An LC-MS/MS Method for Synchronous Determination of Paclitaxel and Curcumin: Development, Validation, and Application to a Pharmacokinetic Study

Page: [319 - 326] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: A chromatography tandem mass spectrometry method was first established and validated for the synchronous determination of curcumin(CUR) and paclitaxel (PTX) in this study.

Objective: An LC-MS/MS Method for Determination of Paclitaxel and Curcumin.

Methods: The analytes were extracted with methanol, and docetaxel was used as the internal standard (IS). The analytes and the IS were separated on a C18 (4.6 mm × 50 mm, 3.5 µm) column with a mobile phase of 0.1% formic acid solution and methanol (80:20, v/v). The flow velocity of the mobile phase was 0.5 mL/min. And then, the method was applied to study the pharmacokinetic behavior of CUR and PTX in rats.

Results: The calibration curves were linear within the concentration ranges of 2–1000 ng/mL for PTX and 5–500 ng/mL for CUR, the mean extraction recoveries and matrix effects of PTX, CUR, and the IS were within an acceptable range. The apparent volume of distribution of PTX was different between the group of administration of PTX and the group of co-administration with CUR and PTX.

Conclusion: A sensitive and simple liquid chromatography-tandem mass spectrometry method was established and validated for the synchronous determination of PTX and CUR in rat plasma, CUR increased the apparent volume of distribution of PTX when CUR and PTX were co-administered.

Keywords: Curcumin, paclitaxel, LC-MS/MS, pharmacokinetic study, synchronous determination, co-administration.

Graphical Abstract

[1]
Parker, A.R.; Petluru, P.N.; Wu, M.; Zhao, M.; Kochat, H.; Hausheer, F.H. BNP7787-mediated modulation of paclitaxel- and cisplatin-induced aberrant microtubule protein polymerization in vitro. Mol. Cancer Ther., 2010, 9(9), 2558-2567.
[2]
Duan, Z.; Chen, C.; Qin, J.; Liu, Q.; Wang, Q.; Xu, X.; Wang, J. Cell-penetrating peptide conjugates to enhance the antitumor effect of paclitaxel on drug-resistant lung cancer. Drug Deliv., 2017, 24(1), 752-764.
[3]
Guohua, H.; Hongyang, L.; Zhiming, J.; Danhua, Z.; Haifang, W. Study of small-cell lung cancer cell-based sensor and its applications in chemotherapy effects rapid evaluation for anticancer drugs. Biosens. Bioelectron., 2017, 97, 184-195.
[4]
Lai, Y.; Lai, S.; Yen, S. Paclitaxel/hydroxyapatite composite coatings on titanium alloy for biomedical applications. Mater. Sci. Eng. C, 2017, 79, 622-628.
[5]
Wang, X.; Liu, X.; Li, Y.; Wang, P.; Feng, X.; Liu, Q.; Yan, F.; Zheng, H. Sensitivity to antitubulin chemotherapeutics is potentiated by a photoactivable nanoliposome. Biomaterials, 2017, 141, 50-62.
[6]
Castle, B.T.; McCubbin, S.; Prahl, L.S.; Bernens, J.N.; Sept, D.; Odde, D.J. Mechanisms of kinetic stabilization by the drugs paclitaxel and vinblastine. Mol. Biol. Cell, 2017, 28(9), 1238-1257.
[7]
Benbow, S.J.; Wozniak, K.M.; Kulesh, B.; Savage, A.; Slusher, B.S.; Littlefield, B.A.; Jordan, M.A.; Wilson, L.; Feinstein, S.C. Microtubule-targeting agents eribulin and paclitaxel differentially affect neuronal cell bodies in chemotherapy-induced peripheral neuropathy. Neurotox. Res., 2017, 32(1), 151-162.
[8]
Kollareddy, M.; Sherrard, A.; Park, J.H.; Szemes, M.; Gallacher, K.; Melegh, Z.; Oltean, S.; Michaelis, M.; Cinatl, J.; Kaidi, A. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis. Cancer Lett., 2017, 403, 74-85.
[9]
Kwon, W.S.; Rha, S.Y.; Jeung, H.; Kim, T.S.; Chung, H.C. Modulation of HAT activity by the BRCA2 N372H variation is a novel mechanism of paclitaxel resistance in breast cancer cell lines. Biochem. Pharmacol., 2017, 138, 163-173.
[10]
Shi, X.; Sun, X. Regulation of paclitaxel activity by microtubule-associated proteins in cancer chemotherapy. Cancer Chemother. Pharmacol., 2017, 80(5), 909-917.
[11]
Wang, R.C.; Chen, X.; Parissenti, A.M.; Joy, A.A.; Tuszynski, J.; Brindley, D.N.; Wang, Z. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents. PLoS One, 2017, 12(8), e0182400.
[12]
Wijdeven, R.H.; Pang, B.; Assaraf, Y.G.; Neefjes, J. Old drugs, novel ways out: drug resistance toward cytotoxic chemotherapeutics. Drug Resist. Updat., 2016, 28, 65-81.
[13]
Kit, W.C.; Segarra, I. Simultaneous HPLC determination of metronidazole and spiramycin in plasma and brain of mouse. Curr. Pharm. Anal., 2011, 7(4), 262-267.
[14]
Ma, W.; Wang, J.; Guo, Q.; Tu, P. Simultaneous determination of doxorubicin and curcumin in rat plasma by LC-MS/MS and its application to pharmacokinetic study. J. Pharm. Biomed. Anal., 2015, 111, 215-221.
[15]
Zhang, Q.; Wang, J.; He, H.; Liu, H.; Yan, X.; Zou, K. Trametenolic acid B reverses multidrug resistance in breast cancer cells through regulating the expression level of P-glycoprotein. Phytother. Res., 2014, 28(7), 1037-1044.
[16]
Wu, C.P.; Hsiao, S.H.; Murakami, M.; Lu, Y.J.; Li, Y.Q.; Huang, Y.H.; Hung, T.H.; Ambudkar, S.V.; Wu, Y.S. Alpha-mangostin reverses multidrug resistance by attenuating the function of the multidrug resistance-linked ABCG2 transporter. Mol. Pharm., 2017, 14(8), 2805-2814.
[17]
Long, S.; Sousa, E.; Kijjoa, A.; Pinto, M.M. Marine natural products as models to circumvent multidrug resistance. Molecules, 2016, 21(7), E892.
[18]
Levrier, C.; Rockstroh, A.; Gabrielli, B.; Kavallaris, M.; Lehman, M.; Davis, R.A.; Sadowski, M.C.; Nelson, C.C. Discovery of thalicthuberine as a novel antimitotic agent from nature that disrupts microtubule dynamics and induces apoptosis in prostate cancer cells. Cell Cycle, 2017, 17(5), 652-668.
[19]
Mi, K.K.; Kim, Y.; Choo, H.; Chong, Y. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glyco-protein. Bioorg. Med. Chem., 2017, 25(3), 1219-1226.
[20]
Lv, L.; Qiu, K.; Yu, X.; Chen, C.; Qin, F.; Shi, Y.; Ou, J.; Zhang, T.; Zhu, H.; Wu, J.; Liu, C.; Li, G. Amphiphilic copolymeric micelles for doxorubicin and curcumin co-delivery to reverse multidrug resistance in breast cancer. J. Biomed. Nanotechnol., 2016, 12(5), 973-985.
[21]
Wang, J.; Li, Y.; Ma, W.; Wang, X.; Tu, P. Validated LC-MS/MS method for simultaneous determination of doxorubicin and curcumin in polymeric micelles in subcellular compartments of MCF-7/Adr cells by protein precipitation-ultrasonic breaking method. Biomed. Chromatogr., 2017, 31(6)
[http://dx.doi.org/10.1002/bmc.3892]
[22]
Thuane, C.F.D.N.; Meza Casa, D. Facco Dalmolin, L.; Ana, C. D. M.; Maissar Khalil, N.; Mara Mainardes, R. Development and validation of an hplc method using fluorescence detection for the quantitative determination of curcumin in PLGA and PLGA-PEG nanoparticles. Curr. Pharm. Anal., 2012, 8(4), 324-333.
[23]
Lv, L.; Shen, Y.; Liu, J.; Wang, F.; Li, M.; Li, M.; Guo, A.; Wang, Y.; Zhou, D.; Guo, S. Enhancing curcumin anticancer efficacy through di-block copolymer micelle encapsulation. J. Biomed. Nanotechnol., 2014, 10(2), 179-193.
[24]
Kang, H.J.; Lee, S.H.; Price, J.E.; Kim, L.S. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. Breast J., 2009, 15(3), 223-229.
[25]
Liu, Z.; Zhu, Y.Y.; Li, Z.Y.; Ning, S.Q. Evaluation of the efficacy of paclitaxel with curcumin combination in ovarian cancer cells. Oncol. Lett., 2016, 12(5), 3944-3948.
[26]
Cui, Y.; Zhang, M.; Zeng, F.; Jin, H.; Xu, Q.; Huang, Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl. Mater. Interfaces, 2016, 8(47), 32159-32169.
[27]
Quispe-Soto, E.T.; Calaf, G.M. Effect of curcumin and paclitaxel on breast carcinogenesis. Int. J. Oncol., 2016, 49(6), 2569-2577.
[28]
Anwar, M.; Akhter, S.; Mallick, N.; Mohapatra, S.; Zafar, S.; Rizvi, M.M.; Ali, A.; Ahmad, F.J. Enhanced anti-tumor efficacy of paclitaxel with PEGylated lipidic nanocapsules in presence of curcumin and poloxamer: In vitro and in vivo studiess Pharmacol. Res, 2016. 113(Pt A), 146-165
[29]
Wang, X.; Song, L.; Li, N.; Qiu, Z.; Zhou, S.; Li, C.; Zhao, J.; Song, H.; Chen, X. Pharmacokinetics and biodistribution study of paclitaxel liposome in Sprague-Dawley rats and Beagle dogs by liquid chromatography-tandem mass spectrometry. Drug Res. (Stuttg.), 2013, 63(11), 603-606.
[30]
Baati, T.; Schembri, T.; Villard, C.; Correard, F.; Braguer, D.; Esteve, M.A. An ultrasensitive LC-MS/MS method with liquid phase extraction to determine paclitaxel in both cell culture medium and lysate promising quantification of drug nanocarriers release in vitro. J. Pharm. Biomed. Anal., 2015, 115, 300-306.
[31]
Li, J.; Tang, J.; Li, Y.; Yu, J.; Zhang, B.; Yu, C. Pharmacokinetic profile of paclitaxel in the plasma, lung, and diaphragm following intravenous or intrapleural administration in rats. Thorac. Cancer, 2015, 6(1), 43-48.
[32]
Bernabeu, E.; Flor, S.; Hocht, C.; Taira, C.; Chiappetta, D.; Tripodi, V.; Lucangioli, S. Development and validation of a highly sensitive HPLC method for determination of paclitaxel in pharmaceutical dosage forms and biological samples. Curr. Pharm. Anal., 2014, 10(3), 185-192.
[33]
Xiong, X.; Zhao, X.; Li, Y.; Song, Z. A Fast and efficient chemiluminescence method for determination and pharmacokinetic study of paclitaxel in rat plasma. Curr. Pharm. Anal., 2014, 10(4), 246-254.
[34]
Zhang, S.Q.; Fan, Y.M. Simultaneous quantification of paclitaxel prodrug and its released paclitaxel in human plasma by UPLC-MS/MS. Curr. Pharm. Anal., 2012, 9(2), 159-164.
[35]
Cai, S.; Huo, T.; Feng, W.; Chen, L.; Qin, F.; Li, F. Quantitative determination of mitiglinide in human plasma by ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 868(1-2), 83-87.
[36]
Liu, Y.; Sun, J.; Lian, H.; Li, X.; Cao, W.; Bai, L.; Wang, Y.; He, Z. Determination of paclitaxel in hyaluronic acid polymeric micelles in rat blood by protein precipitation-micelle breaking method: application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 935, 10-15.
[37]
Zhang, F.; Zhang, N.; Pang, L.; Tan, Y.; Xu, H. Quantification of heteroclitin D in rat plasma: validation of an LC/MS/MS method and its application in a preclinical pharmacokinetic study. Biomed. Chromat. Bmc, 2015, 29(5), 756-761.
[38]
Lin, Li.; Jin, S.; Ping, Y.; Zhonggui, H. Liquid chromatography–electrospray ionization–mass spectrometric method for the determination of hydrochlorothiazide in human plasma: application to a pharmacokinetic study. Anal. Lett., 2006, 39(15), 2797-2807.
[39]
Sheng, N.; Zhi, X.; Yuan, L.; Zhang, Z.; Jia, P.; Zhang, X.; Zhang, L.; Wang, X. Pharmacokinetic and excretion study of three secoiridoid glycosides and three flavonoid glycosides in rat by LC-MS/MS after oral administration of the Swertia pseudochinensis extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 967, 75-83.
[40]
Jiang, W.; Lv, L.; Zhou, S.; Huang, X.; Shi, X.; Lv, C.; Wu, L.; Xu, C. Simultaneous determination of l-dopa and its prodrug (S)-4-(2-acetamido-3-ethoxy-3-oxopropyl)-1,2-phenylene diacetate in rat plasma by high-performance liquid chromatography–tandem mass spectrometry and its application in a pharmacokinetic study. J. Pharm. Biomed. Anal., 2010, 53(3), 751-754.
[41]
Jiang, L.; Dai, J.; Huang, Z.; Du, Q.; Lin, J.; Wang, Y. Simultaneous determination of gastrodin and puerarin in rat plasma by HPLC and the application to their interaction on pharmacokinetics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 915-916, 8-12.
[42]
Harmita, H.; Suryadi, A.; Setiawati, D. Damayanti. Development and validation of a method for simultaneous quantification of seven water-soluble vitamins in pediatrics syrup by UPLC-MS/MS. Curr. Pharm. Anal., 2018, 14(1), 23-34.
[43]
He, W.; Martin, J.H.; Shaw, P.N.; Walpole, E.T.; Dimeski, G. The development of a rapid, simple and sensitive LC-MS/MS method, to guide clinical dosing, for the analysis of 5-fluorouracil in human plasma. Curr. Pharm. Anal., 2017, 13(4), 378-383.
[44]
Jing, Z.; Sui, Q.; Chen, W. Quantification of glycyrrhetic acid in human plasma by LC-MS/MS: Application to a pharmacokinetic study. Curr. Pharm. Anal., 2017, 13(4), 334-339.
[45]
Shammout, M.J.A.; Basci, N.E. Validated ultra performance liquide chromatography-tandom mass spectrometric method for determination of betamethasone or dexamethasone in pharmaceuticals. Curr. Pharm. Anal., 2018, 14(1), 68-75.
[46]
Luo, X.; Cai, N.F.; Cheng, Z.N. Development of a new LC–MS/MS based enzyme activity assay for recombinant urate oxidase in plasma and its application to pharmacokinetics in human. J. Pharm. Biomed. Anal., 2013, 81(7), 8-12.
[47]
Lu, S.; Jiang, K.; Qin, F.; Lu, X.; Li, F. Simultaneous quantification of enalapril and enalaprilat in human plasma by high-performance liquid chromatography–tandem mass spectrometry and its application in a pharmacokinetic study. J. Pharm. Biomed. Anal., 2009, 49(1), 163-167.