The Role of Selenium in Oxidative Stress and in Nonthyroidal Illness Syndrome (NTIS): An Overview

Page: [423 - 449] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Selenium is a trace element, nutritionally classified as an essential micronutrient, involved in maintaining the correct function of several enzymes incorporating the selenocysteine residue, namely the selenoproteins. The human selenoproteome including 25 proteins is extensively described here. The most relevant selenoproteins, including glutathione peroxidases, thioredoxin reductases and iodothyronine deiodinases are required for the proper cellular redox homeostasis as well as for the correct thyroid function, thus preventing oxidative stress and related diseases. This review summarizes the main advances on oxidative stress with a focus on selenium metabolism and transport. Moreover, thyroid-related disorders are discussed, considering that the thyroid gland contains the highest selenium amount per gram of tissue, also for future possible therapeutic implication.

Keywords: Deiodinases, oxidative stress, redox homeostasis, selenium, selenoproteins, thyroid dysfunction.

[1]
Rayman, M.P. Selenium and human health. Lancet, 2012, 379(9822), 1256-1268.
[http://dx.doi.org/10.1016/S0140-6736(11)61452-9] [PMID: 22381456]
[2]
Wrobel, J.K.; Power, R.; Toborek, M. Biological activity of selenium: Revisited. IUBMB Life, 2016, 68(2), 97-105.
[http://dx.doi.org/10.1002/iub.1466] [PMID: 26714931]
[3]
Steinbrenner, H.; Sies, H. Protection against reactive oxygen species by selenoproteins. Biochim. Biophys. Acta, 2009, 1790(11), 1478-1485.
[http://dx.doi.org/10.1016/j.bbagen.2009.02.014] [PMID: 19268692]
[4]
Steinbrenner, H.; Speckmann, B.; Klotz, L.O. Selenoproteins: Antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys., 2016, 595, 113-119.
[http://dx.doi.org/10.1016/j.abb.2015.06.024] [PMID: 27095226]
[5]
Brigelius-Flohé, R.; Flohé, L. Selenium and redox signaling. Arch. Biochem. Biophys., 2017, 617, 48-59.
[http://dx.doi.org/10.1016/j.abb.2016.08.003] [PMID: 27495740]
[6]
Huang, Z.; Rose, A.H.; Hoffmann, P.R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 2012, 16(7), 705-743.
[http://dx.doi.org/10.1089/ars.2011.4145] [PMID: 21955027]
[7]
Ventura, M.; Melo, M.; Carrilho, F. Selenium and thyroid disease: from pathophysiology to treatment. Int. J. Endocrinol., 2017, 20171297658
[http://dx.doi.org/10.1155/2017/1297658] [PMID: 28255299]
[8]
Schomburg, L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat. Rev. Endocrinol., 2011, 8(3), 160-171.
[http://dx.doi.org/10.1038/nrendo.2011.174] [PMID: 22009156]
[9]
Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci., 2014, 39(3), 112-120.
[http://dx.doi.org/10.1016/j.tibs.2013.12.007] [PMID: 24485058]
[10]
Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; Copeland, P.R.; Diamond, A.M.; Driscoll, D.M.; Ferreiro, A.; Flohé, L.; Green, F.R.; Guigó, R.; Handy, D.E.; Hatfield, D.L.; Hesketh, J.; Hoffmann, P.R.; Holmgren, A.; Hondal, R.J.; Howard, M.T.; Huang, K.; Kim, H.Y.; Kim, I.Y.; Köhrle, J.; Krol, A.; Kryukov, G.V.; Lee, B.J.; Lee, B.C.; Lei, X.G.; Liu, Q.; Lescure, A.; Lobanov, A.V.; Loscalzo, J.; Maiorino, M.; Mariotti, M.; Sandeep Prabhu, K.; Rayman, M.P.; Rozovsky, S.; Salinas, G.; Schmidt, E.E.; Schomburg, L.; Schweizer, U.; Simonović, M.; Sunde, R.A.; Tsuji, P.A.; Tweedie, S.; Ursini, F.; Whanger, P.D.; Zhang, Y. Selenoprotein gene nomenclature. J. Biol. Chem., 2016, 291(46), 24036-24040.
[http://dx.doi.org/10.1074/jbc.M116.756155] [PMID: 27645994]
[11]
Reeves, M.A.; Hoffmann, P.R. The human selenoproteome: recent insights into functions and regulation. Cell. Mol. Life Sci., 2009, 66(15), 2457-2478.
[http://dx.doi.org/10.1007/s00018-009-0032-4] [PMID: 19399585]
[12]
Mancini, A.; Di Segni, C.; Raimondo, S.; Olivieri, G.; Silvestrini, A.; Meucci, E.; Currò, D. Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm., 2016, 20166757154
[http://dx.doi.org/10.1155/2016/6757154] [PMID: 27051079]
[13]
De Groot, L.J. Non-thyroidal illness syndrome is a manifestation of hypothalamic-pituitary dysfunction, and in view of current evidence, should be treated with appropriate replacement therapies. Crit. Care Clin., 2006, 22(1), 57-86 vi..
[http://dx.doi.org/10.1016/j.ccc.2005.10.001] [PMID: 16399020]]
[14]
Mancini, A.R.S.; Di Segni, C.; Persano, M.; Pontecorvi, A. Non-thyroidal illness: physiopathology and clinical implications in: Current topics in hypothyroidism with focus on development; Potlukova, E., Ed.; InTech: Rijeka, 2013, pp. 183-202.
[15]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta, 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[16]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem., 2017, 86, 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[17]
Sies, H. Oxidative Stress in:Oxidative stress and vascular disease;, Keaney J.F.Jr., Ed.; Academic Press: London,. 1985, 1-8.
[18]
Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol., 2013, 13(5), 349-361.
[http://dx.doi.org/10.1038/nri3423] [PMID: 23618831]
[19]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[20]
Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol., 2011, 194(1), 7-15.
[http://dx.doi.org/10.1083/jcb.201102095] [PMID: 21746850]
[21]
Jones, D.P. Redefining oxidative stress. Antioxid. Redox Signal., 2006, 8(9-10), 1865-1879.
[http://dx.doi.org/10.1089/ars.2006.8.1865] [PMID: 16987039]
[22]
Jones, D.P. Hydrogen peroxide and central redox theory for aerobic life: A tribute to Helmut Sies: Scout, trailblazer, and redox pioneer. Arch. Biochem. Biophys., 2016, 595, 13-18.
[http://dx.doi.org/10.1016/j.abb.2015.10.022] [PMID: 27095208]
[23]
Sies, H.; Jones, D.P. Encyclopedia of Stress; Fink, E., Ed.;2nd ed.;. Elsevier: Amsterdam, 2007, pp. 45-48.
[http://dx.doi.org/10.1016/B978-012373947-6.00285-3]
[24]
Niki, E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic. Biol. Med., 2009, 47(5), 469-484.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.032] [PMID: 19500666]
[25]
Niki, E. Oxidative stress and antioxidants: Distress or eustress? Arch. Biochem. Biophys., 2016, 595, 19-24.
[http://dx.doi.org/10.1016/j.abb.2015.11.017] [PMID: 27095209]
[26]
Poljsak, B.; Š uput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid. Med. Cell. Longev., 2013.2013, 956792.
[http://dx.doi.org/10.1155/2013/956792] [PMID: 23738047]
[27]
Radak, Z.; Ishihara, K.; Tekus, E.; Varga, C.; Posa, A.; Balogh, L.; Boldogh, I.; Koltai, E. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol., 2017, 12, 285-290.
[http://dx.doi.org/10.1016/j.redox.2017.02.015] [PMID: 28285189]
[28]
Calabrese, E.J. Hormesis: a fundamental concept in biology. Microb. Cell, 2014, 1(5), 145-149.
[http://dx.doi.org/10.15698/mic2014.05.145] [PMID: 28357236]
[29]
Radak, Z.; Chung, H.Y.; Goto, S. Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology, 2005, 6(1), 71-75.
[http://dx.doi.org/10.1007/s10522-004-7386-7] [PMID: 15834665]
[30]
Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol., 2017, 11, 613-619.
[http://dx.doi.org/10.1016/j.redox.2016.12.035] [PMID: 28110218]
[31]
Munro, D.; Treberg, J.R. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J. Exp. Biol., 2017, 220(Pt 7), 1170-1180.
[http://dx.doi.org/10.1242/jeb.132142] [PMID: 28356365]
[32]
Murphy, M.P.; Holmgren, A.; Larsson, N.G.; Halliwell, B.; Chang, C.J.; Kalyanaraman, B.; Rhee, S.G.; Thornalley, P.J.; Partridge, L.; Gems, D.; Nyström, T.; Belousov, V.; Schumacker, P.T.; Winterbourn, C.C. Unraveling the biological roles of reactive oxygen species. Cell Metab., 2011, 13(4), 361-366.
[http://dx.doi.org/10.1016/j.cmet.2011.03.010] [PMID: 21459321]
[33]
Signorini, L.; Granata, S.; Lupo, A.; Zaza, G. Naturally occurring compounds: new potential weapons against oxidative stress in chronic kidney disease. Int. J. Mol. Sci., 2017, 18(7)E1841
[http://dx.doi.org/10.3390/ijms18071481] [PMID: 28698529]
[34]
Fridovich, I. Superoxide radical: an endogenous toxicant. Annu. Rev. Pharmacol. Toxicol., 1983, 23, 239-257.
[http://dx.doi.org/10.1146/annurev.pa.23.040183.001323] [PMID: 6307121]
[35]
Veal, E.A.; Day, A.M.; Morgan, B.A. Hydrogen peroxide sensing and signaling. Mol. Cell, 2007, 26(1), 1-14.
[http://dx.doi.org/10.1016/j.molcel.2007.03.016] [PMID: 17434122]
[36]
Jones, D.P.; Sies, H. The redox code. Antioxid. Redox Signal., 2015, 23(9), 734-746.
[http://dx.doi.org/10.1089/ars.2015.6247] [PMID: 25891126]
[37]
Forman, H.J.; Maiorino, M.; Ursini, F. Signaling functions of reactive oxygen species. Biochemistry, 2010, 49(5), 835-842.
[http://dx.doi.org/10.1021/bi9020378] [PMID: 20050630]
[38]
Watanabe, S.; Moniaga, C.S.; Nielsen, S.; Hara-Chikuma, M. Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem. Biophys. Res. Commun., 2016, 471(1), 191-197.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.153] [PMID: 26837049]
[39]
Sies, H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem., 2014, 289(13), 8735-8741.
[http://dx.doi.org/10.1074/jbc.R113.544635] [PMID: 24515117]
[40]
Bienert, G.P.; Møller, A.L.; Kristiansen, K.A.; Schulz, A.; Møller, I.M.; Schjoerring, J.K.; Jahn, T.P. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem., 2007, 282(2), 1183-1192.
[http://dx.doi.org/10.1074/jbc.M603761200] [PMID: 17105724]
[41]
Antunes, F.; Brito, P.M. Quantitative biology of hydrogen peroxide signaling. Redox Biol., 2017, 13, 1-7.
[http://dx.doi.org/10.1016/j.redox.2017.04.039] [PMID: 28528123]
[42]
Marinho, H.S.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol., 2014, 2, 535-562.
[http://dx.doi.org/10.1016/j.redox.2014.02.006] [PMID: 24634836]
[43]
Winterbourn, C.C. The biological chemistry of hydrogen peroxide. Methods Enzymol., 2013, 528, 3-25.
[http://dx.doi.org/10.1016/B978-0-12-405881-1.00001-X] [PMID: 23849856]
[44]
Winterbourn, C.C. Are free radicals involved in thiol-based redox signaling? Free Radic. Biol. Med., 2015, 80, 164-170.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.08.017] [PMID: 25277419]
[45]
Pillay, C.S.; Eagling, B.D.; Driscoll, S.R.; Rohwer, J.M. Quantitative measures for redox signaling. Free Radic. Biol. Med., 2016, 96, 290-303.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.199] [PMID: 27151506]
[46]
Gammella, E.; Recalcati, S.; Cairo, G. Dual role of ROS as signal and stress agents: iron tips the balance in favor of toxic effects. Oxid. Med. Cell. Longev., 2016, 20168629024
[http://dx.doi.org/10.1155/2016/8629024] [PMID: 27006749]
[47]
Bauer, G. Signaling and proapoptotic functions of transformed cell-derived reactive oxygen species. Prostaglandins Leukot. Essent. Fatty Acids, 2002, 66(1), 41-56.
[http://dx.doi.org/10.1054/plef.2001.0332] [PMID: 12051956]
[48]
Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide ion: generation and chemical implications. Chem. Rev., 2016, 116(5), 3029-3085.
[http://dx.doi.org/10.1021/acs.chemrev.5b00407] [PMID: 26875845]
[49]
Figueira, T.R.; Barros, M.H.; Camargo, A.A.; Castilho, R.F.; Ferreira, J.C.; Kowaltowski, A.J.; Sluse, F.E.; Souza-Pinto, N.C.; Vercesi, A.E. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid. Redox Signal., 2013, 18(16), 2029-2074.
[http://dx.doi.org/10.1089/ars.2012.4729] [PMID: 23244576]
[50]
Brand, M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med., 2016, 100, 14-31.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.001] [PMID: 27085844]
[51]
Go, Y.M.; Chandler, J.D.; Jones, D.P. The cysteine proteome. Free Radic. Biol. Med., 2015, 84, 227-245.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.022] [PMID: 25843657]
[52]
Halliwell, B.G.; Gutteridge, J.M. Oxidative stress and redox regulation: adaptation, damage, repair, senescence, and death. In: Free radicals in biology and medicine (3rd ed.);; Halliwell, B.G.; Gutteridge, J.M., Eds.; Oxford University Press: Oxford. , 1999; pp. 105-107.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.003.0005]
[53]
Halliwell, B.; Gutteridge, J.M. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med., 1995, 18(1), 125-126.
[http://dx.doi.org/10.1016/0891-5849(95)91457-3] [PMID: 7896166]
[54]
Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans., 2007, 35(Pt 5), 1147-1150.
[http://dx.doi.org/10.1042/BST0351147] [PMID: 17956298]
[55]
Berndt, C.; Lillig, C.H.; Flohé, L. Redox regulation by glutathione needs enzymes. Front. Pharmacol., 2014, 5, 168.
[http://dx.doi.org/10.3389/fphar.2014.00168] [PMID: 25100998]
[56]
Finley, J.W. Bioavailability of selenium from foods. Nutr. Rev., 2006, 64(3), 146-151.
[http://dx.doi.org/10.1111/j.1753-4887.2006.tb00198.x] [PMID: 16572602]
[57]
Burk, R.F.; Hill, K.E. Regulation of selenium metabolism and transport. Annu. Rev. Nutr., 2015, 35, 109-134.
[http://dx.doi.org/10.1146/annurev-nutr-071714-034250] [PMID: 25974694]
[58]
Formula, I. Infant formula: the addition of minimum and maximum levels of selenium to infant formula and related labeling requirements. Final rule. Fed. Regist., 2015, 80(120), 35834-35841.
[PMID: 26103741]
[59]
Letavayová, L.; Vlcková, V.; Brozmanová, J. Selenium: from cancer prevention to DNA damage. Toxicology, 2006, 227(1-2), 1-14.
[http://dx.doi.org/10.1016/j.tox.2006.07.017] [PMID: 16935405]
[60]
Xia, Y.; Hill, K.E.; Li, P.; Xu, J.; Zhou, D.; Motley, A.K.; Wang, L.; Byrne, D.W.; Burk, R.F. Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: a placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects. Am. J. Clin. Nutr., 2010, 92(3), 525-531.
[http://dx.doi.org/10.3945/ajcn.2010.29642] [PMID: 20573787]
[61]
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J., 2014, 12(10), 3486.
[62]
Pieczyńska, J.; Grajeta, H. The role of selenium in human conception and pregnancy. J. Trace Elem. Med. Biol., 2015, 29, 31-38.
[http://dx.doi.org/10.1016/j.jtemb.2014.07.003] [PMID: 25175508]
[63]
Ralston, N.V.; Raymond, L.J. Dietary selenium’s protective effects against methylmercury toxicity. Toxicology, 2010, 278(1), 112-123.
[http://dx.doi.org/10.1016/j.tox.2010.06.004] [PMID: 20561558]
[64]
Mazokopakis, E.E.; Papadakis, J.A.; Papadomanolaki, M.G.; Batistakis, A.G.; Giannakopoulos, T.G.; Protopapadakis, E.E.; Ganotakis, E.S. Effects of 12 months treatment with L-selenomethionine on serum anti-TPO Levels in Patients with Hashimoto’s thyroiditis. Thyroid, 2007, 17(7), 609-612.
[http://dx.doi.org/10.1089/thy.2007.0040] [PMID: 17696828]
[65]
Lu, Z.; Marks, E.; Chen, J.; Moline, J.; Barrows, L.; Raisbeck, M.; Volitakis, I.; Cherny, R.A.; Chopra, V.; Bush, A.I.; Hersch, S.; Fox, J.H. Altered selenium status in Huntington’s disease: neuroprotection by selenite in the N171-82Q mouse model. Neurobiol. Dis., 2014, 71, 34-42.
[http://dx.doi.org/10.1016/j.nbd.2014.06.022] [PMID: 25014023]
[66]
Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; Parsons, J.K.; Bearden, J.D., III; Crawford, E.D.; Goodman, G.E.; Claudio, J.; Winquist, E.; Cook, E.D.; Karp, D.D.; Walther, P.; Lieber, M.M.; Kristal, A.R.; Darke, A.K.; Arnold, K.B.; Ganz, P.A.; Santella, R.M.; Albanes, D.; Taylor, P.R.; Probstfield, J.L.; Jagpal, T.J.; Crowley, J.J.; Meyskens, F.L., Jr; Baker, L.H.; Coltman, C.A. Jr. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 2009, 301(1), 39-51.
[http://dx.doi.org/10.1001/jama.2008.864] [PMID: 19066370]
[67]
Legrain, Y.; Touat-Hamici, Z.; Chavatte, L. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts. J. Biol. Chem., 2014, 289(9), 6299-6310.
[http://dx.doi.org/10.1074/jbc.M113.526863] [PMID: 24425862]
[68]
Pirola, I.; Gandossi, E.; Agosti, B.; Delbarba, A.; Cappelli, C. Selenium supplementation could restore euthyroidism in subclinical hypothyroid patients with autoimmune thyroiditis. Endokrynol. Pol., 2016, 67(6), 567-571.
[http://dx.doi.org/10.5603/EP.2016.0064] [PMID: 28042649]
[69]
Allmang, C.; Krol, A. Selenoprotein synthesis: UGA does not end the story. Biochimie, 2006, 88(11), 1561-1571.
[http://dx.doi.org/10.1016/j.biochi.2006.04.015] [PMID: 16737768]
[70]
Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science, 2003, 300(5624), 1439-1443.
[http://dx.doi.org/10.1126/science.1083516] [PMID: 12775843]
[71]
Abdulah, R.; Miyazaki, K.; Nakazawa, M.; Koyama, H. Chemical forms of selenium for cancer prevention. J. Trace Elem. Med. Biol., 2005, 19(2-3), 141-150.
[http://dx.doi.org/10.1016/j.jtemb.2005.09.003] [PMID: 16325529]
[72]
Fomenko, D.E.; Xing, W.; Adair, B.M.; Thomas, D.J.; Gladyshev, V.N. High-throughput identification of catalytic redox-active cysteine residues. Science, 2007, 315(5810), 387-389.
[http://dx.doi.org/10.1126/science.1133114] [PMID: 17234949]
[73]
Schweizer, U.; Fradejas-Villar, N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J., 2016, 30(11), 3669-3681.
[http://dx.doi.org/10.1096/fj.201600424] [PMID: 27473727]
[74]
Hill, K.E.; Wu, S.; Motley, A.K.; Stevenson, T.D.; Winfrey, V.P.; Capecchi, M.R.; Atkins, J.F.; Burk, R.F. Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J. Biol. Chem., 2012, 287(48), 40414-40424.
[http://dx.doi.org/10.1074/jbc.M112.421404] [PMID: 23038251]
[75]
Olson, G.E.; Winfrey, V.P.; Hill, K.E.; Burk, R.F. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J. Biol. Chem., 2008, 283(11), 6854-6860.
[http://dx.doi.org/10.1074/jbc.M709945200] [PMID: 18174160]
[76]
Combs, G.F., Jr; Watts, J.C.; Jackson, M.I.; Johnson, L.K.; Zeng, H.; Scheett, A.J.; Uthus, E.O.; Schomburg, L.; Hoeg, A.; Hoefig, C.S.; Davis, C.D.; Milner, J.A. Determinants of selenium status in healthy adults. Nutr. J., 2011, 10, 75.
[http://dx.doi.org/10.1186/1475-2891-10-75] [PMID: 21767397]
[77]
Schomburg, L.; Schweizer, U.; Holtmann, B.; Flohé, L.; Sendtner, M.; Köhrle, J. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem. J., 2003, 370(Pt 2), 397-402.
[http://dx.doi.org/10.1042/bj20021853] [PMID: 12521380]
[78]
Burk, R.F.; Hill, K.E. Selenoprotein P-expression, functions, and roles in mammals. Biochim. Biophys. Acta, 2009, 1790(11), 1441-1447.
[http://dx.doi.org/10.1016/j.bbagen.2009.03.026] [PMID: 19345254]
[79]
Barrett, C.W.; Short, S.P.; Williams, C.S. Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut. Cell. Mol. Life Sci., 2017, 74(4), 607-616.
[http://dx.doi.org/10.1007/s00018-016-2339-2] [PMID: 27563706]
[80]
Turanov, A.A.; Everley, R.A.; Hybsier, S.; Renko, K.; Schomburg, L.; Gygi, S.P.; Hatfield, D.L.; Gladyshev, V.N. Regulation of selenocysteine content of human selenoprotein P by dietary selenium and insertion of cysteine in place of selenocysteine. PLoS One, 2015, 10(10), e0140353.
[http://dx.doi.org/10.1371/journal.pone.0140353] [PMID: 26452064]
[81]
Hill, K.E.; Zhou, J.; McMahan, W.J.; Motley, A.K.; Burk, R.F. Neurological dysfunction occurs in mice with targeted deletion of the selenoprotein P gene. J. Nutr., 2004, 134(1), 157-161.
[http://dx.doi.org/10.1093/jn/134.1.157] [PMID: 14704310]
[82]
Chen, M.; Liu, B.; Wilkinson, D.; Hutchison, A.T.; Thompson, C.H.; Wittert, G.A.; Heilbronn, L.K. Selenoprotein P is elevated in individuals with obesity, but is not independently associated with insulin resistance. Obes. Res. Clin. Pract., 2017, 11(2), 227-232.
[http://dx.doi.org/10.1016/j.orcp.2016.07.004] [PMID: 27524654]
[83]
Gharipour, M.; Sadeghi, M.; Salehi, M.; Behmanesh, M.; Khosravi, E.; Dianatkhah, M.; Haghjoo Javanmard, S.; Razavi, R.; Gharipour, A. Association of expression of selenoprotein P in mRNA and protein levels with metabolic syndrome in subjects with cardiovascular disease: Results of the Selenegene study. J. Gene Med., 2017, 19(3)
[http://dx.doi.org/10.1002/jgm.2945] [PMID: 28190280]
[84]
Traulsen, H.; Steinbrenner, H.; Buchczyk, D.P.; Klotz, L.O.; Sies, H. Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic. Res., 2004, 38(2), 123-128.
[http://dx.doi.org/10.1080/10715760320001634852] [PMID: 15104205]
[85]
Arteel, G.E.; Mostert, V.; Oubrahim, H.; Briviba, K.; Abel, J.; Sies, H. Protection by selenoprotein P in human plasma against peroxynitrite-mediated oxidation and nitration. Biol. Chem., 1998, 379(8-9), 1201-1205.
[PMID: 9792455]
[86]
Saito, Y.; Hayashi, T.; Tanaka, A.; Watanabe, Y.; Suzuki, M.; Saito, E.; Takahashi, K. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein p. J. Biol. Chem., 1999, 274(5), 2866-2871.
[http://dx.doi.org/10.1074/jbc.274.5.2866] [PMID: 9915822]
[87]
Petit, N.; Lescure, A.; Rederstorff, M.; Krol, A.; Moghadaszadeh, B.; Wewer, U.M.; Guicheney, P. Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum. Mol. Genet., 2003, 12(9), 1045-1053.
[http://dx.doi.org/10.1093/hmg/ddg115] [PMID: 12700173]
[88]
Jurynec, M.J.; Xia, R.; Mackrill, J.J.; Gunther, D.; Crawford, T.; Flanigan, K.M.; Abramson, J.J.; Howard, M.T.; Grunwald, D.J. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc. Natl. Acad. Sci. USA, 2008, 105(34), 12485-12490.
[http://dx.doi.org/10.1073/pnas.0806015105] [PMID: 18713863]
[89]
Arbogast, S.; Beuvin, M.; Fraysse, B.; Zhou, H.; Muntoni, F.; Ferreiro, A. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann. Neurol., 2009, 65(6), 677-686.
[http://dx.doi.org/10.1002/ana.21644] [PMID: 19557870]
[90]
Lu, C.; Qiu, F.; Zhou, H.; Peng, Y.; Hao, W.; Xu, J.; Yuan, J.; Wang, S.; Qiang, B.; Xu, C.; Peng, X. Identification and characterization of selenoprotein K: an antioxidant in cardiomyocytes. FEBS Lett., 2006, 580(22), 5189-5197.
[http://dx.doi.org/10.1016/j.febslet.2006.08.065] [PMID: 16962588]
[91]
Fan, R.; Yao, H.; Cao, C.; Zhao, X.; Khalid, A.; Zhao, J.; Zhang, Z.; Xu, S. Gene silencing of selenoprotein K induces inflammatory response and activates heat shock proteins expression in chicken myoblasts. Biol. Trace Elem. Res., 2017, 180(1), 135-145.
[http://dx.doi.org/10.1007/s12011-017-0979-1] [PMID: 28281222]
[92]
Zhang, Y.; Zhou, Y.; Schweizer, U.; Savaskan, N.E.; Hua, D.; Kipnis, J.; Hatfield, D.L.; Gladyshev, V.N. Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J. Biol. Chem., 2008, 283(4), 2427-2438.
[http://dx.doi.org/10.1074/jbc.M707951200] [PMID: 18032379]
[93]
Ferguson, A.D.; Labunskyy, V.M.; Fomenko, D.E.; Araç, D.; Chelliah, Y.; Amezcua, C.A.; Rizo, J.; Gladyshev, V.N.; Deisenhofer, J. NMR structures of the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family. J. Biol. Chem., 2006, 281(6), 3536-3543.
[http://dx.doi.org/10.1074/jbc.M511386200] [PMID: 16319061]
[94]
Pitts, M.W.; Reeves, M.A.; Hashimoto, A.C.; Ogawa, A.; Kremer, P.; Seale, L.A.; Berry, M.J. Deletion of selenoprotein M leads to obesity without cognitive deficits. J. Biol. Chem., 2013, 288(36), 26121-26134.
[http://dx.doi.org/10.1074/jbc.M113.471235] [PMID: 23880772]
[95]
Panee, J.; Stoytcheva, Z.R.; Liu, W.; Berry, M.J. Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. J. Biol. Chem., 2007, 282(33), 23759-23765.
[http://dx.doi.org/10.1074/jbc.M702267200] [PMID: 17526492]
[96]
Cox, A.G.; Tsomides, A.; Kim, A.J.; Saunders, D.; Hwang, K.L.; Evason, K.J.; Heidel, J.; Brown, K.K.; Yuan, M.; Lien, E.C.; Lee, B.C.; Nissim, S.; Dickinson, B.; Chhangawala, S.; Chang, C.J.; Asara, J.M.; Houvras, Y.; Gladyshev, V.N.; Goessling, W. Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc. Natl. Acad. Sci. USA, 2016, 113(38), E5562-E5571.
[http://dx.doi.org/10.1073/pnas.1600204113] [PMID: 27588899]
[97]
Liu, J.; Rozovsky, S. Membrane-bound selenoproteins. Antioxid. Redox Signal., 2015, 23(10), 795-813.
[http://dx.doi.org/10.1089/ars.2015.6388] [PMID: 26168272]
[98]
Kim, H.Y.; Gladyshev, V.N. Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J., 2007, 407(3), 321-329.
[http://dx.doi.org/10.1042/BJ20070929] [PMID: 17922679]
[99]
Dai, J.; Liu, H.; Zhou, J.; Huang, K.; Selenoprotein, R. Selenoprotein R protects human lens epithelial cells against D-galactose-induced apoptosis by regulating oxidative stress and endoplasmic reticulum stress. Int. J. Mol. Sci., 2016, 17(2), 231.
[http://dx.doi.org/10.3390/ijms17020231] [PMID: 26875981]
[100]
Ye, Y.; Shibata, Y.; Yun, C.; Ron, D.; Rapoport, T.A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature, 2004, 429(6994), 841-847.
[http://dx.doi.org/10.1038/nature02656] [PMID: 15215856]
[101]
Bubenik, J.L.; Miniard, A.C.; Driscoll, D.M. Alternative transcripts and 3'UTR elements govern the incorporation of selenocysteine into selenoprotein S. PLoS One, 2013, 8(4)e62102
[http://dx.doi.org/10.1371/journal.pone.0062102] [PMID: 23614019]
[102]
Lee, J.H.; Park, K.J.; Jang, J.K.; Jeon, Y.H.; Ko, K.Y.; Kwon, J.H.; Lee, S.R.; Kim, I.Y. Selenoprotein S-dependent selenoprotein K binding to p97(VCP) protein is essential for endoplasmic reticulum-associated degradation. J. Biol. Chem., 2015, 290(50), 29941-29952.
[http://dx.doi.org/10.1074/jbc.M115.680215] [PMID: 26504085]
[103]
Du, S.; Liu, H.; Huang, K. Influence of SelS gene silence on beta-Mercaptoethanol-mediated endoplasmic reticulum stress and cell apoptosis in HepG2 cells. Biochim. Biophys. Acta, 2010, 1800(5), 511-517.
[http://dx.doi.org/10.1016/j.bbagen.2010.01.005] [PMID: 20114070]
[104]
Liu, J.; Li, F.; Rozovsky, S. The intrinsically disordered membrane protein selenoprotein S is a reductase in vitro. Biochemistry, 2013, 52(18), 3051-3061.
[http://dx.doi.org/10.1021/bi4001358] [PMID: 23566202]
[105]
Turanov, A.A.; Shchedrina, V.A.; Everley, R.A.; Lobanov, A.V.; Yim, S.H.; Marino, S.M.; Gygi, S.P.; Hatfield, D.L.; Gladyshev, V.N. Selenoprotein S is involved in maintenance and transport of multiprotein complexes. Biochem. J., 2014, 462(3), 555-565.
[http://dx.doi.org/10.1042/BJ20140076] [PMID: 24897171]
[106]
Sengupta, A.; Carlson, B.A.; Labunskyy, V.M.; Gladyshev, V.N.; Hatfield, D.L. Selenoprotein T deficiency alters cell adhesion and elevates selenoprotein W expression in murine fibroblast cells. Biochem. Cell Biol., 2009, 87(6), 953-961.
[http://dx.doi.org/10.1139/O09-064] [PMID: 19935881]
[107]
Grumolato, L.; Ghzili, H.; Montero-Hadjadje, M.; Gasman, S.; Lesage, J.; Tanguy, Y.; Galas, L.; Ait-Ali, D.; Leprince, J.; Guérineau, N.C.; Elkahloun, A.G.; Fournier, A.; Vieau, D.; Vaudry, H.; Anouar, Y. Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J., 2008, 22(6), 1756-1768.
[http://dx.doi.org/10.1096/fj.06-075820] [PMID: 18198219]
[108]
Prevost, G.; Arabo, A.; Jian, L.; Quelennec, E.; Cartier, D.; Hassan, S.; Falluel-Morel, A.; Tanguy, Y.; Gargani, S.; Lihrmann, I.; Kerr-Conte, J.; Lefebvre, H.; Pattou, F.; Anouar, Y. The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human β-cells and its targeted inactivation impairs glucose tolerance. Endocrinology, 2013, 154(10), 3796-3806.
[http://dx.doi.org/10.1210/en.2013-1167] [PMID: 23913443]
[109]
Labunskyy, V.M.; Lee, B.C.; Handy, D.E.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N. Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid. Redox Signal., 2011, 14(12), 2327-2336.
[http://dx.doi.org/10.1089/ars.2010.3526] [PMID: 21194350]
[110]
Dikiy, A.; Novoselov, S.V.; Fomenko, D.E.; Sengupta, A.; Carlson, B.A.; Cerny, R.L.; Ginalski, K.; Grishin, N.V.; Hatfield, D.L.; Gladyshev, V.N. SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry, 2007, 46(23), 6871-6882.
[http://dx.doi.org/10.1021/bi602462q] [PMID: 17503775]
[111]
Beilstein, M.A.; Vendeland, S.C.; Barofsky, E.; Jensen, O.N.; Whanger, P.D. Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety. J. Inorg. Biochem., 1996, 61(2), 117-124.
[http://dx.doi.org/10.1016/0162-0134(95)00045-3] [PMID: 8576706]
[112]
Jeong, Dw.; Kim, T.S.; Chung, Y.W.; Lee, B.J.; Kim, I.Y. Selenoprotein W is a glutathione-dependent antioxidant in vivo. FEBS Lett., 2002, 517(1-3), 225-228.
[http://dx.doi.org/10.1016/S0014-5793(02)02628-5] [PMID: 12062442]
[113]
Sun, Y.; Gu, Q.P.; Whanger, P.D. Selenoprotein W in overexpressed and underexpressed rat glial cells in culture. J. Inorg. Biochem., 2001, 84(1-2), 151-156.
[http://dx.doi.org/10.1016/S0162-0134(00)00219-1] [PMID: 11330475]
[114]
Loflin, J.; Lopez, N.; Whanger, P.D.; Kioussi, C. Selenoprotein W during development and oxidative stress. J. Inorg. Biochem., 2006, 100(10), 1679-1684.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.05.018] [PMID: 16876868]
[115]
Whanger, P.D. Selenoprotein W: a review. Cell. Mol. Life Sci., 2000, 57(13-14), 1846-1852.
[http://dx.doi.org/10.1007/PL00000666] [PMID: 11215511]
[116]
Gladyshev, V.N.; Jeang, K.T.; Wootton, J.C.; Hatfield, D.L. A new human selenium-containing protein. Purification, characterization, and cDNA sequence. J. Biol. Chem., 1998, 273(15), 8910-8915.
[http://dx.doi.org/10.1074/jbc.273.15.8910] [PMID: 9535873]
[117]
Korotkov, K.V.; Novoselov, S.V.; Hatfield, D.L.; Gladyshev, V.N. Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Mol. Cell. Biol., 2002, 22(5), 1402-1411.
[http://dx.doi.org/10.1128/MCB.22.5.1402-1411.2002] [PMID: 11839807]
[118]
Kumaraswamy, E.; Malykh, A.; Korotkov, K.V.; Kozyavkin, S.; Hu, Y.; Kwon, S.Y.; Moustafa, M.E.; Carlson, B.A.; Berry, M.J.; Lee, B.J.; Hatfield, D.L.; Diamond, A.M.; Gladyshev, V.N. Structure-expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology. J. Biol. Chem., 2000, 275(45), 35540-35547.
[http://dx.doi.org/10.1074/jbc.M004014200] [PMID: 10945981]
[119]
Xu, X.M.; Carlson, B.A.; Zhang, Y.; Mix, H.; Kryukov, G.V.; Glass, R.S.; Berry, M.J.; Gladyshev, V.N.; Hatfield, D.L. New developments in selenium biochemistry: selenocysteine biosynthesis in eukaryotes and archaea. Biol. Trace Elem. Res., 2007, 119(3), 234-241.
[http://dx.doi.org/10.1007/s12011-007-8003-9] [PMID: 17916946]
[120]
Brigelius-Flohé, R.; Müller, M.; Lippmann, D.; Kipp, A.P. The yin and yang of nrf2-regulated selenoproteins in carcinogenesis. Int. J. Cell Biol., 2012, 2012486147
[http://dx.doi.org/10.1155/2012/486147] [PMID: 22654914]
[121]
Du, Y.; Zhang, H.; Lu, J.; Holmgren, A. Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose. J. Biol. Chem., 2012, 287(45), 38210-38219.
[http://dx.doi.org/10.1074/jbc.M112.392225] [PMID: 22977247]
[122]
Watson, W.H.; Heilman, J.M.; Hughes, L.L.; Spielberger, J.C. Thioredoxin reductase-1 knock down does not result in thioredoxin-1 oxidation. Biochem. Biophys. Res. Commun., 2008, 368(3), 832-836.
[http://dx.doi.org/10.1016/j.bbrc.2008.02.006] [PMID: 18267104]
[123]
Berggren, M.; Gallegos, A.; Gasdaska, J.R.; Gasdaska, P.Y.; Warneke, J.; Powis, G. Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res., 1996, 16(6B), 3459-3466.
[PMID: 9042207]
[124]
Lincoln, D.T.; Al-Yatama, F.; Mohammed, F.M.; Al-Banaw, A.G.; Al-Bader, M.; Burge, M.; Sinowatz, F.; Singal, P.K. Thioredoxin and thioredoxin reductase expression in thyroid cancer depends on tumour aggressiveness. Anticancer Res., 2010, 30(3), 767-775.
[PMID: 20392995]
[125]
Ashton, K.; Hooper, L.; Harvey, L.J.; Hurst, R.; Casgrain, A.; Fairweather-Tait, S.J. Methods of assessment of selenium status in humans: a systematic review. Am. J. Clin. Nutr., 2009, 89(6), 2025S-2039S.
[http://dx.doi.org/10.3945/ajcn.2009.27230F] [PMID: 19420095]
[126]
Rayman, M.P. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc. Nutr. Soc., 2005, 64(4), 527-542.
[http://dx.doi.org/10.1079/PNS2005467] [PMID: 16313696]
[127]
Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione peroxidase: a selenoenzyme. FEBS Lett., 1973, 32(1), 132-134.
[http://dx.doi.org/10.1016/0014-5793(73)80755-0] [PMID: 4736708]
[128]
Tan, M.; Li, S.; Swaroop, M.; Guan, K.; Oberley, L.W.; Sun, Y. Transcriptional activation of the human glutathione peroxidase promoter by p53. J. Biol. Chem., 1999, 274(17), 12061-12066.
[http://dx.doi.org/10.1074/jbc.274.17.12061] [PMID: 10207030]
[129]
Yan, W.; Chen, X. GPX2, a direct target of p63, inhibits oxidative stress-induced apoptosis in a p53-dependent manner. J. Biol. Chem., 2006, 281(12), 7856-7862.
[http://dx.doi.org/10.1074/jbc.M512655200] [PMID: 16446369]
[130]
Murawaki, Y.; Tsuchiya, H.; Kanbe, T.; Harada, K.; Yashima, K.; Nozaka, K.; Tanida, O.; Kohno, M.; Mukoyama, T.; Nishimuki, E.; Kojo, H.; Matsura, T.; Takahashi, K.; Osaki, M.; Ito, H.; Yodoi, J.; Murawaki, Y.; Shiota, G. Aberrant expression of selenoproteins in the progression of colorectal cancer. Cancer Lett., 2008, 259(2), 218-230.
[http://dx.doi.org/10.1016/j.canlet.2007.10.019] [PMID: 18054426]
[131]
Esworthy, R.S.; Aranda, R.; Martín, M.G.; Doroshow, J.H.; Binder, S.W.; Chu, F.F. Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281(3), G848-G855.
[http://dx.doi.org/10.1152/ajpgi.2001.281.3.G848] [PMID: 11518697]
[132]
Chu, F.F.; Esworthy, R.S.; Chu, P.G.; Longmate, J.A.; Huycke, M.M.; Wilczynski, S.; Doroshow, J.H. Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res., 2004, 64(3), 962-968.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2272] [PMID: 14871826]
[133]
Qi, X.; Ng, K.T.; Lian, Q.Z.; Liu, X.B.; Li, C.X.; Geng, W.; Ling, C.C.; Ma, Y.Y.; Yeung, W.H.; Tu, W.W.; Fan, S.T.; Lo, C.M.; Man, K. Clinical significance and therapeutic value of glutathione peroxidase 3 (GPx3) in hepatocellular carcinoma. Oncotarget, 2014, 5(22), 11103-11120.
[http://dx.doi.org/10.18632/oncotarget.2549] [PMID: 25333265]
[134]
Schomburg, L.; Köhrle, J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol. Nutr. Food Res., 2008, 52(11), 1235-1246.
[http://dx.doi.org/10.1002/mnfr.200700465] [PMID: 18686295]
[135]
Uchida, T.; Sakai, O.; Imai, H.; Ueta, T. Role of glutathione peroxidase 4 in corneal endothelial cells. Curr. Eye Res., 2017, 42(3), 380-385.
[http://dx.doi.org/10.1080/02713683.2016.1196707] [PMID: 27420751]
[136]
Ingold, I.; Aichler, M.; Yefremova, E.; Roveri, A.; Buday, K.; Doll, S.; Tasdemir, A.; Hoffard, N.; Wurst, W.; Walch, A.; Ursini, F.; Friedmann Angeli, J.P.; Conrad, M. Expression of a catalytically inactive mutant form of glutathione peroxidase 4 (Gpx4) confers a dominant-negative effect in male fertility. J. Biol. Chem., 2015, 290(23), 14668-14678.
[http://dx.doi.org/10.1074/jbc.M115.656363] [PMID: 25922076]
[137]
Vernet, P.; Faure, J.; Dufaure, J.P.; Drevet, J.R. Tissue and developmental distribution, dependence upon testicular factors and attachment to spermatozoa of GPX5, a murine epididymis-specific glutathione peroxidase. Mol. Reprod. Dev., 1997, 47(1), 87-98.
[http://dx.doi.org/10.1002/(SICI)1098-2795(199705)47:1<87:AID-MRD12>3.0.CO;2-X] [PMID: 9110319]
[138]
Dear, T.N.; Campbell, K.; Rabbitts, T.H. Molecular cloning of putative odorant-binding and odorant-metabolizing proteins. Biochemistry, 1991, 30(43), 10376-10382.
[http://dx.doi.org/10.1021/bi00107a003] [PMID: 1931961]
[139]
Schweizer, U.; Weitzel, J.M.; Schomburg, L. Think globally: act locally. New insights into the local regulation of thyroid hormone availability challenge long accepted dogmas. Mol. Cell. Endocrinol., 2008, 289(1-2), 1-9.
[http://dx.doi.org/10.1016/j.mce.2008.04.007] [PMID: 18508193]
[140]
Friedrichs, B.; Tepel, C.; Reinheckel, T.; Deussing, J.; von Figura, K.; Herzog, V.; Peters, C.; Saftig, P.; Brix, K. Thyroid functions of mouse cathepsins B, K, and L. J. Clin. Invest., 2003, 111(11), 1733-1745.
[http://dx.doi.org/10.1172/JCI15990] [PMID: 12782676]
[141]
Valverde, C.; Orozco, A.; Becerra, A.; Jeziorski, M.C.; Villalobos, P.; Solís, J.C. Halometabolites and cellular dehalogenase systems: an evolutionary perspective. Int. Rev. Cytol., 2004, 234, 143-199.
[http://dx.doi.org/10.1016/S0074-7696(04)34004-0] [PMID: 15066375]
[142]
Beckett, G.J.; Arthur, J.R. Selenium and endocrine systems. J. Endocrinol., 2005, 184(3), 455-465.
[http://dx.doi.org/10.1677/joe.1.05971] [PMID: 15749805]
[143]
Mullur, R.; Liu, Y.Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev., 2014, 94(2), 355-382.
[http://dx.doi.org/10.1152/physrev.00030.2013] [PMID: 24692351]
[144]
Gereben, B.; Zavacki, A.M.; Ribich, S.; Kim, B.W.; Huang, S.A.; Simonides, W.S.; Zeöld, A.; Bianco, A.C. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev., 2008, 29(7), 898-938.
[http://dx.doi.org/10.1210/er.2008-0019] [PMID: 18815314]
[145]
Kuiper, G.G.; Klootwijk, W.; Visser, T.J. Substitution of cysteine for selenocysteine in the catalytic center of type III iodothyronine deiodinase reduces catalytic efficiency and alters substrate preference. Endocrinology, 2003, 144(6), 2505-2513.
[http://dx.doi.org/10.1210/en.2003-0084] [PMID: 12746313]
[146]
Olvera, A.; Mendoza, A.; Villalobos, P.; Mayorga-Martínez, L.; Orozco, A.; Valverde-R, C. The variable region of iodothyronine deiodinases directs their catalytic properties and subcellular localization. Mol. Cell. Endocrinol., 2015, 402, 107-112.
[http://dx.doi.org/10.1016/j.mce.2015.01.011] [PMID: 25591907]
[147]
Sagar, G.D.; Gereben, B.; Callebaut, I.; Mornon, J.P.; Zeöld, A.; Curcio-Morelli, C.; Harney, J.W.; Luongo, C.; Mulcahey, M.A.; Larsen, P.R.; Huang, S.A.; Bianco, A.C. The thyroid hormone-inactivating deiodinase functions as a homodimer. Mol. Endocrinol., 2008, 22(6), 1382-1393.
[http://dx.doi.org/10.1210/me.2007-0490] [PMID: 18356288]
[148]
van der Spek, A.H.; Bloise, F.F.; Tigchelaar, W.; Dentice, M.; Salvatore, D.; van der Wel, N.N.; Fliers, E.; Boelen, A. The thyroid hormone inactivating enzyme type 3 deiodinase is present in bactericidal granules and the cytoplasm of human neutrophils. Endocrinology, 2016, 157(8), 3293-3305.
[http://dx.doi.org/10.1210/en.2016-1103] [PMID: 27355490]
[149]
Schweizer, U.; Steegborn, C. New insights into the structure and mechanism of iodothyronine deiodinases. J. Mol. Endocrinol., 2015, 55(3), R37-R52.
[http://dx.doi.org/10.1530/JME-15-0156] [PMID: 26390881]
[150]
Arrojo, E. Drigo, R.; Bianco, A.C. Type 2 deiodinase at the crossroads of thyroid hormone action. Int. J. Biochem. Cell Biol., 2011, 43(10), 1432-1441.
[http://dx.doi.org/10.1016/j.biocel.2011.05.016] [PMID: 21679772]
[151]
Bianco, A.C.; Kim, B.W. Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest., 2006, 116(10), 2571-2579.
[http://dx.doi.org/10.1172/JCI29812] [PMID: 17016550]
[152]
Watanabe, M.; Houten, S.M.; Mataki, C.; Christoffolete, M.A.; Kim, B.W.; Sato, H.; Messaddeq, N.; Harney, J.W.; Ezaki, O.; Kodama, T.; Schoonjans, K.; Bianco, A.C.; Auwerx, J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, 439(7075), 484-489.
[http://dx.doi.org/10.1038/nature04330] [PMID: 16400329]
[153]
Wajner, S.M.; Goemann, I.M.; Bueno, A.L.; Larsen, P.R.; Maia, A.L. IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. J. Clin. Invest., 2011, 121(5), 1834-1845.
[http://dx.doi.org/10.1172/JCI44678] [PMID: 21540553]
[154]
Abilés, J.; de la Cruz, A.P.; Castaño, J.; Rodríguez-Elvira, M.; Aguayo, E.; Moreno-Torres, R.; Llopis, J.; Aranda, P.; Argüelles, S.; Ayala, A.; de la Quintana, A.M.; Planells, E.M. Oxidative stress is increased in critically ill patients according to antioxidant vitamins intake, independent of severity: a cohort study. Crit. Care, 2006, 10(5), R146.
[http://dx.doi.org/10.1186/cc5068] [PMID: 17040563]
[155]
Maia, A.L.; Kim, B.W.; Huang, S.A.; Harney, J.W.; Larsen, P.R. Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J. Clin. Invest., 2005, 115(9), 2524-2533.
[http://dx.doi.org/10.1172/JCI25083] [PMID: 16127464]
[156]
Papp, L.V.; Lu, J.; Striebel, F.; Kennedy, D.; Holmgren, A.; Khanna, K.K. The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function. Mol. Cell. Biol., 2006, 26(13), 4895-4910.
[http://dx.doi.org/10.1128/MCB.02284-05] [PMID: 16782878]
[157]
Marsili, A.; Zavacki, A.M.; Harney, J.W.; Larsen, P.R. Physiological role and regulation of iodothyronine deiodinases: a 2011 update. J. Endocrinol. Invest., 2011, 34(5), 395-407.
[http://dx.doi.org/10.1007/BF03347465] [PMID: 21427525]
[158]
de Vries, E.M.; Fliers, E.; Boelen, A. The molecular basis of the non-thyroidal illness syndrome. J. Endocrinol., 2015, 225(3), R67-R81.
[http://dx.doi.org/10.1530/JOE-15-0133] [PMID: 25972358]
[159]
Peeters, R.P.; Wouters, P.J.; van Toor, H.; Kaptein, E.; Visser, T.J.; Van den Berghe, G. Serum 3,3′,5′-triiodothyronine (rT3) and 3,5,3′-triiodothyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. J. Clin. Endocrinol. Metab., 2005, 90(8), 4559-4565.
[http://dx.doi.org/10.1210/jc.2005-0535] [PMID: 15886232]
[160]
Rodriguez-Perez, A.; Palos-Paz, F.; Kaptein, E.; Visser, T.J.; Dominguez-Gerpe, L.; Alvarez-Escudero, J.; Lado-Abeal, J. Identification of molecular mechanisms related to nonthyroidal illness syndrome in skeletal muscle and adipose tissue from patients with septic shock. Clin. Endocrinol. (Oxf.), 2008, 68(5), 821-827.
[http://dx.doi.org/10.1111/j.1365-2265.2007.03102.x] [PMID: 17986277]
[161]
Mebis, L.; Langouche, L.; Visser, T.J.; Van den Berghe, G. The type II iodothyronine deiodinase is up-regulated in skeletal muscle during prolonged critical illness. J. Clin. Endocrinol. Metab., 2007, 92(8), 3330-3333.
[http://dx.doi.org/10.1210/jc.2007-0510] [PMID: 17504898]
[162]
Kwakkel, J.; Surovtseva, O.V.; de Vries, E.M.; Stap, J.; Fliers, E.; Boelen, A. A novel role for the thyroid hormone-activating enzyme type 2 deiodinase in the inflammatory response of macrophages. Endocrinology, 2014, 155(7), 2725-2734.
[http://dx.doi.org/10.1210/en.2013-2066] [PMID: 24731098]
[163]
Heemstra, K.A.; Soeters, M.R.; Fliers, E.; Serlie, M.J.; Burggraaf, J.; van Doorn, M.B.; van der Klaauw, A.A.; Romijn, J.A.; Smit, J.W.; Corssmit, E.P.; Visser, T.J. Type 2 iodothyronine deiodinase in skeletal muscle: effects of hypothyroidism and fasting. J. Clin. Endocrinol. Metab., 2009, 94(6), 2144-2150.
[http://dx.doi.org/10.1210/jc.2008-2520] [PMID: 19293265]
[164]
Ma, S.F.; Xie, L.; Pino-Yanes, M.; Sammani, S.; Wade, M.S.; Letsiou, E.; Siegler, J.; Wang, T.; Infusino, G.; Kittles, R.A.; Flores, C.; Zhou, T.; Prabhakar, B.S.; Moreno-Vinasco, L.; Villar, J.; Jacobson, J.R.; Dudek, S.M.; Garcia, J.G. Type 2 deiodinase and host responses of sepsis and acute lung injury. Am. J. Respir. Cell Mol. Biol., 2011, 45(6), 1203-1211.
[http://dx.doi.org/10.1165/rcmb.2011-0179OC] [PMID: 21685153]
[165]
Boelen, A.; Kwakkel, J.; Alkemade, A.; Renckens, R.; Kaptein, E.; Kuiper, G.; Wiersinga, W.M.; Visser, T.J. Induction of type 3 deiodinase activity in inflammatory cells of mice with chronic local inflammation. Endocrinology, 2005, 146(12), 5128-5134.
[http://dx.doi.org/10.1210/en.2005-0608] [PMID: 16150911]
[166]
Boelen, A.; Kwakkel, J.; Wiersinga, W.M.; Fliers, E. Chronic local inflammation in mice results in decreased TRH and type 3 deiodinase mRNA expression in the hypothalamic paraventricular nucleus independently of diminished food intake. J. Endocrinol., 2006, 191(3), 707-714.
[http://dx.doi.org/10.1677/joe.1.07056] [PMID: 17170227]
[167]
Debaveye, Y.; Ellger, B.; Mebis, L.; Van Herck, E.; Coopmans, W.; Darras, V.; Van den Berghe, G. Tissue deiodinase activity during prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone-releasing peptide-2. Endocrinology, 2005, 146(12), 5604-5611.
[http://dx.doi.org/10.1210/en.2005-0963] [PMID: 16150898]
[168]
Peeters, R.P.; Wouters, P.J.; Kaptein, E.; van Toor, H.; Visser, T.J.; Van den Berghe, G. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J. Clin. Endocrinol. Metab., 2003, 88(7), 3202-3211.
[http://dx.doi.org/10.1210/jc.2002-022013] [PMID: 12843166]
[169]
Olivares, E.L.; Marassi, M.P.; Fortunato, R.S.; da Silva, A.C.; Costa-e-Sousa, R.H.; Araújo, I.G.; Mattos, E.C.; Masuda, M.O.; Mulcahey, M.A.; Huang, S.A.; Bianco, A.C.; Carvalho, D.P. Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology, 2007, 148(10), 4786-4792.
[http://dx.doi.org/10.1210/en.2007-0043] [PMID: 17628010]
[170]
Granata, S.; Zaza, G.; Simone, S.; Villani, G.; Latorre, D.; Pontrelli, P.; Carella, M.; Schena, F.P.; Grandaliano, G.; Pertosa, G. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics, 2009, 10, 388.
[http://dx.doi.org/10.1186/1471-2164-10-388] [PMID: 19698090]
[171]
Zachara, B.A.; Pawluk, H.; Bloch-Boguslawska, E.; Sliwka, K.M.; Korenkiewicz, J.; Skok, Z.; Ryć, K. Tissue level, distribution, and total body selenium content in healthy and diseased humans in Poland. Arch. Environ. Health, 2001, 56(5), 461-466.
[http://dx.doi.org/10.1080/00039890109604483] [PMID: 11777029]
[172]
Lo, J.C.; Chertow, G.M.; Go, A.S.; Hsu, C.Y. Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int., 2005, 67(3), 1047-1052.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00169.x] [PMID: 15698444]
[173]
Chonchol, M.; Lippi, G.; Salvagno, G.; Zoppini, G.; Muggeo, M.; Targher, G. Prevalence of subclinical hypothyroidism in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2008, 3(5), 1296-1300.
[http://dx.doi.org/10.2215/CJN.00800208] [PMID: 18550654]
[174]
Kaptein, E.M. Thyroid hormone metabolism and thyroid diseases in chronic renal failure. Endocr. Rev., 1996, 17(1), 45-63.
[http://dx.doi.org/10.1210/edrv-17-1-45] [PMID: 8641223]
[175]
Carrero, J.J.; Qureshi, A.R.; Axelsson, J.; Yilmaz, M.I.; Rehnmark, S.; Witt, M.R.; Bárány, P.; Heimbürger, O.; Suliman, M.E.; Alvestrand, A.; Lindholm, B.; Stenvinkel, P. Clinical and biochemical implications of low thyroid hormone levels (total and free forms) in euthyroid patients with chronic kidney disease. J. Intern. Med., 2007, 262(6), 690-701.
[http://dx.doi.org/10.1111/j.1365-2796.2007.01865.x] [PMID: 17908160]
[176]
Song, S.H.; Kwak, I.S.; Lee, D.W.; Kang, Y.H.; Seong, E.Y.; Park, J.S. The prevalence of low triiodothyronine according to the stage of chronic kidney disease in subjects with a normal thyroid-stimulating hormone. Nephrol. Dial. Transplant., 2009, 24(5), 1534-1538.
[http://dx.doi.org/10.1093/ndt/gfn682] [PMID: 19106286]
[177]
Ozen, K.P.; Asci, G.; Gungor, O.; Carrero, J.J.; Kircelli, F.
Tatar, E.; Sevinc Ok, E.; Ozkahya, M.; Toz, H.; Cirit, M.
Basci, A.; Ok, E. Nutritional state alters the association be-tween free triiodothyronine levels and mortality in hemo-dialysis patients. Am. J. Nephrol., 2011, 33(4), 305-312.
[http://dx.doi.org/10.1159/000324883] [PMID: 21389695]
[178]
Lin, Y.C.; Lin, Y.C.; Chen, T.W.; Yang, W.C.; Lin, C.C. Abnormal thyroid function predicts mortality in patients receiving long-term peritoneal dialysis: a case-controlled longitudinal study. J. Chin. Med. Assoc., 2012, 75(2), 54-59.
[http://dx.doi.org/10.1016/j.jcma.2011.12.006] [PMID: 22340737]
[179]
Meuwese, C.L.; Dekker, F.W.; Lindholm, B.; Qureshi, A.R.; Heimburger, O.; Barany, P.; Stenvinkel, P.; Carrero, J.J. Baseline levels and trimestral variation of triiodothyronine and thyroxine and their association with mortality in maintenance hemodialysis patients. Clin. J. Am. Soc. Nephrol., 2012, 7(1), 131-138.
[http://dx.doi.org/10.2215/CJN.05250511] [PMID: 22246282]
[180]
Dumler, F.; Bello, M.J.; Cruz, C.; Gotaas, K.A.; Macks, H. Thyroid function surveillance in CAPD patients. Adv. Perit. Dial., 1995, 11, 225-228.
[PMID: 8534710]
[181]
Wiederkehr, M.R.; Kalogiros, J.; Krapf, R. Correction of metabolic acidosis improves thyroid and growth hormone axes in haemodialysis patients. Nephrol. Dial. Transplant., 2004, 19(5), 1190-1197.
[http://dx.doi.org/10.1093/ndt/gfh096] [PMID: 14993483]
[182]
Zoccali, C.; Tripepi, G.; Cutrupi, S.; Pizzini, P.; Mallamaci, F. Low triiodothyronine: a new facet of inflammation in end-stage renal disease. J. Am. Soc. Nephrol., 2005, 16(9), 2789-2795.
[http://dx.doi.org/10.1681/ASN.2005040356] [PMID: 16033857]
[183]
Bando, Y.; Ushiogi, Y.; Okafuji, K.; Toya, D.; Tanaka, N.; Miura, S. Non-autoimmune primary hypothyroidism in diabetic and non-diabetic chronic renal dysfunction. Exp. Clin. Endocrinol. Diabetes, 2002, 110(8), 408-415.
[http://dx.doi.org/10.1055/s-2002-36427] [PMID: 12518252]
[184]
Czernichow, P.; Dauzet, M.C.; Broyer, M.; Rappaport, R. Abnormal TSH, PRL and GH response to TSH releasing factor in chronic renal failure. J. Clin. Endocrinol. Metab., 1976, 43(3), 630-637.
[http://dx.doi.org/10.1210/jcem-43-3-630] [PMID: 821962]
[185]
Silverberg, D.S.; Ulan, R.A.; Fawcett, D.M.; Dossetor, J.B.; Grace, M.; Bettcher, K. Effects of chronic hemodialysis on thyroid function in chronic renal failure. Can. Med. Assoc. J., 1973, 109(4), 282-286.
[PMID: 4125852]
[186]
Crowley, W.F., Jr; Ridgway, E.C.; Bough, E.W.; Francis, G.S.; Daniels, G.H.; Kourides, I.A.; Myers, G.S.; Maloof, F. Noninvasive evaluation of cardiac function in hypothyroidism. Response to gradual thyroxine replacement. N. Engl. J. Med., 1977, 296(1), 1-6.
[http://dx.doi.org/10.1056/NEJM197701062960101] [PMID: 830262]
[187]
Klein, I.; Ojamaa, K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med., 2001, 344(7), 501-509.
[http://dx.doi.org/10.1056/NEJM200102153440707] [PMID: 11172193]
[188]
Schmid, C.; Brändle, M.; Zwimpfer, C.; Zapf, J.; Wiesli, P. Effect of thyroxine replacement on creatinine, insulin-like growth factor 1, acid-labile subunit, and vascular endothelial growth factor. Clin. Chem., 2004, 50(1), 228-231.
[http://dx.doi.org/10.1373/clinchem.2003.021022] [PMID: 14709659]
[189]
Diekman, M.J.; Harms, M.P.; Endert, E.; Wieling, W.; Wiersinga, W.M. Endocrine factors related to changes in total peripheral vascular resistance after treatment of thyrotoxic and hypothyroid patients. Eur. J. Endocrinol., 2001, 144(4), 339-346.
[http://dx.doi.org/10.1530/eje.0.1440339] [PMID: 11275942]
[190]
Singer, M.A. Of mice and men and elephants: metabolic rate sets glomerular filtration rate. Am. J. Kidney Dis., 2001, 37(1), 164-178.
[http://dx.doi.org/10.1016/S0272-6386(01)80073-1] [PMID: 11136185]
[191]
Bradley, S.E.; Coelho, J.B.; Sealey, J.E.; Edwards, K.D.; Stéphan, F. Changes in glomerulotubular dimensions, single nephron glomerular filtration rates and the renin-angiotensin system in hypothyroid rats. Life Sci., 1982, 30(7-8), 633-639.
[http://dx.doi.org/10.1016/0024-3205(82)90279-X] [PMID: 7040895]
[192]
Conger, J.D.; Falk, S.A.; Gillum, D.M. The protective mechanism of thyroidectomy in a rat model of chronic renal failure. Am. J. Kidney Dis., 1989, 13(3), 217-225.
[http://dx.doi.org/10.1016/S0272-6386(89)80055-1] [PMID: 2919601]
[193]
Tomford, R.C.; Karlinsky, M.L.; Buddington, B.; Alfrey, A.C. Effect of thyroparathyroidectomy and parathyroidectomy on renal function and the nephrotic syndrome in rat nephrotoxic serum nephritis. J. Clin. Invest., 1981, 68(3), 655-664.
[http://dx.doi.org/10.1172/JCI110300] [PMID: 7276165]
[194]
van Hoek, I.; Daminet, S. Interactions between thyroid and kidney function in pathological conditions of these organ systems: a review. Gen. Comp. Endocrinol., 2009, 160(3), 205-215.
[http://dx.doi.org/10.1016/j.ygcen.2008.12.008] [PMID: 19133263]
[195]
Shin, D.H.; Lee, M.J.; Kim, S.J.; Oh, H.J.; Kim, H.R.; Han, J.H.; Koo, H.M.; Doh, F.M.; Park, J.T.; Han, S.H.; Yoo, T.H.; Kang, S.W. Preservation of renal function by thyroid hormone replacement therapy in chronic kidney disease patients with subclinical hypothyroidism. J. Clin. Endocrinol. Metab., 2012, 97(8), 2732-2740.
[http://dx.doi.org/10.1210/jc.2012-1663] [PMID: 22723335]
[196]
Hataya, Y.; Igarashi, S.; Yamashita, T.; Komatsu, Y. Thyroid hormone replacement therapy for primary hypothyroidism leads to significant improvement of renal function in chronic kidney disease patients. Clin. Exp. Nephrol., 2013, 17(4), 525-531.
[http://dx.doi.org/10.1007/s10157-012-0727-y] [PMID: 23160649]
[197]
Shin, D.H.; Lee, M.J.; Lee, H.S.; Oh, H.J.; Ko, K.I.; Kim, C.H.; Doh, F.M.; Koo, H.M.; Kim, H.R.; Han, J.H.; Park, J.T.; Han, S.H.; Yoo, T.H.; Kang, S.W. Thyroid hormone replacement therapy attenuates the decline of renal function in chronic kidney disease patients with subclinical hypothyroidism. Thyroid, 2013, 23(6), 654-661.
[http://dx.doi.org/10.1089/thy.2012.0475] [PMID: 23281965]
[198]
Reinhardt, W.; Misch, C.; Jockenhövel, F.; Wu, S.Y.; Chopra, I.; Philipp, T.; Reinwein, D.; Eigler, F.W.; Mann, K. Triiodothyronine (T3) reflects renal graft function after renal transplantation. Clin. Endocrinol. (Oxf.), 1997, 46(5), 563-569.
[http://dx.doi.org/10.1046/j.1365-2265.1997.1770988.x] [PMID: 9231052]
[199]
Cheung, A.K.; Sarnak, M.J.; Yan, G.; Berkoben, M.; Heyka, R.; Kaufman, A.; Lewis, J.; Rocco, M.; Toto, R.; Windus, D.; Ornt, D.; Levey, A.S. Cardiac diseases in maintenance hemodialysis patients: results of the HEMO Study. Kidney Int., 2004, 65(6), 2380-2389.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00657.x] [PMID: 15149351]
[200]
Pearce, E.N. Update in lipid alterations in subclinical hypothyroidism. J. Clin. Endocrinol. Metab., 2012, 97(2), 326-333.
[http://dx.doi.org/10.1210/jc.2011-2532] [PMID: 22205712]
[201]
Papaioannou, G.I.; Lagasse, M.; Mather, J.F.; Thompson, P.D. Treating hypothyroidism improves endothelial function. Metabolism, 2004, 53(3), 278-279.
[http://dx.doi.org/10.1016/j.metabol.2003.10.003] [PMID: 15015136]
[202]
Napoli, R.; Guardasole, V.; Zarra, E.; D’Anna, C.; De Sena, A.; Lupoli, G.A.; Oliviero, U.; Matarazzo, M.; Lupoli, G.; Saccà, L. Impaired endothelial- and nonendothelial-mediated vasodilation in patients with acute or chronic hypothyroidism. Clin. Endocrinol. (Oxf.), 2010, 72(1), 107-111.
[http://dx.doi.org/10.1111/j.1365-2265.2009.03609.x] [PMID: 19508590]
[203]
Shoji, T.; Maekawa, K.; Emoto, M.; Okuno, S.; Yamakawa, T.; Ishimura, E.; Inaba, M.; Nishizawa, Y. Arterial stiffness predicts cardiovascular death independent of arterial thickness in a cohort of hemodialysis patients. Atherosclerosis, 2010, 210(1), 145-149.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.11.013] [PMID: 20022324]
[204]
Nagasaki, T.; Inaba, M.; Shirakawa, K.; Hiura, Y.; Tahara, H.; Kumeda, Y.; Ishikawa, T.; Ishimura, E.; Nishizawa, Y. Increased levels of C-reactive protein in hypothyroid patients and its correlation with arterial stiffness in the common carotid artery. Biomed. Pharmacother., 2007, 61(2-3), 167-172.
[http://dx.doi.org/10.1016/j.biopha.2006.10.008] [PMID: 17383146]
[205]
Carrero, J.J.; Park, S.H.; Axelsson, J.; Lindholm, B.; Stenvinkel, P. Cytokines, atherogenesis, and hypercatabolism in chronic kidney disease: a dreadful triad. Semin. Dial., 2009, 22(4), 381-386.
[http://dx.doi.org/10.1111/j.1525-139X.2009.00585.x] [PMID: 19708986]
[206]
Enia, G.; Panuccio, V.; Cutrupi, S.; Pizzini, P.; Tripepi, G.; Mallamaci, F.; Zoccali, C. Subclinical hypothyroidism is linked to micro-inflammation and predicts death in continuous ambulatory peritoneal dialysis. Nephrol. Dial. Transplant., 2007, 22(2), 538-544.
[http://dx.doi.org/10.1093/ndt/gfl605] [PMID: 17082213]
[207]
Balázs, C.; Rácz, K. [The role of selenium in endocrine system diseases Orv. Hetil., 2013, 154(41), 1628-1635.
[PMID: 24095912]
[208]
Kuiper, G.G.; Kester, M.H.; Peeters, R.P.; Visser, T.J. Biochemical mechanisms of thyroid hormone deiodination. Thyroid, 2005, 15(8), 787-798.
[http://dx.doi.org/10.1089/thy.2005.15.787] [PMID: 16131322]
[209]
Vidart, J.; Wajner, S.M.; Leite, R.S.; Manica, A.; Schaan, B.D.; Larsen, P.R.; Maia, A.L. N-acetylcysteine administration prevents nonthyroidal illness syndrome in patients with acute myocardial infarction: a randomized clinical trial. J. Clin. Endocrinol. Metab., 2014, 99(12), 4537-4545.
[http://dx.doi.org/10.1210/jc.2014-2192] [PMID: 25148231]
[210]
Wajner, S.M.; Rohenkohl, H.C.; Serrano, T.; Maia, A.L. Sodium selenite supplementation does not fully restore oxidative stress-induced deiodinase dysfunction: Implications for the nonthyroidal illness syndrome. Redox Biol., 2015, 6, 436-445.
[http://dx.doi.org/10.1016/j.redox.2015.09.002] [PMID: 26402162]
[211]
Ceballos-Picot, I.; Witko-Sarsat, V.; Merad-Boudia, M.; Nguyen, A.T.; Thévenin, M.; Jaudon, M.C.; Zingraff, J.; Verger, C.; Jungers, P.; Descamps-Latscha, B. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic. Biol. Med., 1996, 21(6), 845-853.
[http://dx.doi.org/10.1016/0891-5849(96)00233-X] [PMID: 8902530]
[212]
Zachara, B.A.; Gromadzińska, J.; Wasowicz, W.; Zbróg, Z. Red blood cell and plasma glutathione peroxidase activities and selenium concentration in patients with chronic kidney disease: a review. Acta Biochim. Pol., 2006, 53(4), 663-677.
[http://dx.doi.org/10.18388/abp.2006_3294] [PMID: 17160142]
[213]
Dworkin, B.; Weseley, S.; Rosenthal, W.S.; Schwartz, E.M.; Weiss, L. Diminished blood selenium levels in renal failure patients on dialysis: correlations with nutritional status. Am. J. Med. Sci., 1987, 293(1), 6-12.
[http://dx.doi.org/10.1097/00000441-198701000-00003] [PMID: 3812549]
[214]
Cristol, J.P.; Canaud, B.; Rabesandratana, H.; Gaillard, I.; Serre, A.; Mion, C. Enhancement of reactive oxygen species production and cell surface markers expression due to haemodialysis. Nephrol. Dial. Transplant., 1994, 9(4), 389-394.
[PMID: 8084452]
[215]
Sedighi, O.; Zargari, M.; Varshi, G. Effect of selenium supplementation on glutathione peroxidase enzyme activity in patients with chronic kidney disease: a randomized clinical trial. Nephrourol. Mon., 2014, 6(3), e17945.
[http://dx.doi.org/10.5812/numonthly.17945] [PMID: 25032143]
[216]
Yoshimura, S.; Suemizu, H.; Nomoto, Y.; Sakai, H.; Katsuoka, Y.; Kawamura, N.; Moriuchi, T. Plasma glutathione peroxidase deficiency caused by renal dysfunction. Nephron, 1996, 73(2), 207-211.
[http://dx.doi.org/10.1159/000189042] [PMID: 8773346]
[217]
Zachara, B.A.; Salak, A.; Koterska, D.; Manitius, J.; Wasowicz, W. Selenium and glutathione peroxidases in blood of patients with different stages of chronic renal failure. J. Trace Elem. Med. Biol., 2004, 17(4), 291-299.
[http://dx.doi.org/10.1016/S0946-672X(04)80031-2] [PMID: 15139391]
[218]
Zachara, B.A. Selenium and selenium-dependent antioxidants in chronic kidney disease. Adv. Clin. Chem., 2015, 68, 131-151.
[http://dx.doi.org/10.1016/bs.acc.2014.11.006] [PMID: 25858871]
[219]
Vendrely, B.; Chauveau, P.; Barthe, N.; El Haggan, W.; Castaing, F.; de Précigout, V.; Combe, C.; Aparicio, M. Nutrition in hemodialysis patients previously on a supplemented very low protein diet. Kidney Int., 2003, 63(4), 1491-1498.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00884.x] [PMID: 12631366]
[220]
Xia, Y.; Hill, K.E.; Byrne, D.W.; Xu, J.; Burk, R.F. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr., 2005, 81(4), 829-834.
[http://dx.doi.org/10.1093/ajcn/81.4.829] [PMID: 15817859]
[221]
Iwanier, K.; Zachara, B.A. Selenium supplementation enhances the element concentration in blood and seminal fluid but does not change the spermatozoal quality characteristics in subfertile men. J. Androl., 1995, 16(5), 441-447.
[PMID: 8575984]
[222]
Preziosi, P.; Galan, P.; Herbeth, B.; Valeix, P.; Roussel, A.M.; Malvy, D.; Paul-Dauphin, A.; Arnaud, J.; Richard, M.J.; Briancon, S.; Favier, A.; Hercberg, S. Effects of supplementation with a combination of antioxidant vitamins and trace elements, at nutritional doses, on biochemical indicators and markers of the antioxidant system in adult subjects. J. Am. Coll. Nutr., 1998, 17(3), 244-249.
[http://dx.doi.org/10.1080/07315724.1998.10718754] [PMID: 9627910]
[223]
Saint-Georges, M.D.; Bonnefont, D.J.; Bourely, B.A.; Jaudon, M.C.; Cereze, P.; Chaumeil, P.; Gard, C.; D’Auzac, C.L. Correction of selenium deficiency in hemodialyzed patients. Kidney Int. Suppl., 1989, 27, S274-S277.
[PMID: 2636670]
[224]
Zachara, B.A.; Koterska, D.; Manitius, J.; Sadowski, L.; Dziedziczko, A.; Salak, A.; Wasowicz, W. Selenium supplementation on plasma glutathione peroxidase activity in patients with end-stage chronic renal failure. Biol. Trace Elem. Res., 2004, 97(1), 15-30.
[http://dx.doi.org/10.1385/BTER:97:1:15] [PMID: 14742897]
[225]
Chu, F.F.; Esworthy, R.S.; Doroshow, J.H.; Doan, K.; Liu, X.F. Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood, 1992, 79(12), 3233-3238.
[http://dx.doi.org/10.1182/blood.V79.12.3233.bloodjournal79123233] [PMID: 1339300]
[226]
Nishioka, H.; Kanauchi, M.; Dohi, K. The role of extracellular glutathione peroxidase in diabetic nephropathy. Nephron, 2001, 87(2), 196-197.
[http://dx.doi.org/10.1159/000045915] [PMID: 11244321]