Recent Advances in Lanthanide Based Nano-Architectures as Probes for Ultra High-Field Magnetic Resonance Imaging

Page: [352 - 361] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Paramagnetic Lanthanide ions incorporated into nano- architectures are emerging as a versatile platform for Magnetic Resonance Imaging (MRI) contrast agents due to their strong contrast enhancement effects combined with the platform capability to include multiple imaging modalities. This short review examines the application of lanthanide based nanoarchitectures (nanoparticles and nano- assemblies) in the development of multifunctional probes for single and multimodal imaging involving high field MRI as one imaging modality.

Keywords: Magnetic resonance imaging, lanthanide oxide nanoparticles, lanthanide fluoride nanoparticle, upconversion nanoparticle, micelles, bimodal MRI imaging, ultra-high field MRI.

[1]
Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev., 2006, 35(6), 512-523.
[http://dx.doi.org/10.1039/b510982p] [PMID: 16729145]
[2]
Vuong, Q.L.; Berret, J-F.; Fresnais, J.; Gossuin, Y.; Sandre, O. A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents. Adv. Healthc. Mater., 2012, 1(4), 502-512.
[http://dx.doi.org/10.1002/adhm.201200078] [PMID: 23184784]
[3]
Blow, N. Functional Neuroscience: How to get ahead in imaging. Nature, 2009, 458(7240), 925-928.
[http://dx.doi.org/10.1038/458925a] [PMID: 19370034]
[4]
Fu, R.; Brey, W.W.; Shetty, K.; Gor’kov, P.; Saha, S.; Long, J.R.; Grant, S.C.; Chekmenev, E.Y.; Hu, J.; Gan, Z.; Sharma, M.; Zhang, F.; Logan, T.M.; Brüschweller, R.; Edison, A.; Blue, A.; Dixon, I.R.; Markiewicz, W.D.; Cross, T.A. Ultra-wide bore 900 MHz high-resolution NMR at the national high magnetic field laboratory. J. Magn. Reson., 2005, 177(1), 1-8.
[http://dx.doi.org/10.1016/j.jmr.2005.07.013] [PMID: 16125429]
[5]
Rosenberg, J.T.; Kogot, J.M.; Lovingood, D.D.; Strouse, G.F.; Grant, S.C. Intracellular bimodal nanoparticles based on quantum dots for high-field MRI at 21.1 T. Magn. Reson. Med., 2010, 64(3), 871-882.
[http://dx.doi.org/10.1002/mrm.22441] [PMID: 20575090]
[6]
Solomon, I. Relaxation processes in a system of two spins. Phys. Rev., 1955, 99(2), 559-565.
[http://dx.doi.org/10.1103/PhysRev.99.559]
[7]
Bloembergen, N.; Morgan, L.O. Proton relaxation times in paramagnetic solutions. effects of electron spin relaxation. J. Chem. Phys., 1961, 34(3), 842-850.
[http://dx.doi.org/10.1063/1.1731684]
[8]
Terreno, E.; Castelli, D.D.; Viale, A.; Aime, S. Challenges for molecular magnetic resonance imaging. Chem. Rev., 2010, 110(5), 3019-3042.
[http://dx.doi.org/10.1021/cr100025t] [PMID: 20415475]
[9]
Das, G.K.; Johnson, N.J.J.; Cramen, J.; Blasiak, B.; Latta, P.; Tomanek, B.; van Veggel, F.C.J.M. NaDyF4 nanoparticles as T2 contrast agents for ultrahigh field magnetic resonance imaging. J. Phys. Chem. Lett., 2012, 3(4), 524-529.
[http://dx.doi.org/10.1021/jz201664h] [PMID: 26286058]
[10]
Norek, M.; Kampert, E.; Zeitler, U.; Peters, J.A. Tuning of the size of Dy2O3 nanoparticles for optimal performance as an MRI contrast agent. J. Am. Chem. Soc., 2008, 130(15), 5335-5340.
[http://dx.doi.org/10.1021/ja711492y] [PMID: 18355014]
[11]
Gueron, M. Nuclear relaxation in macromolecules by paramagnetic ions: a novel mechanism. J. Magn. Reson., 1975, 19(1), 58-66.
[12]
Bertini, I.; Capozzi, F.; Luchinat, C.; Nicastro, G.; Xia, Z. Water proton relaxation for some lanthanide aqua ions in solution. J. Phys. Chem., 1993, 97(24), 6351-6354.
[http://dx.doi.org/10.1021/j100126a007]
[13]
Vander Elst, L.; Roch, A.; Gillis, P.; Laurent, S.; Botteman, F.; Bulte, J.W.M.; Muller, R.N. Dy-DTPA derivatives as relaxation agents for very high field MRI: the beneficial effect of slow water exchange on the transverse relaxivities. Magn. Reson. Med., 2002, 47(6), 1121-1130.
[http://dx.doi.org/10.1002/mrm.10163] [PMID: 12111958]
[14]
Norek, M.; Peters, J.A. MRI contrast agents based on dysprosium or holmium. Prog. Nucl. Magn. Reson. Spectrosc., 2011, 59(1), 64-82.
[http://dx.doi.org/10.1016/j.pnmrs.2010.08.002] [PMID: 21600356]
[15]
Norek, M.; Pereira, G.A.; Geraldes, C.F.G.C.; Denkova, A.; Zhou, W.; Peters, J.A. NMR transversal relaxivity of suspensions of lanthanide oxide nanoparticles. J. Phys. Chem. C, 2007, 111(28), 10240-10246.
[http://dx.doi.org/10.1021/jp072288l]
[16]
Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Bony, B.A.; Heo, W.C.; Jin, S.; Baeck, J.S.; Chang, Y.; Kim, T.J.; Bae, J.E.; Chae, K.S.; Lee, G.H. Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents. Biomaterials, 2012, 33(11), 3254-3261.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.008] [PMID: 22277624]
[17]
Park, J.Y.; Chang, Y.; Lee, G.H. Multi-modal imaging and cancer therapy using lanthanide oxide nanoparticles: current status and perspectives. Curr. Med. Chem., 2015, 22(5), 569-581.
[http://dx.doi.org/10.2174/0929867322666141128162843] [PMID: 25439587]
[18]
Xu, W.; Kattel, K.; Park, J.Y.; Chang, Y.; Kim, T.J.; Lee, G.H. Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Phys. Chem. Chem. Phys., 2012, 14(37), 12687-12700.
[http://dx.doi.org/10.1039/c2cp41357d] [PMID: 22885983]
[19]
Hifumi, H.; Yamaoka, S.; Tanimoto, A.; Citterio, D.; Suzuki, K. Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J. Am. Chem. Soc., 2006, 128(47), 15090-15091.
[http://dx.doi.org/10.1021/ja066442d] [PMID: 17117851]
[20]
Ho, D.; Sun, X.; Sun, S. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res., 2011, 44(10), 875-882.
[http://dx.doi.org/10.1021/ar200090c] [PMID: 21661754]
[21]
Dong, H.; Du, S-R.; Zheng, X-Y.; Lyu, G-M.; Sun, L-D.; Li, L-D.; Zhang, P-Z.; Zhang, C.; Yan, C-H. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem. Rev., 2015, 115(19), 10725-10815.
[http://dx.doi.org/10.1021/acs.chemrev.5b00091] [PMID: 26151155]
[22]
Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev., 2009, 38(4), 976-989.
[http://dx.doi.org/10.1039/b809132n] [PMID: 19421576]
[23]
Debroye, E.; Parac-Vogt, T.N. Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging. Chem. Soc. Rev., 2014, 43(23), 8178-8192.
[http://dx.doi.org/10.1039/C4CS00201F] [PMID: 25211043]
[24]
Jun, Y.W.; Huh, Y-M.; Choi, J.S.; Lee, J-H.; Song, H-T.; Kim, S.; Yoon, S.; Kim, K.S.; Shin, J.S.; Suh, J.S.; Cheon, J. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc., 2005, 127(16), 5732-5733.
[http://dx.doi.org/10.1021/ja0422155] [PMID: 15839639]
[25]
Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Bony, B.A.; Heo, W.C.; Lee, J.J.; Jin, S.; Baeck, J.S.; Chang, Y.; Kim, T.J.; Bae, J.E.; Chae, K.S.; Lee, G.H. A facile synthesis, in vitro and in vivo MR studies of d-glucuronic acid-coated ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Appl. Mater. Interfaces, 2011, 3(9), 3325-3334.
[http://dx.doi.org/10.1021/am200437r] [PMID: 21853997]
[26]
Zhang, X.; Blasiak, B.; Marenco, A.J.; Trudel, S.; Tomanek, B.; van Veggel, F.C.J.M. Design and regulation of NaHoF4 and NaDyF4 nanoparticles for high-field magnetic resonance imaging. Chem. Mater., 2016, 28(9), 3060-3072.
[http://dx.doi.org/10.1021/acs.chemmater.6b00264]
[27]
Lu, Z.; Deng, R.; Zhen, M.; Li, X.; Zou, T.; Zhou, Y.; Guan, M.; Zhang, Y.; Wang, Y.; Yu, T.; Shu, C.; Wang, C. Size-tunable NaGdF4 nanoparticles as T2 contrast agents for high-field magnetic resonance imaging. RSC Advances, 2017, 7(68), 43125-43131.
[http://dx.doi.org/10.1039/C7RA08303C]
[28]
Deng, Y.; Wang, H.; Gu, W.; Li, S.; Xiao, N.; Shao, C.; Xu, Q.; Ye, L. Ho3+ doped NaGdF4 nanoparticles as MRI/optical probes for brain glioma imaging. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(11), 1521-1529.
[http://dx.doi.org/10.1039/C3TB21613F]
[29]
Ahmad, M. W.; Xu, W.; Kim, S. J.; Baeck, J. S.; Chang, Y.; Bae, J. E.; Chae, K. S.; Park, J. A.; Kim, T. J.; Lee, G. H. Potential dual imaging nanoparticle: Gd2O3 nanoparticle 2015, 5, 8549.
[http://dx.doi.org/10.1038/srep08549] [PMID: 25707374]]
[30]
Ni, D.; Zhang, J.; Bu, W.; Zhang, C.; Yao, Z.; Xing, H.; Wang, J.; Duan, F.; Liu, Y.; Fan, W.; Feng, X.; Shi, J. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials, 2016, 76, 218-225.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.063] [PMID: 26546914]
[31]
Zheng, X.; Wang, Y.; Sun, L. TbF3 nanoparticles as dual-mode contrast agents for ultrahigh field magnetic resonance imaging and X-ray computed tomography. Nano Res., 2016, 9(4), 1135-1147.
[http://dx.doi.org/10.1007/s12274-016-1008-y]
[32]
Louie, A. Multimodality imaging probes: design and challenges. Chem. Rev., 2010, 110(5), 3146-3195.
[http://dx.doi.org/10.1021/cr9003538] [PMID: 20225900]
[33]
Das, G.K.; Zhang, Y.; D’Silva, L.; Padmanabhan, P.; Heng, B.C.; Chye Loo, J.S.; Selvan, S.T.; Bhakoo, K.K.; Tan, Y.T.T. Single-phase Dy2O3:Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging. Chem. Mater., 2011, 23(9), 2439-2446.
[http://dx.doi.org/10.1021/cm2003066]
[34]
Zhang, Y.; Vijayaragavan, V.; Das, G.K.; Bhakoo, K.K.; Tan, T.T.Y. Single-phase NaDyF4:Tb3+ nanocrystals as multifunctional contrast agents in high-field magnetic resonance and optical imaging. Eur. J. Inorg. Chem., 2012, 2012(12), 2044-2048.
[http://dx.doi.org/10.1002/ejic.201101203]
[35]
Bünzli, J-C.G. Lanthanide light for biology and medical diagnosis. J. Lumin., 2016, 170(Part 3), 866-878.
[http://dx.doi.org/10.1016/j.jlumin.2015.07.033]
[36]
Paik, T.; Gordon, T.R.; Prantner, A.M.; Yun, H.; Murray, C.B. Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes. ACS Nano, 2013, 7(3), 2850-2859.
[http://dx.doi.org/10.1021/nn4004583] [PMID: 23432186]
[37]
Biju, S.; Harris, M.; Elst, L.V.; Wolberg, M.; Kirschhock, C.; Parac-Vogt, T.N. Multifunctional [small beta]-NaGdF4:Ln3+ (Ln = Yb, Er, Dy) nanoparticles with NIR to visible upconversion and high transverse relaxivity: a potential bimodal contrast agent for high-field MRI and optical imaging. RSC Advances, 2016, 6(66), 61443-61448.
[http://dx.doi.org/10.1039/C6RA09450C]
[38]
Feng, Y.; Xiao, Q.; Zhang, Y.; Li, F.; Li, Y.; Li, C.; Wang, Q.; Shi, L.; Lin, H. Neodymium-doped NaHoF4 nanoparticles as near-infrared luminescent/T2-weighted MR dual-modal imaging agents in vivo. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(3), 504-510.
[http://dx.doi.org/10.1039/C6TB01961G]
[39]
Yu, S-B.; Watson, A.D. Metal-based X-ray contrast media. Chem. Rev., 1999, 99(9), 2353-2378.
[http://dx.doi.org/10.1021/cr980441p] [PMID: 11749484]
[40]
X-Ray Mass Attenuation Coefficients. Available at:. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html (Accessed Date: July, 2004)
[41]
Wang, H.; Yi, Z.; Rao, L.; Liu, H.; Zeng, S. High quality multi-functional NaErF4 nanocrystals: structure-controlled synthesis, phase-induced multi-color emissions and tunable magnetic properties. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(35), 5520-5526.
[http://dx.doi.org/10.1039/c3tc30796d]
[42]
Wang, H.; Lu, W.; Zeng, T.; Yi, Z.; Rao, L.; Liu, H.; Zeng, S. Multi-functional NaErF4:Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T2-weighted magnetic resonance imaging. Nanoscale, 2014, 6(5), 2855-2860.
[http://dx.doi.org/10.1039/C3NR05782H] [PMID: 24469246]
[43]
Kumar, R.; Nyk, M.; Ohulchanskyy, T.Y.; Flask, C.A.; Prasad, P.N. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv. Funct. Mater., 2009, 19(6), 853-859.
[http://dx.doi.org/10.1002/adfm.200800765]
[44]
Im, G.H.; Kim, S.M.; Lee, D-G.; Lee, W.J.; Lee, J.H.; Lee, I.S. Fe(3)O(4)/MnO hybrid nanocrystals as a dual contrast agent for both T(1)- and T(2)-weighted liver MRI. Biomaterials, 2013, 34(8), 2069-2076.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.054] [PMID: 23246062]
[45]
Wang, X.; Zhou, Z.; Wang, Z.; Xue, Y.; Zeng, Y.; Gao, J.; Zhu, L.; Zhang, X.; Liu, G.; Chen, X. Gadolinium embedded iron oxide nanoclusters as T1-T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery. Nanoscale, 2013, 5(17), 8098-8104.
[http://dx.doi.org/10.1039/c3nr02797j] [PMID: 23884164]
[46]
Bae, K.H.; Kim, Y.B.; Lee, Y.; Hwang, J.; Park, H.; Park, T.G. Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast t1- and T2-weighted magnetic resonance imaging. Bioconjug. Chem., 2010, 21(3), 505-512.
[http://dx.doi.org/10.1021/bc900424u] [PMID: 20166678]
[47]
Cheng, K.; Yang, M.; Zhang, R.; Qin, C.; Su, X.; Cheng, Z. Hybrid nanotrimers for dual T1 and T2-weighted magnetic resonance imaging. ACS Nano, 2014, 8(10), 9884-9896.
[http://dx.doi.org/10.1021/nn500188y] [PMID: 25283972]
[48]
Zhou, Z.; Wu, C.; Liu, H.; Zhu, X.; Zhao, Z.; Wang, L.; Xu, Y.; Ai, H.; Gao, J. Surface and interfacial engineering of iron oxide nanoplates for highly efficient magnetic resonance angiography. ACS Nano, 2015, 9(3), 3012-3022.
[http://dx.doi.org/10.1021/nn507193f] [PMID: 25670480]
[49]
Xu, W.; Park, J.Y.; Kattel, K.; Bony, B.A.; Heo, W.C.; Jin, S.; Park, J.W.; Chang, Y.; Do, J.Y.; Chae, K.S.; Kim, T.J.; Park, J.A.; Kwak, Y.W.; Lee, G.H.A. T1, T2 magnetic resonance imaging (MRI)-fluorescent imaging (FI) by using ultrasmall mixed gadolinium-europium oxide nanoparticles. New J. Chem., 2012, 36(11), 2361-2367.
[http://dx.doi.org/10.1039/c2nj40149e]
[50]
Tegafaw, T.; Xu, W.; Ahmad, M.W.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Kim, T.J.; Lee, G.H.; Dual-mode, T. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application. Nanotechnology, 2015, 26(36)365102
[http://dx.doi.org/10.1088/0957-4484/26/36/365102] [PMID: 26291827]
[51]
Chen, F.; Bu, W.; Zhang, S.; Liu, J.; Fan, W.; Zhou, L.; Peng, W.; Shi, J. Gd3+-Ion-doped upconversion nanoprobes: relaxivity mechanism probing and sensitivity optimization. Adv. Funct. Mater., 2013, 23(3), 298-307.
[http://dx.doi.org/10.1002/adfm.201201469]
[52]
Yi, Z.; Li, X.; Lu, W.; Liu, H.; Zeng, S.; Hao, J. Hybrid lanthanide nanoparticles as a new class of binary contrast agents for in vivo T1/T2 dual-weighted MRI and synergistic tumor diagnosis. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(15), 2715-2722.
[http://dx.doi.org/10.1039/C5TB02375K]
[53]
Debroye, E.; Eliseeva, S.V.; Laurent, S.; Vander Elst, L.; Petoud, S.; Muller, R.N.; Parac-Vogt, T.N. Lanthanide(III) complexes of diethylenetriamine-pentaacetic acid (DTPA)-bisamide derivatives as potential agents for bimodal (optical/magnetic resonance) imaging. Eur. J. Inorg. Chem., 2013, 2013(14), 2629-2639.
[http://dx.doi.org/10.1002/ejic.201300196]
[54]
Debroye, E.; Eliseeva, S.V.; Laurent, S.; Vander Elst, L.; Muller, R.N.; Parac-Vogt, T.N. Micellar self-assemblies of gadolinium(III)/europium(III) amphiphilic complexes as model contrast agents for bimodal imaging. Dalton Trans., 2014, 43(9), 3589-3600.
[http://dx.doi.org/10.1039/c3dt52842a] [PMID: 24402380]
[55]
Debroye, E.; Laurent, S.; Vander Elst, L.; Muller, R.N.; Parac-Vogt, T.N. Dysprosium complexes and their micelles as potential bimodal agents for magnetic resonance and optical imaging. Chemistry, 2013, 19(47), 16019-16028.
[http://dx.doi.org/10.1002/chem.201302418] [PMID: 24123216]
[56]
Harris, M.; Vander Elst, L.; Laurent, S.; Parac-Vogt, T.N. Magnetofluorescent micelles incorporating Dy(III)-DOTA as potential bimodal agents for optical and high field magnetic resonance imaging. Dalton Trans., 2016, 45(11), 4791-4801.
[http://dx.doi.org/10.1039/C5DT04801J] [PMID: 26865457]
[57]
Harris, M.; Carron, S.; Vander Elst, L.; Laurent, S.; Muller, R.N.; Parac-Vogt, T.N. Magnetofluorescent micellar complexes of terbium(III) as potential bimodal contrast agents for magnetic resonance and optical imaging. Chem. Commun. (Camb.), 2015, 51(14), 2984-2986.
[http://dx.doi.org/10.1039/C4CC09759A] [PMID: 25597536]
[58]
Harris, M.; Carron, S.; Vander Elst, L.; Laurent, S.; Parac-Vogt, T.N. Magnetofluorescent nanoaggregates incorporating terbium(III) complexes as potential bimodal agents for magnetic resonance and optical imaging. Eur. J. Inorg. Chem., 2015, 2015(27), 4572-4578.
[http://dx.doi.org/10.1002/ejic.201500310]