[1]
Huang, J-H.; Huang, K.; Liu, S.; Wang, A.; Yan, C. Adsorption of rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution. Colloids Surf. A , 2008, 330, 55-61.
[2]
Hao, O.J.; Kim, H.; Chiang, P.C. Decolorization of wastewater. Environ. Sci. Technol., 2000, 30, 449-505.
[3]
Li, S. Removal of crystal violet from aqueous solution by sorptioninto semi-interpenetrated networks hydrogels constituted of poly (acrylic acid-acrylamide- methacrylate) and amylase. Bioresour. Technol., 2010, 101, 2197-2202.
[4]
Azmi, W.; Sani, R.K.; Banerjee, U.C. Biodegradation of triphenylmethane dyes. Enzyme Microb. Technol., 1998, 22, 185-191.
[5]
Peng, R.Y.; Fan, H.J. Ozonalytic kinetic order of dye decoloration in aqueous solution. Dyes Pigments, 2005, 67, 153-159.
[6]
Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent:a critical review on current treatment technologies with a proposed alternative. J. Bioresour. Technol., 2001, 77, 247-255.
[7]
Hoffmann, M.R.; Martin, S.T.; Choi, W.Y.; Bahnemann, D.W. Environmental applications of semiconductor. Photocatal. Chem. Rev., 1995, 95, 69-96.
[8]
Sunandan, B.; Joydeep, D. Hydrothermal growth of ZnO nanostructure. Sci. Technol. Adv. Mater., 2009, 10, 1-16.
[9]
Lori, E.G.; Benjamin, D.Y.; Matt, L.; David, Z.; Peidong, Y. Solution grown zinc oxide nanowires. Inorg. Chem., 2006, 45, 7535-7543.
[10]
Goh, E.G.; Xu, X.; McCormick, P.G. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr. Mater., 2014, 78-79, 49-52.
[11]
Babu, K.S.; Reddy, A.R.; Reddy, K.V. Controlling the size and optical properties of ZnO nanoparticles by capping with SiO2. Mater. Res. Bull., 2014, 49, 537-543.
[12]
Chen, Y.; Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes. Anal. Chem., 2002, 74, 5132-5138.
[13]
Khomane, R.B.; Manna, A.; Mandale, A.B.; Kulkarni, B.D. Synthesis and characterization of Dodecanethiol-capped cadmium sulfide nanoparticles in winsor II microemulsion of diethyl ether/AOT/water. Langmuir, 2002, 18, 8237-8240.
[14]
Malik, M.A.; O’Brien, P.; Revaprasadu, N. Synthesis of TOPO-capped Mn-doped ZnS and CdS quantum dots. J. Mater. Chem., 2001, 11, 2382-2386.
[15]
Wei, Q.; Kang, S.Z.; Mu, J. Green synthesis of starch capped CdS nanoparticles. Colloids Surf. A Physiochem. Eng. Aspects., 2004, 247, 125-127.
[16]
Kumar, A.; Mittal, S. Synthesis and photophysics of 6-dimethylaminopurine capped Q-CdS nanoparticles- a study of its photocatalytic behaviour. Int. J. Photoenergy, 2004, 6, 61-68.
[17]
Jhonshi, M.A.; Kathiravan, A.; Renganathan, R. Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloids Surf. B Biointerfaces, 2009, 72, 167-172.
[18]
Amma, B.S.; Ramakrishna, K.; Pattabi, M. Comparison of various organic stabilizers as capping agents for CdS nanoparticles synthesis. J. Mater. Electron, 2007, 18, 1109-1113.
[19]
Pattabhi, M.; Amma, B.S. Synthesis and stability studies of thiophenol capped CdS nanoparticles. Sol. Energy Mater. Sol. Cells, 2006, 90, 2377-2383.
[20]
Zhang, Y.; Ma, M.; Wang, X.; Fu, D.; Zhang, H.; Gu, N.; Liu, Z.; Xu, L.; Chen, K. Second order optical nonlinearity of surface-capped CdS nanoparticles and effect of surface modification. J. Phys. Chem. Solids, 2003, 64, 927-931.
[21]
El-Kemary, M.; El-Shamy, H.; Mosaad, M.M. The role of capping agent on the interaction of cadmium sulphide nanoparticles with flufenamic acid drug. Mater. Chem. Phys., 2009, 118, 8185.
[22]
Ansari, F.; Bazarganipour, M.; Niasari, M.S. NiTiO3/NiFe2O4 nanocomposites: Simple sol-gel auto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent. Mater. Sci. Semicond. Process., 2016, 43, 34-40.
[23]
Mandizadeh, S.; Bazarganipou, M.; Niasari, M.S. A low cost and ecofriendly viable approach for green synthesis of barium hexaferrite nanostructures using palm oil. Ceram. Int., 2014, 40, 15685-15691.
[24]
Carp, O.; Visinescu, D.; Patrinoiu, G.; Tirsoaga, A.; Paraschiv, C.M.; Tudose, M. Green synthetic strategies of oxide materials: Polysaccharides assisted synthesis. Rev. Roum. Chim., 2010, 55, 705-709.
[25]
Ema, M.; Gamo, M.; Honda, K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul. Toxicol. Pharmacol., 2017, 85, 7-24.
[26]
Talreja, R.; Manson, J.A.E. Polymer matrix composites; Elsevier Science Ltd.: Oxford, UK, 2002.
[27]
Beecroft, L.L.; Ober, C.K. Nanocomposite materials for optical applications. Chem. Mater., 1997, 9, 1302-1317.
[28]
Roy, J.S.; Majumder, T.P.; Schick, C. Optical characterization of CdS nanorods capped with starch. J. Mol. Str., 2015, 1088, 95-100.
[29]
Mohan, S.; Oluwafemi, O.S.; Songca, S.P.; Jayachandran, V.P.; Rouxel, D.; Joubert, O.; Kalarikkal, N.; Thomas, S. Synthesis, antibacterial, cytotoxicity and sensing properties of starch-capped silver nanoparticles. J. Mol. Liquids., 2016, 213, 75-81.
[30]
Nidhin, M.; Sreeram, K.J.; Nair, B.U. Green synthesis of rock salt CoO nanoparticles for coating applications by complexation and surface passivation with starch. J. Chem. Eng. , 2012, 352, 185-186.
[31]
Raveendran, P.; Fu, J.; Wallen, S.L. A simple and green method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem., 2006, 8, 34-38.
[32]
Li, J.H.; Rena, C.L.; Liu, X.Y.; Hua, Z.D.; Xue, D.S. Green synthesis of starch capped CdSe nanoparticles at room temperature. Mater. Sci. Eng. A, 2007, 458, 319-322.
[33]
Li, H. Fei, G.T.; Fang, M.; Cui, P.; Guo, X.; Yan, P.; Zhang, L.D. Synthesis of urchin-like Co3O4 hierarchical micro/nanostructures and their photocatalytic activity. Appl. Surf. Sci., 2011, 257, 6527-6530.
[34]
Lou, X.W.; Deng, D.; Lee, J.Y.; Feng, J.; Archer, L.A. Self-supported formation of needle like Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater., 2008, 20, 258-262.
[35]
Man, L.Y.; Niu, B.; Xu, H.Y.; Cao, B.Q.; Wang, J. Microwave hydrothermal synthesis of nanoporous cobalt oxides and their gas sensing properties. Mater. Res. Bull., 2016, 46, 1097-1101.
[36]
Vijayakumar, S.; Ponnalagi, A.K.; Nagamuthu, S.; Muralidharan, G. Microwave assisted synthesis of Co3O4 nanoparticles for high-performance Supercapacitors. Electrochim. Acta, 2013, 106, 500-505.
[37]
He, T.; Chen, D.R.; Jiao, X.L.; Jiao, X.L.; Wang, Y.L.; Duan, Y.Z. Solubility-controlled synthesis of high-quality Co3O4 nanocrystals. Chem. Mater., 2005, 17, 4023-4030.
[38]
Hong, R.Y.; Li, J.H.; Chen, L.L.; Liu, D.Q.; Li, H.Z.; Zheng, Y.; Ding, J. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol., 2009, 189, 426-432.
[39]
Zeng, J.; Li, G.; Gao, H.; Ru, Z. Comparison of A and B starch granules from three wheat varieties. Molecules, 2011, 16, 10570-10591.
[40]
Koksel, H.; Masatcioglu, T.; Kahraman, K.; Ozturk, S.; Basman, A. Improving effect of lyophilization on functional properties of resistant starch preparations formed by acid hydrolysis and heat treatment. J. Cereal Sci., 2008, 47, 275-282.
[41]
Sitohy, M.Z.; Labib, S.M.; El-Saadany, S.S.; Ramadan, M.F. Optimizing the conditions for starch dry phosphorylation with sodium mono and dihydrogen orthophosphate under heat and vacuum. Starch/Starke, 2000, 52, 95-100.
[42]
Maryam, M.A.; Masoud, S.N. Effect of carbohydrate sugars as a capping agent on the size and morphology of pure Zn2 SnO4 nanostructures and their optical properties. Mater. Lett., 2016, 174, 71-74.
[43]
Kumar, S.V.; Ganesan, S. Preparation and characterization of gold nanoparticles with different capping agents. Int. J. Green Nanotechnol, 2011, 3, 47-55.
[44]
Sudha, M.; Rajarajan, M. Deactivation of photocatalytically active ZnO nanoparticles by Surface capping with poly vinyl pyrrolidone. J. Appl. Chem, 2013, 3, 45-53.
[45]
Akhil, K.; Jayakumar, J.; Gayathri, G.; Khan, S.S. Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles. J. Photochem. Photobiol. B. Biol, 2016, 160, 32-42.
[46]
Chandran, P.; Netha, S.; Khan, S.S. Effect of humic acid on photocatalytic activity of ZnO nanoparticles. J. Photochem. Photobiol. B, 2014, 138, 155-159.
[47]
Sudha, M.; Suganthi, A.; Senthilkumar, S.; Rajarajan, M.; Hariharan, R. Controlled reduction of the deleterious effects of photocatalytic activity of ZnO nanoparticles by PVA capping. J. Sol-Gel Sci. Technol., 2011, 61, 14-22.
[48]
Sudha, M.; Suganthi, A.; Senthilkumar, S.; Rajarajan, M.; Hariharan, R. Synthesis, characterization and study of photocatalytic activity of surface modified ZnO nanoparticles by PEG capping. J. Sol-Gel Sci. Technol., 2012, 65, 301-310.
[49]
Ivetić, T.B.; Dimitrievska, M.R.; Fincur, N.L.; Dacanin, L.R.; Guth, I.O.; Abramovic, B.F.; Petrovic, S.R.L. Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation. Ceram. Int., 2014, 40, 1545-1552.
[50]
Zhang, G.; Shen, X.; Yang, Y. Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity. J. Phys. Chem. C, 2011, 115, 7145-7152.
[51]
Lou, X.; Han, J.; Chu, W.; Wang, X.; Cheng, Q. Synthesis and photocatalytic property of Co3O4 nanorods. Mater. Sci. Eng. B, 2007, 137, 268-271.
[52]
Cao, Z.; Zhang, Z. Deactivation of photocatalytically active ZnO nanoparticle and enhancement of its compatibility with organic compounds by surface-capping with organically modified silica. Appl. Surf. Sci., 2011, 257, 4151-4418.
[53]
Ju, Y.M.; Fang, J.; Liu, X.W.; Xu, Z.C.; Ren, X.W.; Sun, C.; Yang, S.; Ren, Q.; Ding, Y.C.; Yu, K.; Wang, L.N.; Wei, Z.B. Photodegradation of crystal violet in TiO2 suspension using UV-vis irradiation from two microwave-powered electrodeless discharge lamps (EDL-2), Products, mechanism and feasibility. J. Hazard. Mater., 2011, 185, 1489-1498.
[54]
Meena, S.; Vaya, D.; Das, B.K. Photocatalytic degradation of Malachite Green dye by modified ZnO nanomaterial. Bull. Mater. Sci., 2016, 39, 1735-1743.
[55]
Benjamin, S.; Vaya, D.; Punjabi, P.B.; Ameta, S.C. Enhancing photocatalytic activity of Zinc oxide by coating with some natural pigments. Arab. J. Chem., 2011, 4, 205-209.