199.
[145]
Guo, J.Y.; Li, X.; Browning, J.D., Jr; Rottinghaus, G.E.; Lubahn, D.B.; Constantinou, A.; Bennink, M.; MacDonald, R.S. Dietary soy isoflavones and estrone protect ovariectomized ER alpha KO and wild-type mice from carcinogen-induced colon cancer. J. Nutr., 2004, 134(1), 179-182.
[146]
Weige, C.C.; Allred, K.F.; Allred, C.D. Estradiol alters cell growth in nonmalignant colonocytes and reduces the formation of preneoplastic lesions in the colon. Cancer Res., 2009, 69(23), 9118-9124.
[147]
Riganti, C.; Campia, I.; Polimeni, M.; Pescarmona, G.; Ghigo, D.; Bosia, A. Digoxin and ouabain induce P-glycoprotein by activating calmodulin kinase II and hypoxiainducible factor-1α in human colon cancer cells. Toxicol. Appl. Pharmacol., 2009, 240(3), 385-392.
[148]
Ekins, S.; Erickson, J.A. A pharmacophore for human pregnane X receptor ligands. Drug Metab. Dispos., 2002, 30(1), 96-99.
[149]
Drocourt, L.; Pascussi, J.M.; Assenat, E.; Fabre, J.M.; Maurel, P.; Vilarem, M.J. Calcium channel modulators of the dihydropyridine family are human pregnane X receptor activators and inducers of CYP3A, CYP2B, and CYP2C in human hepatocytes. Drug Metab. Dispos., 2001, 29(10), 1325-1331.
[150]
Shan, Y.Q.; Zhu, Y.P.; Pang, J.; Wang, Y.X.; Song, D.Q.; Kong, W.J.; Jiang, J.D. Tetrandrine potentiates the hypoglycemic efficacy of berberine by inhibiting P-glycoprotein function. Biol. Pharm. Bull., 2013, 36(10), 1562-1569.
[151]
Wils, P.; Phung-Ba, V.; Warnery, A.; Lechardeur, D.; Raeissi, S.; Hidalgo, I.J.; Scherman, D. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem. Pharmacol., 1994, 48(7), 1528-1530.
[152]
Phung-Ba, V.; Warnery, A.; Scherman, D.; Wils, P. Interaction of pristinamycin IA with P-glycoprotein in human intestinal epithelial cells. Eur. J. Pharmacol., 1995, 288(2), 187-192.
[153]
Kobayashi, N.; Mita, S.; Yoshida, K.; Honda, T.; Kobayashi, T.; Hara, K.; Nakano, S.; Tsubokou, Y.; Matsuoka, H. Celiprolol activates eNOS through the PI3K-Akt pathway and inhibits VCAM-1 Via NF-kappaB induced by oxidative stress. Hypertension, 2003, 42(5), 1004-1013.
[154]
Nwaozuzu, O.M.; Sellers, L.A.; Barrand, M.A. Signalling pathways influencing basal and H2O2-induced P-glycoprotein expression in endothelial cells derived from the blood-brain barrier. J. Neurochem., 2003, 87, 1043-1051.
[155]
Faucette, S.R.; Sueyoshi, T.; Smith, C.M.; Negishi, M.; LeCluyse, E.L.; Wang, H. Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor. J. Pharmacol. Exp. Ther., 2006, 317(3), 1200-1209.
[156]
Moore, L.B.; Parks, D.J.; Jones, S.A.; Bledsoe, R.K.; Consler, T.G.; Stimmel, J.B.; Goodwin, B.; Liddle, C.; Blanchard, S.G.; Willson, T.M.; Collins, J.L.; Kliewer, S.A. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J. Biol. Chem., 2000, 275(20), 15122-15127.
[157]
Lombardo, L.; Pellitteri, R.; Balazy, M.; Cardile, V. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr. Neurovasc. Res., 2008, 5(2), 82-92.
[158]
Lukasiuk, K.; Kaczmarek, L. AP-1 and CRE DNA binding activities in rat brain following pentylenetetrazole induced seizures. Brain Res., 1994, 643(1-2), 227-233.
[159]
Wald, A.; Back, C.; Bayless, T.M. Effect of caffeine on the human small intestine. Gastroenterology, 1976, 71(5), 738-742.
[160]
Shen, Q.; Lin, Y.; Handa, T.; Doi, M.; Sugie, M.; Wakayama, K.; Okada, N.; Fujita, T.; Yamamoto, A. Modulation of intestinal P-glycoprotein function by polyethylene glycols and their derivatives by in vitro transport and in situ absorption studies. Int. J. Pharm., 2006, 313, 49-56.
[161]
Hugger, E.D.; Audus, K.L.; Borchardt, R.T. Effects of poly(ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers. J. Pharm. Sci., 2002, 91, 1980-1990.
[162]
Shen, Q.; Li, W.; Lin, Y.; Katsumi, H.; Okada, N.; Sakane, T.; Fujita, T.; Yamamoto, A. Modulating effect of polyethylene glycol on the intestinal transport and absorption of prednisolone, methylprednisolone and quinidine in rats by in-vitro and in-situ absorption studies. J. Pharm. Pharmacol., 2008, 60, 1633-1641.
[163]
Alvarez-Lorenzo, C.; Rey-Rico, A.; Brea, J.; Loza, M.I.; Concheiro, A.; Sosnik, A. Inhibition of P-glycoprotein pumps by PEO-PPO amphiphiles: branched versus linear derivatives. Nanomedicine (Lond.), 2010, 5, 1371-1383.
[164]
Johnson, B.M.; Charman, W.N.; Porter, C.J.H. An in vitro examination of the impact of polyehtylene glycol 400, pluronic P 85 and vitamin E D-a-tocopheryl polyethylene glycol 1000 succinate on p-glycoprotein efflux and enterocyte-based metabolism in excised rat intestine. AAPS PharmSci, 2002, 4, E40.
[165]
Chiappetta, D.A.; Sosnik, A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm., 2007, 66, 303-317.
[166]
Alvarez-Lorenzo, C.; Sosnik, A.; Concheiro, A. PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy. Curr. Drug Targets, 2011, 12, 1112-1130.
[167]
Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic® block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev., 2002, 54, 759-779.
[168]
Wolf, K.K.; Wood, S.G.; Hunt, J.A.; Walton-Strong, B.W.; Yasuda, K.; Lan, L.; Duan, S.X.; Hao, Q.; Wrighton, S.A.; Jeffery, E.H.; Evans, R.M.; Szakacs, J.G.; von Moltke, L.L.; Greenblatt, D.J.; Court, M.H. Schuetz, E.G.; Sinclair, P.R.; Sinclair, J.F. Role of the nuclear receptor pregnane X receptor in acetaminophen hepatotoxicity. Drug Metab. Dispos., 2005, 33(12), 1827-1836.
[169]
Slosky, L.M.; Thompson, B.J.; Sanchez-Covarrubias, L.; Zhang, Y.; Laracuente, M.L.; Vanderah, T.W.; Ronaldson, P.T.; Davis, T.P. Acetaminophen modulates P-glycoprotein functional expression at the blood-brain barrier by a constitutive androstane receptor-dependent mechanism. Mol. Pharmacol., 2013, 84(5), 774-786.
[170]
Mottino, A.D.; Hoffman, T.; Jennes, L.; Vore, M. Expression and localization of multidrug resistant protein MRP2 in rat small intestine. J. Pharmacol. Exp. Ther., 2000, 293, 717-723.
[171]
Fromm, M.F.; Kauffmann, H.M.; Fritz, P.; Burk, O.; Kroemer, H.K.; Warzok, R.W.; Eichelbaum, M.; Siegmund, W.; Schrenk, D. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am. J. Pathol., 2000, 157, 1575-1580.
[172]
Oswald, S.; Haenisch, S.; Fricke, C.; Sudhop, T.; Remmler, C.; Giessmann, T.; Jedlitschky, G.; Adam, U.; Dazert, E.; Warzok, R.; Wacke, W.; Cascorbi, I.; Kroemer, H.K.; Weitschies, W.; Von Bergmann, K.; Siegmund, W. Intestinal expression of P-glycoprotein (ABCB1), multidrug resistance associated protein 2 (ABCC2), and uridine diphosphate-glucuronosyltransferase 1A1 predicts the disposition and modulates the effects of the cholesterol absorption inhibitor ezetimibe in. Clin. Pharmacol. Ther., 2006, 79, 206-217.
[173]
König, S.K.; Herzog, M.; Theile, D.; Zembruski, N.; Haefeli, W.E.; Weiss, J. Impact of drug transporters on cellular resistance towards saquinavir and darunavir. J. Antimicrob. Chemother., 2010, 65, 2319-2328.
[174]
Theile, D.; Grebhardt, S.; Haefeli, W.E.; Weiss, J. Involvement of drug transporters in the synergistic action of FOLFOX combination chemotherapy. Biochem. Pharmacol., 2009, 78, 1366-1373.
[175]
Shibayama, Y.; Iwashita, Y.; Yoshikawa, Y.; Kondo, T.; Ikeda, R.; Takeda, Y.; Osada, T.; Sugawara, M.; Yamada, K.; Iseki, K. Effect of 5-fluorouracil treatment on SN-38 absorption from intestine in rats. Biol. Pharm. Bull., 2011, 34, 1418-1425.
[176]
Ebert, B.; Kisiela, M.; Wsól, V.; Maser, E. Proteasome inhibitors MG-132 and bortezomib induce AKR1C1, AKR1C3, AKR1B1, and AKR1B10 in human colon cancer cell lines SW-480 and HT-29. Chem. Biol. Interact., 2011, 191, 239-249.
[177]
Herraez, E.; Gonzalez-Sanchez, E.; Vaquero, J.; Romero, M.R.; Serrano, M.A.; Marin, J.J.G.; Briz, O. Cisplatin-induced chemoresistance in colon cancer cells involves FXR-dependent and FXR-independent up-regulation of ABC proteins. Mol. Pharm., 2012, 9, 2565-2576.
[178]
Theile, D.; Allendorf, D.; Köhler, B.; Jassowicz, A.; Weiss, J. Obatoclax as a perpetrator in drug-drug interactions and its efficacy in multidrug resistance cell lines. J. Pharm. Pharmacol., 2015, 67, 1575-1584.
[179]
Huang, R.; Murry, D.J.; Kolwankar, D.; Hall, S.D.; Foster, D.R. Vincristine transcriptional regulation of efflux drug transporters in carcinoma cell lines. Biochem. Pharmacol., 2006, 71, 1695-1704.
[180]
Arias, A.; Villanueva, S.S.M.; Ruiz, M.L.; Luquita, M.G.; Veggi, L.M.; Pellegrino, M.; Vore, M.; Catania, V.A.; Mottino, A.D. Regulation of expression and activity of rat intestinal multidrug resistance-associated protein 2 by cholestatic estrogens. Drug Metab. Dispos., 2009, 37, 1277-1285.
[181]
Jones, B.R.; Li, W.; Cao, J.; Hoffman, T.A.; Gerk, P.M.; Vore, M. The role of protein synthesis and degradation in the post-transcriptional regulation of rat multidrug resistance-associated protein 2 (Mrp2, Abcc2). Mol. Pharmacol., 2005, 68, 701-710.
[182]
Ruiz, M.L.; Villanueva, S.S.M.; Luquita, M.G.; Pellegrino, J.M.; Rigalli, J.P.; Arias, A.; Sánchez Pozzi, E.J.; Mottino, A.D.; Catania, V.A. Induction of intestinal multidrug resistance-associated protein 2 (Mrp2) by spironolactone in rats. Eur. J. Pharmacol., 2009, 623, 103-106.
[183]
Jia, J.X.; Wasan, K.M. Effects of monoglycerides on rhodamine 123 accumulation, estradiol 17 beta-D-glucuronide bidirectional transport and MRP2 protein expression within Caco-2 cells. J. Pharm. Pharm. Sci., 2008, 11(3), 45-62.
[184]
Sharma, D.; Lau, A.J.; Sherman, M.; Chang, T.K.H. Agonism of human pregnane X receptor by rilpivirine and etravirine: comparison with first generation nonnucleoside reverse transcriptase inhibitors. Biochem. Pharmacol., 2013, 85, 1700-1711.
[185]
Weiss, J.; Becker, J.P.; Haefeli, W.E. Telaprevir is a substrate andmoderate inhibitor of P-glycoprotein, a strong inductor of ABCG2, but not an activator of PXR in vitro. Int. J. Antimicrob. Agents, 2014, 43, 184-188.
[186]
Zembruski, N.C.L.; Büchel, G.; Jödicke, L.; Herzog, M.; Haefeli, W.E.; Weiss, J. Potential of novel antiretrovirals to modulate expression and function of drug transporters in vitro. J. Antimicrob. Chemother., 2011, 66, 802-812.
[187]
Zembruski, N.C.L.; Haefeli, W.E.; Weiss, J. Interaction potential of etravirine with drug transporters assessed in vitro. Antimicrob. Agents Chemother., 2011, 55, 1282-1284.
[188]
Masuyama, H.; Suwaki, N.; Tateishi, Y.; Nakatsukasa, H.; Segawa, T.; Hiramatsu, Y. The pregnane X receptor regulates gene expression in a ligand- and promoterselective fashion. Mol. Endocrinol., 2005, 19, 1170-1180.
[189]
Ghanem, C.I.; Rudraiah, S.; Bataille, A.M.; Vigo, M.B.; Goedken, M.J.; Manautou, J.E. Role of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the transcriptional regulation of brain ABC transporters during acute acetaminophen (APAP) intoxication in mice. Biochem. Pharmacol., 2015, 94, 203-211.
[190]
Aleksunes, L.M.; Goedken, M.J.; Rockwell, C.E.; Thomale, J.; Manautou, J.E.; Klaassen, C.D. Transcriptional regulation of renal cytoprotective genes by Nrf2 and its potential use as a therapeutic target to mitigate cisplatin-induced nephrotoxicity. J. Pharmacol. Exp. Ther., 2010, 335, 2-12.
[191]
Maher, J.M.; Dieter, M.Z.; Aleksunes, L.M.; Slitt, A.L.; Guo, G.; Tanaka, Y.; Scheffer, G.L.; Chan, J.Y.; Manautou, J.E.; Chen, Y.; Dalton, T.P.; Yamamoto, M.; Klaassen, C.D. Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology, 2007, 46, 1597-1610.
[192]
Edvardsson, K.; Nguyen-Vu, T.; Kalasekar, S.M.; Ponten, F.; Gustafsson, J.A.; Williams, C. Estrogen receptor beta expression induces changes in the microRNA pool in human colon cancer cells. Carcinogenesis, 2013, 34(7), 1431-1441.
[193]
Weiss, J.; Baumann, S.; Theile, D.; Haefeli, W.E. Desmethyl bosentan displays a similar in vitro interaction profile as bosentan. Pulm. Pharmacol. Ther., 2015, 30, 80-86.
[194]
Weiss, J.; Haefeli, W.E. Interaction potential of the endothelin-A receptor antagonist atrasentan with drug transporters and drug-metabolising enzymes assessed in vitro. Cancer Chemother. Pharmacol., 2011, 68, 1093-1098.
[195]
Weiss, J.; Theile, D.; Rüppell, M.A.; Speck, T.; Spalwisz, A.; Haefeli, W.E. Interaction profile of macitentan, a new non-selective endothelin-1 receptor antagonist, in vitro. Eur. J. Pharmacol., 2013, 701, 168-175.
[196]
Fahrmayr, C.; König, J.; Auge, D.; Mieth, M.; Münch, K.; Segrestaa, J.; Pfeifer, T.; Treiber, A.; Fromm, M.F. Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line. Br. J. Pharmacol., 2013, 169, 21-33.
[197]
Porter, C.J.; Trevaskis, N.L.; Charman, W.N. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov., 2007, 6(3), 231-248.
[198]
Gotoh, Y.; Suzuki, H.; Kinoshita, S.; Hirohashi, T.; Kato, Y.; Sugiyama, Y. Involvement of an organic anion transporter (canalicular multispecific organic anion transporter/multidrug resistance-associated protein 2) in gastrointestinal secretion of glutathioneconjugates in rats. J. Pharmacol. Exp. Ther., 2000, 292, 433-439.
[199]
Taipalensuu, J.; Törnblom, H.; Lindberg, G.; Einarsson, C.; Sjöqvist, F.; Melhus, H.; Garberg, P.; Sjöström, B.; Lundgren, B.; Artursson, P. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther., 2001, 299(1), 164-170.
[200]
Peroni, R.N.; Di Gennaro, S.S.; Hocht, C.; Chiappetta, D.A.; Rubio, M.C.; Sosnik, A.; Bramuglia, G.F. Efavirenz is a substrate and in turn modulates the expression of the efflux transporter ABCG2/BCRP in the gastrointestinal tract of the rat. Biochem. Pharmacol., 2011, 82(9), 1227-1233.
[201]
Gou, M.; Dai, X.; Hu, D.; Zhang, Y.; Sun, Y.; Ren, W.; Wang, L. Potential pharmacokinetic effect of rifampicin on enrofloxacin in broilers: Roles of P-glycoprotein and BCRP induction by rifampicin. Poult. Sci., 2016, 95(9), 2129-2135.
[202]
Wright, J.A.; Haslam, I.S.; Coleman, T.; Simmons, N.L. Breast cancer resistance protein BCRP (ABCG2)-mediated transepithelial nitrofurantoin secretion and its regulation in human intestinal epithelial (Caco-2) layers. Eur. J. Pharmacol., 2011, 672(1-3), 70-76.
[203]
Burger, H.; Van Tol, H.; Brok, M.; Wiemer, E.A.; De Brujin, E.A.; Guetens, G.; De Boeck, G.; Sparreboom, A.; Verweij, J.; Nooter, K. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol. Ther., 2005, 4(7), 747-752.
[204]
Bachmeier, C.; Levin, G.M.; Beaulieu-Abdelahad, D.; Reed, J.; Mullan, M. Effect of venlafaxine and desvenlafaxine on drug efflux protein expression and biodistribution in vivo. J. Pharm. Sci., 2013, 102(10), 3838-3843.
[205]
Ebert, B.; Seidel, A.; Lampen, A. Identification of BCRP as transporter of benzo[a]pyrene conjugates metabolically formed in Caco-2 cells and its induction by Ah-receptor agonists. Carcinogenesis, 2005, 26(10), 1754-1763.
[206]
Szatmari, I.; Vámosi, G.; Brazda, P.; Balint, B.L.; Benko, S.; Széles, L.; Jeney, V.; Ozvegy-Laczka, C.; Szántó, A.; Barta, E.; Balla, J.; Sarkadi, B.; Nagy, L. Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J. Biol. Chem., 2006, 281(33), 23812-23823.
[207]
Lin, Y.; Bircsak, K.M.; Gorczyca, L.; Wen, X.; Aleksunes, L.M. Regulation of the placental BCRP transporter by PPAR gamma. J. Biochem. Mol. Toxicol., 2017, 31, e21880.
[http://dx.doi.org/10.1002/jbt.21880]