Synthesis, Characterization and In vitro Evaluation of N-Substituted- Sulfomoyl-Phenyl-Amino Carboxylic Acid Derivatives as Squalene Synthase Inhibitors

Page: [415 - 426] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Squalene Synthase is one of the cholesterol biosynthetic pathway enzymes, inhibition of which produces potent lipid lowering action. A variety of chemical classes have been evaluated for its inhibition to provide alternate antihyperlipidemic agents to statins.

Methods: A series of N-substituted-sulfomoyl-phenyl-amino carboxylic acid derivatives were designed through pharmacophore modelling as Squalene Synthase inhibitors. We report here the synthesis, characterization and in vitro pharmacological screening of the designed molecules as Squalene synthase inhibitors. The target molecules were synthesized by a simple procedure and each molecule was characterized by IR, Mass, 1HNMR and 13CNMR spectroscopic techniques. As a primary site of action for cholesterol biosynthesis is liver, each of the molecules were first screened for in vitro cytotoxicity over human hepatic cell line (HepG2) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method. The enzyme inhibition assay was performed on cell lysates prepared from HepG2 cells by Human Squalene Synthase ELISA kit, where test compounds were added in the nontoxic concentrations only.

Results: Compound 5f was found to be most potent with the IC50 value of 11.91 µM. The CTC50 value for 5f on human hepatic cell line was > 1000 µM so it was considered that the compound was relatively safe and might be free of hepatotoxicity.

Conclusion: From the results of our studies, it was observed that compounds with poly nuclear aromatic or hetero aromatic substituent on a side chain were more potent enzyme inhibitors and a distance of 4-5 atoms is optimum between amide nitrogen and hydroxyl group of carboxylic acid.

Keywords: Characterization, ELISA, HepG2 cell lines, MTT assay, squalene synthase inhibitors, Global Health Observatory (GHO).

Graphical Abstract

[1]
Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Mackey, R.H.; Matsushita, K.; Mozaffarian, D.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Palaniappan, L.; Pandey, D.K.; Thiagarajan, R.R.; Reeves, M.J.; Ritchey, M.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sasson, C.; Towfighi, A.; Tsao, C.W.; Turner, M.B.; Virani, S.S.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation, 2017, 135(10), e146-e603.
[3]
Gaw, A.; Packard, C.J.; Shepherd, J. Statins: The HMG CoA reductase inhibitors in perspective; CRC Press, 2003.
[4]
Naoumova, R.P.; Marais, A.D.; Mountney, J.; Firth, J.C.; Rendell, N.B.; Taylor, G.W.; Thompson, G.R. Plasma mevalonic acid, an index of cholesterol synthesis in vivo, and responsiveness to HMG-CoA reductase inhibitors in familial hypercholesterolaemia. Atherosclerosis, 1996, 119(2), 203-213.
[5]
Miettinen, T.A.; Gylling, H. Ineffective decrease of serum cholesterol by simvastatin in a subgroup of hypercholesterolemic coronary patients. Atherosclerosis, 2002, 164(1), 147-152.
[6]
Roberts, W.C. The rule of 5 and the rule of 7 in lipid-lowering by statin drugs. Am. J. Cardiol., 1997, 80(1), 106-107.
[7]
Ooi, T.C.; Heinonen, T.; Alaupovic, P.; Davignon, J.; Leiter, L.; Lupien, P.J.; Sniderman, A.D.; Tan, M.H.; Tremblay, G.; Sorisky, A.; Shurzinske, L.; Black, D.M. Efficacy and safety of a new hydroxymethylglutaryl-coenzyme A reductase inhibitor, atorvastatin, in patients with combined hyperlipidemia: comparison with fenofibrate. Arterioscler. Thromb. Vasc. Biol., 1997, 17(9), 1793-1799.
[8]
Ginsberg, H.N. Effects of statins on triglyceride metabolism. Am. J. Cardiol., 1998, 81(4A), 32B-35B.
[9]
Jain, K.S.; Kathiravan, M.K.; Somani, R.S.; Shishoo, C.J. The biology and chemistry of hyperlipidemia. Bioorg. Med. Chem., 2007, 15(14), 4674-4699.
[10]
Rozman, D.; Monostory, K. Perspectives of the non-statin hypolipidemic agents. Pharmacol. Ther., 2010, 127(1), 19-40.
[11]
Costet, P. Molecular pathways and agents for lowering LDL-cholesterol in addition to statins. Pharmacol. Ther., 2010, 126(3), 263-278.
[12]
Brahmkshatriya, P.S.; Jani, M.H.; Chhabria, M.T. Recent developments in the treatment of atherosclerosis. J. Enzyme Inhib. Med. Chem., 2006, 21(1), 1-15.
[13]
Bergstrom, J.D.; Dufresne, C.; Bills, G.F.; Nallin-Omstead, M.; Byrne, K. Discovery, biosynthesis, and mechanism of action of the zaragozic acids: Potent inhibitors of squalene synthase. Annu. Rev. Microbiol., 1995, 49(1), 607-639.
[14]
Amin, D.; Rutledge, R.Z.; Needle, S.J.; Hele, D.J.; Neuenswander, K.; Bush, R.C.; Bilder, G.E.; Perrone, M.H. RPR 101821, a new potent cholesterol-lowering agent: Inhibition of squalene synthase and 7-dehydrocholesterol reductase. Naunyn Schmiedebergs Arch. Pharmacol., 1996, 353(2), 233-240.
[15]
Amin, D.; Rutledge, R.Z.; Needle, S.N.; Galczenski, H.F.; Neuenschwander, K.; Scotese, A.C.; Maguire, M.P.; Bush, R.C.; Hele, D.J.; Bilder, G.E.; Perrone, M.H. RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: Comparison with inhibitors of HMG-CoA reductase. J. Pharmacol. Exp. Ther., 1997, 281(2), 746-752.
[16]
Dickson, J.K., Jr; Biller, S.A.; Magnin, D.R.; Petrillo, E.W., Jr; Hillyer, J.W.; Hsieh, D.C.; Lan, S-J.; Rinehart, J.K.; Gregg, R.E.; Harrity, T.W.; Jolibois, K.G.; Kalinowski, S.S.; Kunselman, L.K.; Mookhtiar, K.A.; Ciosek, C.P., Jr Orally active squalene synthase inhibitors: Bis((acyloxy)alkyl) prodrugs of the α-phosphonosulfonic acid moiety. J. Med. Chem., 1996, 39(3), 661-664.
[17]
Amin, D.; Rutledge, R.Z.; Needle, S.N.; Galczenski, H.F.; Neuenschwander, K.; Scotese, A.C.; Maguire, M.P.; Bush, R.C.; Hele, D.J.; Bilder, G.E.; Perrone, M.H. RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: Comparison with inhibitors of HMG-CoA reductase. J. Pharmacol. Exp. Ther., 1997, 281(2), 746-752.
[18]
Hiyoshi, H.; Yanagimachi, M.; Ito, M.; Yasuda, N.; Okada, T.; Ikuta, H.; Shinmyo, D.; Tanaka, K.; Kurusu, N.; Yoshida, I.; Abe, S.; Saeki, T.; Tanaka, H. Squalene synthase inhibitors suppress triglyceride biosynthesis through the farnesol pathway in rat hepatocytes. J. Lipid Res., 2003, 44(1), 128-135.
[19]
Ugawa, T.; Kakuta, H.; Moritani, H.; Matsuda, K.; Ishihara, T.; Yamaguchi, M.; Naganuma, S.; Iizumi, Y.; Shikama, H. YM-53601, a novel squalene synthase inhibitor, reduces plasma cholesterol and triglyceride levels in several animal species. Br. J. Pharmacol., 2000, 131(1), 63-70.
[20]
Burnett, J.R. Drug evaluation: TAK-475--an oral inhibitor of squalene synthase for hyperlipidemia. Curr. Opin. Investig. Drugs, 2006, 7(9), 850-856.
[21]
Liao, J.K. Squalene synthase inhibitor lapaquistat acetate: Could anything be better than statins? Circulation, 2011, 123(18), 1925-1928.
[22]
Chhabria, M.T.; Brahmkshatriya, P.S.; Mahajan, B.M.; Darji, U.B.; Shah, G.B. Discovery of novel acyl coenzyme a: Cholesterol acyltransferase inhibitors: pharmacophore-based virtual screening, synthesis and pharmacology. Chem. Biol. Drug Des., 2012, 80(1), 106-113.
[23]
Brogi, S.; Kladi, M.; Vagias, C.; Papazafiri, P.; Roussis, V.; Tafi, A. Pharmacophore modeling for qualitative prediction of antiestrogenic activity. J. Chem. Inf. Model., 2009, 49(11), 2489-2497.
[24]
Li, H.; Sutter, J.; Hoffmann, R. Hypo Gen: An Automated System for Generating Predictive 3D Pharmacophore Models. In: Pharmacophore perception, development, and use in drug design; Internat'l University Line,, 2000, 2, pp. pp. 171-178.
[25]
Kurogi, Y.; Güner, O.F. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr. Med. Chem., 2001, 8(9), 1035-1055.
[26]
Ichikawa, M.; Yokomizo, A.; Itoh, M.; Usui, H.; Shimizu, H.; Suzuki, M.; Terayama, K.; Kanda, A.; Sugita, K. Discovery of a new 2-aminobenzhydrol template for highly potent squalene synthase inhibitors. Bioorg. Med. Chem., 2011, 19(6), 1930-1949.
[27]
Ichikawa, M.; Yokomizo, A.; Itoh, M.; Haginoya, N.; Sugita, K.; Usui, H.; Terayama, K.; Kanda, A. Discovery of atrop fixed alkoxy-aminobenzhydrol derivatives: novel, highly potent and orally efficacious squalene synthase inhibitors. Bioorg. Med. Chem., 2011, 19(17), 5207-5224.
[28]
Kourounakis, A.P.; Matralis, A.N.; Nikitakis, A. Design of more potent squalene synthase inhibitors with multiple activities. Bioorg. Med. Chem., 2010, 18(21), 7402-7412.
[29]
Ichikawa, M.; Ohtsuka, M.; Ohki, H.; Haginoya, N.; Itoh, M.; Sugita, K.; Usui, H.; Suzuki, M.; Terayama, K.; Kanda, A. Discovery of novel tricyclic compounds as squalene synthase inhibitors. Bioorg. Med. Chem., 2012, 20(9), 3072-3093.
[30]
Miki, T.; Kori, M.; Mabuchi, H.; Tozawa, R.; Nishimoto, T.; Sugiyama, Y.; Teshima, K.; Yukimasa, H. Synthesis of novel 4,1-benzoxazepine derivatives as squalene synthase inhibitors and their inhibition of cholesterol synthesis. J. Med. Chem., 2002, 45(20), 4571-4580.
[31]
Ishihara, T.; Kakuta, H.; Moritani, H.; Ugawa, T.; Yanagisawa, I. Synthesis and biological evaluation of novel propylamine derivatives as orally active squalene synthase inhibitors. Bioorg. Med. Chem., 2004, 12(22), 5899-5908.
[32]
Ishihara, T.; Kakuta, H.; Moritani, H.; Ugawa, T.; Sakamoto, S.; Tsukamoto, S.; Yanagisawa, I. Syntheses and biological evaluation of novel quinuclidine derivatives as squalene synthase inhibitors. Bioorg. Med. Chem., 2003, 11(11), 2403-2414.
[33]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89(2), 271-277.
[34]
Borenfreund, E.; Puerner, J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett., 1985, 24(2-3), 119-124.
[35]
Argyropoulou, I.; Geronikaki, A.; Vicini, P.; Zani, F. Synthesis and biological evaluation of sulfonamide thiazole and benzothiazole derivatives as antimicrobial agents. ARKIVOC, 2009, 6, 89-102.
[36]
Mirian, M.; Zarghi, A.; Sadeghi, S.; Tabaraki, P.; Tavallaee, M.; Dadrass, O.; Sadeghi-Aliabadi, H. Synthesis and cytotoxic evaluation of some novel sulfonamidederivativesagainst a few human cancer cells. Iran. J. Pharm. Res., 2011, 10(4), 741-748.
[37]
Krátký, M.; Vinšová, J.; Volková, M.; Buchta, V.; Trejtnar, F.; Stolaříková, J. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem., 2012, 50, 433-440.