Nanoscience & Nanotechnology-Asia

Author(s): D. Vaya*, Meena and B.K. Das

DOI: 10.2174/2210681208666180312123055

Green Synthesis of Cobalt Oxide Nanoparticles by a Starch-Assisted Method

Page: [362 - 370] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The properties of the material are altered when material size shifted towards nano-regime. This feature could be used for wastewater treatment process using model pollutant such as dyes. Recently, nanoparticles are synthesized by a green chemical route using different capping agents. This is the reason we adopt starch as green capping agent along with sol-gel method.

Objective: To synthesize cobalt oxide nanoparticles by green chemical route and utilized it in degradation of dyes.

Methods: Synthesis of cobalt oxide nanoparticles by sol-gel method using starch as a capping agent. The characteristics of surface modifications were investigated by UV-VIS, TEM, SEM, XRD and FTIR techniques.

Results: Cobalt oxide nanoparticles synthesized and inhibited photocatalytic activity.

Conclusion: Deactivation of photocatalytic activity due to complex nature of starch. This property can be used elsewhere as in light shielding applications to coat and protect surfaces in order to keep them cool and safe from damage as in the painting of vehicles, roofs, buildings, water tanks, etc.

Keywords: Cobalt oxide, malachite green, crystal violet, starch, photocatalytic degradation, sol-gel.

Graphical Abstract

[1]
Huang, J-H.; Huang, K.; Liu, S.; Wang, A.; Yan, C. Adsorption of rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution. Colloids Surf. A , 2008, 330, 55-61.
[2]
Hao, O.J.; Kim, H.; Chiang, P.C. Decolorization of wastewater. Environ. Sci. Technol., 2000, 30, 449-505.
[3]
Li, S. Removal of crystal violet from aqueous solution by sorptioninto semi-interpenetrated networks hydrogels constituted of poly (acrylic acid-acrylamide- methacrylate) and amylase. Bioresour. Technol., 2010, 101, 2197-2202.
[4]
Azmi, W.; Sani, R.K.; Banerjee, U.C. Biodegradation of triphenylmethane dyes. Enzyme Microb. Technol., 1998, 22, 185-191.
[5]
Peng, R.Y.; Fan, H.J. Ozonalytic kinetic order of dye decoloration in aqueous solution. Dyes Pigments, 2005, 67, 153-159.
[6]
Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent:a critical review on current treatment technologies with a proposed alternative. J. Bioresour. Technol., 2001, 77, 247-255.
[7]
Hoffmann, M.R.; Martin, S.T.; Choi, W.Y.; Bahnemann, D.W. Environmental applications of semiconductor. Photocatal. Chem. Rev., 1995, 95, 69-96.
[8]
Sunandan, B.; Joydeep, D. Hydrothermal growth of ZnO nanostructure. Sci. Technol. Adv. Mater., 2009, 10, 1-16.
[9]
Lori, E.G.; Benjamin, D.Y.; Matt, L.; David, Z.; Peidong, Y. Solution grown zinc oxide nanowires. Inorg. Chem., 2006, 45, 7535-7543.
[10]
Goh, E.G.; Xu, X.; McCormick, P.G. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr. Mater., 2014, 78-79, 49-52.
[11]
Babu, K.S.; Reddy, A.R.; Reddy, K.V. Controlling the size and optical properties of ZnO nanoparticles by capping with SiO2. Mater. Res. Bull., 2014, 49, 537-543.
[12]
Chen, Y.; Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes. Anal. Chem., 2002, 74, 5132-5138.
[13]
Khomane, R.B.; Manna, A.; Mandale, A.B.; Kulkarni, B.D. Synthesis and characterization of Dodecanethiol-capped cadmium sulfide nanoparticles in winsor II microemulsion of diethyl ether/AOT/water. Langmuir, 2002, 18, 8237-8240.
[14]
Malik, M.A.; O’Brien, P.; Revaprasadu, N. Synthesis of TOPO-capped Mn-doped ZnS and CdS quantum dots. J. Mater. Chem., 2001, 11, 2382-2386.
[15]
Wei, Q.; Kang, S.Z.; Mu, J. Green synthesis of starch capped CdS nanoparticles. Colloids Surf. A Physiochem. Eng. Aspects., 2004, 247, 125-127.
[16]
Kumar, A.; Mittal, S. Synthesis and photophysics of 6-dimethylaminopurine capped Q-CdS nanoparticles- a study of its photocatalytic behaviour. Int. J. Photoenergy, 2004, 6, 61-68.
[17]
Jhonshi, M.A.; Kathiravan, A.; Renganathan, R. Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloids Surf. B Biointerfaces, 2009, 72, 167-172.
[18]
Amma, B.S.; Ramakrishna, K.; Pattabi, M. Comparison of various organic stabilizers as capping agents for CdS nanoparticles synthesis. J. Mater. Electron, 2007, 18, 1109-1113.
[19]
Pattabhi, M.; Amma, B.S. Synthesis and stability studies of thiophenol capped CdS nanoparticles. Sol. Energy Mater. Sol. Cells, 2006, 90, 2377-2383.
[20]
Zhang, Y.; Ma, M.; Wang, X.; Fu, D.; Zhang, H.; Gu, N.; Liu, Z.; Xu, L.; Chen, K. Second order optical nonlinearity of surface-capped CdS nanoparticles and effect of surface modification. J. Phys. Chem. Solids, 2003, 64, 927-931.
[21]
El-Kemary, M.; El-Shamy, H.; Mosaad, M.M. The role of capping agent on the interaction of cadmium sulphide nanoparticles with flufenamic acid drug. Mater. Chem. Phys., 2009, 118, 8185.
[22]
Ansari, F.; Bazarganipour, M.; Niasari, M.S. NiTiO3/NiFe2O4 nanocomposites: Simple sol-gel auto-combustion synthesis and characterization by utilizing onion extract as a novel fuel and green capping agent. Mater. Sci. Semicond. Process., 2016, 43, 34-40.
[23]
Mandizadeh, S.; Bazarganipou, M.; Niasari, M.S. A low cost and ecofriendly viable approach for green synthesis of barium hexaferrite nanostructures using palm oil. Ceram. Int., 2014, 40, 15685-15691.
[24]
Carp, O.; Visinescu, D.; Patrinoiu, G.; Tirsoaga, A.; Paraschiv, C.M.; Tudose, M. Green synthetic strategies of oxide materials: Polysaccharides assisted synthesis. Rev. Roum. Chim., 2010, 55, 705-709.
[25]
Ema, M.; Gamo, M.; Honda, K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul. Toxicol. Pharmacol., 2017, 85, 7-24.
[26]
Talreja, R.; Manson, J.A.E. Polymer matrix composites; Elsevier Science Ltd.: Oxford, UK, 2002.
[27]
Beecroft, L.L.; Ober, C.K. Nanocomposite materials for optical applications. Chem. Mater., 1997, 9, 1302-1317.
[28]
Roy, J.S.; Majumder, T.P.; Schick, C. Optical characterization of CdS nanorods capped with starch. J. Mol. Str., 2015, 1088, 95-100.
[29]
Mohan, S.; Oluwafemi, O.S.; Songca, S.P.; Jayachandran, V.P.; Rouxel, D.; Joubert, O.; Kalarikkal, N.; Thomas, S. Synthesis, antibacterial, cytotoxicity and sensing properties of starch-capped silver nanoparticles. J. Mol. Liquids., 2016, 213, 75-81.
[30]
Nidhin, M.; Sreeram, K.J.; Nair, B.U. Green synthesis of rock salt CoO nanoparticles for coating applications by complexation and surface passivation with starch. J. Chem. Eng. , 2012, 352, 185-186.
[31]
Raveendran, P.; Fu, J.; Wallen, S.L. A simple and green method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem., 2006, 8, 34-38.
[32]
Li, J.H.; Rena, C.L.; Liu, X.Y.; Hua, Z.D.; Xue, D.S. Green synthesis of starch capped CdSe nanoparticles at room temperature. Mater. Sci. Eng. A, 2007, 458, 319-322.
[33]
Li, H. Fei, G.T.; Fang, M.; Cui, P.; Guo, X.; Yan, P.; Zhang, L.D. Synthesis of urchin-like Co3O4 hierarchical micro/nanostructures and their photocatalytic activity. Appl. Surf. Sci., 2011, 257, 6527-6530.
[34]
Lou, X.W.; Deng, D.; Lee, J.Y.; Feng, J.; Archer, L.A. Self-supported formation of needle like Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater., 2008, 20, 258-262.
[35]
Man, L.Y.; Niu, B.; Xu, H.Y.; Cao, B.Q.; Wang, J. Microwave hydrothermal synthesis of nanoporous cobalt oxides and their gas sensing properties. Mater. Res. Bull., 2016, 46, 1097-1101.
[36]
Vijayakumar, S.; Ponnalagi, A.K.; Nagamuthu, S.; Muralidharan, G. Microwave assisted synthesis of Co3O4 nanoparticles for high-performance Supercapacitors. Electrochim. Acta, 2013, 106, 500-505.
[37]
He, T.; Chen, D.R.; Jiao, X.L.; Jiao, X.L.; Wang, Y.L.; Duan, Y.Z. Solubility-controlled synthesis of high-quality Co3O4 nanocrystals. Chem. Mater., 2005, 17, 4023-4030.
[38]
Hong, R.Y.; Li, J.H.; Chen, L.L.; Liu, D.Q.; Li, H.Z.; Zheng, Y.; Ding, J. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol., 2009, 189, 426-432.
[39]
Zeng, J.; Li, G.; Gao, H.; Ru, Z. Comparison of A and B starch granules from three wheat varieties. Molecules, 2011, 16, 10570-10591.
[40]
Koksel, H.; Masatcioglu, T.; Kahraman, K.; Ozturk, S.; Basman, A. Improving effect of lyophilization on functional properties of resistant starch preparations formed by acid hydrolysis and heat treatment. J. Cereal Sci., 2008, 47, 275-282.
[41]
Sitohy, M.Z.; Labib, S.M.; El-Saadany, S.S.; Ramadan, M.F. Optimizing the conditions for starch dry phosphorylation with sodium mono and dihydrogen orthophosphate under heat and vacuum. Starch/Starke, 2000, 52, 95-100.
[42]
Maryam, M.A.; Masoud, S.N. Effect of carbohydrate sugars as a capping agent on the size and morphology of pure Zn2 SnO4 nanostructures and their optical properties. Mater. Lett., 2016, 174, 71-74.
[43]
Kumar, S.V.; Ganesan, S. Preparation and characterization of gold nanoparticles with different capping agents. Int. J. Green Nanotechnol, 2011, 3, 47-55.
[44]
Sudha, M.; Rajarajan, M. Deactivation of photocatalytically active ZnO nanoparticles by Surface capping with poly vinyl pyrrolidone. J. Appl. Chem, 2013, 3, 45-53.
[45]
Akhil, K.; Jayakumar, J.; Gayathri, G.; Khan, S.S. Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles. J. Photochem. Photobiol. B. Biol, 2016, 160, 32-42.
[46]
Chandran, P.; Netha, S.; Khan, S.S. Effect of humic acid on photocatalytic activity of ZnO nanoparticles. J. Photochem. Photobiol. B, 2014, 138, 155-159.
[47]
Sudha, M.; Suganthi, A.; Senthilkumar, S.; Rajarajan, M.; Hariharan, R. Controlled reduction of the deleterious effects of photocatalytic activity of ZnO nanoparticles by PVA capping. J. Sol-Gel Sci. Technol., 2011, 61, 14-22.
[48]
Sudha, M.; Suganthi, A.; Senthilkumar, S.; Rajarajan, M.; Hariharan, R. Synthesis, characterization and study of photocatalytic activity of surface modified ZnO nanoparticles by PEG capping. J. Sol-Gel Sci. Technol., 2012, 65, 301-310.
[49]
Ivetić, T.B.; Dimitrievska, M.R.; Fincur, N.L.; Dacanin, L.R.; Guth, I.O.; Abramovic, B.F.; Petrovic, S.R.L. Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation. Ceram. Int., 2014, 40, 1545-1552.
[50]
Zhang, G.; Shen, X.; Yang, Y. Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity. J. Phys. Chem. C, 2011, 115, 7145-7152.
[51]
Lou, X.; Han, J.; Chu, W.; Wang, X.; Cheng, Q. Synthesis and photocatalytic property of Co3O4 nanorods. Mater. Sci. Eng. B, 2007, 137, 268-271.
[52]
Cao, Z.; Zhang, Z. Deactivation of photocatalytically active ZnO nanoparticle and enhancement of its compatibility with organic compounds by surface-capping with organically modified silica. Appl. Surf. Sci., 2011, 257, 4151-4418.
[53]
Ju, Y.M.; Fang, J.; Liu, X.W.; Xu, Z.C.; Ren, X.W.; Sun, C.; Yang, S.; Ren, Q.; Ding, Y.C.; Yu, K.; Wang, L.N.; Wei, Z.B. Photodegradation of crystal violet in TiO2 suspension using UV-vis irradiation from two microwave-powered electrodeless discharge lamps (EDL-2), Products, mechanism and feasibility. J. Hazard. Mater., 2011, 185, 1489-1498.
[54]
Meena, S.; Vaya, D.; Das, B.K. Photocatalytic degradation of Malachite Green dye by modified ZnO nanomaterial. Bull. Mater. Sci., 2016, 39, 1735-1743.
[55]
Benjamin, S.; Vaya, D.; Punjabi, P.B.; Ameta, S.C. Enhancing photocatalytic activity of Zinc oxide by coating with some natural pigments. Arab. J. Chem., 2011, 4, 205-209.