New insights on Ethambutol Targets in Mycobacterium tuberculosis

Page: [73 - 80] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: In recent years, very few effective drugs against Mycobacterium tuberculosis have emerged, which motivates the research with drugs already used in the treatment of tuberculosis. Ethambutol is a bacteriostatic drug that affects cell wall integrity, but the effects of this drug on bacilli are not fully exploited.

Objective: Based on the need to better investigate the complex mechanism of action of ethambutol, our study presented the proteome profile of M. tuberculosis after different times of ethambutol exposure, aiming to comprehend the dynamics of bacilli response to its effects. M. tuberculosis was exposed to ½ MIC of ethambutol at 24 and 48 hours. The proteins were identified by MALDI-TOF/TOF.

Results: The main protein changes occurred in metabolic proteins as dihydrolipoyl dehydrogenase (Rv0462), glutamine synthetase1 (Rv2220), electron transfer flavoprotein subunit beta (Rv3029c) and adenosylhomocysteinase (Rv3248c).

Conclusion: Considering the functions of these proteins, our results support that the intermediary metabolism and respiration were affected by ethambutol and this disturbance provided proteins that could be explored as additional targets for this drug.

Keywords: Mycobacterium tuberculosis, ethambutol, proteome, two-dimension gel electrophoresis, MALDI- TOF/TOF, STRING database.

Graphical Abstract

[1]
World Health Organization. Global Tuberculosis Report, 2016.http://www.who.int/tb/publications/ global_report/en/
[2]
Chetty, S.; Ramesh, M.; Singh-Pillay, A.; Soliman, M.E.S. Recent advancements in the development of anti-tuberculosis drugs. Bioorg. Med. Chem. Lett., 2017, 27(3), 370-386.
[3]
Hoagland, D.T.; Liu, J.; Lee, R.B.; Lee, R.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev., 2016, 102, 55-72.
[4]
Bernardes-Génisson, V.; Deraeve, C.; Chollet, A.; Bernadou, J.; Pratviel, G. Isoniazid: an update on the multiple mechanisms for a singular action. Curr. Med. Chem., 2013, 20(35), 4370-4385.
[5]
Hughes, M.A.; Silva, J.C.; Geromanos, S.J.; Townsend, C.A. Quantitative proteomic analysis of drug-induced changes in mycobacteria. J. Proteome Res., 2006, 5(1), 54-63.
[6]
Campanerut-Sá, P.A.; Ghiraldi-Lopes, L.D.; Meneguello, J.E.; Fiorini, A.; Evaristo, G.P.; Siqueira, V.L.; Scodro, R.B.L.; Patussi, E.V.; Donatti, L.; Souza, E.M.; Cardoso, R.F. Proteomic and morphological changes produced by subinhibitory concentration of isoniazid in Mycobacterium tuberculosis. Future Microbiol., 2016, 11, 1123-1132.
[7]
Gopinath, V.; Raghunandanan, S.; Gomez, R.L.; Jose, L.; Surendran, A.; Ramachandran, R.; Pushparajan, A.R.; Mundayoor, S.; Jaleel, A.; Kumar, R.A. Profiling the proteome of Mycobacterium tuberculosis during dormancy and reactivation. Mol. Cell. Proteomics, 2015, 14(8), 2160-2176.
[8]
Sharma, D.; Kumar, B.; Lata, M.; Joshi, B.; Venkatesan, K.; Shukla, S.; Bisht, D. Comparative proteomic analysis of aminoglycosides resistant and susceptible Mycobacterium tuberculosis clinical isolates for exploring potential drug targets. PLoS One, 2015, 10(10), e0139414.
[9]
Sharma, P.; Kumar, B.; Gupta, Y.; Singhal, N.; Katoch, V.M.; Venkatesan, K.; Bisht, D. Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis. Proteome Sci., 2010, 8(1), 59.
[10]
Shen, H.; Yang, E.; Wang, F.; Jin, R.; Xu, S.; Huang, Q.; Wang, H. Altered protein expression patterns of Mycobacterium tuberculosis induced by ATB107. J. Microbiol., 2010, 48(3), 337-346.
[11]
Starck, J.; Källenius, G.; Marklund, B-I.; Andersson, D.I.; Akerlund, T. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology, 2004, 150, 3821-3829.
[12]
Westermeier, R.; Marouga, R. Protein detection methods in proteomics research. Biosci. Rep., 2005, 25(1-2), 19-32.
[13]
Unwin, R.D.; Whetton, A.D. How will haematologists use proteomics? Blood Rev., 2007, 21(6), 315-326.
[14]
Xu, Y.; Jia, H.; Huang, H.; Sun, Z.; Zhang, Z. Mutations found in embCAB, embR, and ubiA genes of ethambutol-sensitive and -resistant Mycobacterium tuberculosis clinical isolates from China. Biomed Res. Int., 2015, 2015
[15]
Jia, L.; Coward, L.; Gorman, G.S.; Noker, P.E.; Tomaszewski, J.E. Pharmacoproteomic effects of isoniazid, ethambutol, and N-geranyl-N'-(2-adamantyl)ethane-1,2-diamine (SQ109) on Mycobacterium tuberculosis H37Rv. J. Pharmacol. Exp. Ther., 2005, 315(2), 905-911.
[16]
Jiang, T.; Zhan, Y.; Sun, M.; Liu, S.; Zang, S.; Ma, Y.; Xin, Y. The novel responses of ethambutol against Mycobacterium smegmatis mc2155 Revealed by proteomics analysis. Curr. Microbiol., 2011, 62(2), 341-345.
[17]
Wang, R.; Marcotte, E.M. The proteomic response of Mycobacterium smegmatis to anti-tuberculosis drugs suggests targeted pathways. J. Proteome Res., 2008, 7(3), 855-865.
[18]
Palomino, J.C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2002, 46(8), 2720-2722.
[19]
de Steenwinkel, J.E.M.; de Knegt, G.J.; ten Kate, M.T.; van Belkum, A.; Verbrugh, H.A.; Kremer, K.; van Soolingen, D.; Bakker-Woudenberg, I.A.J.M. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2010, 65(12), 2582-2589.
[20]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[21]
Neuhoff, V.; Arold, N.; Taube, D.; Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 1988, 9(6), 255-262.
[22]
Scodro, R.B.L.; Pires, C.T.A.; Carrara, V.S.; Lemos, C.O.T.; Cardozo-Filho, L.; Souza, V.A.; Corrêa, A.G.; Siqueira, V.L.D.; Lonardoni, M.V.C.; Cardoso, R.F.; Cortez, D.A.G. Anti-tuberculosis neolignans from Piper regnellii. Phytomedicine, 2013, 20(7), 600-604.
[23]
Pires, C.T.A.; Brenzan, M.A.; Scodro, R.B.L.; Cortez, D.A.G.; Lopes, L.D.G.; Siqueira, V.L.D.; Cardoso, R.F. Anti-Mycobacterium tuberculosis activity and cytotoxicity of Calophyllum brasiliense Cambess (Clusiaceae). Mem. Inst. Oswaldo Cruz, 2014, 109(3), 324-329.
[24]
Lopes, M.A.; Ferracioli, K.R.; Siqueira, V.L.D.; de Lima Scodro, R.B.; Cortez, D.A.G.; da Silva, R.Z.; Cardoso, R.F. In vitro interaction of eupomatenoid-5 from Piper solmsianum C. DC. var. solmsianum and anti-tuberculosis drugs. Int. J. Tuberc. Lung Dis., 2014, 18(12), 1513-1515.
[25]
Demitto, F.O.; Amaral, R.C.R.; Maltempe, F.G.; Siqueira, V.L.D.; Scodro, R.B.L.; Lopes, M.A.; Caleffi-Ferracioli, K.R.; Canezin, P.H.; Cardoso, R.F. In vitro activity of rifampicin and verapamil combination in multidrug-resistant Mycobacterium tuberculosis. PLoS One, 2015, 10(2), 1-9.
[26]
Pagliotto, A.D.F.; Caleffi-Ferracioli, K.R.; Lopes, M.A.; Baldin, V.P.; Leite, C.Q.F.; Pavan, F.R.; Scodro, R.B.L.; Siqueira, V.L.D.; Cardoso, R.F. Anti-Mycobacterium tuberculosis activity of antituberculosis drugs and amoxicillin/clavulanate combination. J. Microbiol. Immunol. Infect., 2016, 49(6), 980-983.
[27]
Caleffi-Ferracioli, K.R.; Amaral, R.C.R.; Demitto, F.O.; Maltempe, F.G.; Canezin, P.H.; Scodro, R.B.L.; Nakamura, C.V.; Leite, C.Q.F.; Siqueira, V.L.D.; Cardoso, R.F. Morphological changes and differentially expressed efflux pump genes in Mycobacterium tuberculosis exposed to a rifampicin and verapamil combination. Tuberculosis (Edinb.), 2016, 97, 65-72.
[28]
Wagner, T.; Bellinzoni, M.; Wehenkel, A.; O’Hare, H.M.; Alzari, P.M. Functional plasticity and allosteric regulation of α-ketoglutarate decarboxylase in central mycobacterial metabolism. Chem. Biol., 2011, 18(8), 1011-1020.
[29]
Tian, J.; Bryk, R.; Itoh, M.; Suematsu, M.; Nathan, C. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of α-ketoglutarate decarboxylase. Proc. Natl. Acad. Sci. USA, 2005, 102(30), 10670-10675.
[30]
Venugopal, A.; Bryk, R.; Shi, S.; Rhee, K.; Rath, P.; Schnappinger, D.; Ehrt, S.; Nathan, C. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe, 2011, 9(1), 21-31.
[31]
Grant, G.A. Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases. Arch. Biochem. Biophys., 2012, 519(2), 175-185.
[32]
Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol., 2003, 48(1), 77-84.
[33]
Burton, R.L.; Chen, S.; Xu, X.L.; Grant, G.A. A novel mechanism for substrate inhibition in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. J. Biol. Chem., 2007, 282(43), 31517-31524.
[34]
Dey, S.; Burton, R.L.; Grant, G.A.; Sacchettini, J.C. Structural analysis of substrate and effector binding in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. Biochemistry, 2008, 47(32), 8271-8282.
[35]
Dey, S.; Grant, G.A.; Sacchettini, J.C. Crystal structure of Mycobacterium tuberculosis D-3-phospho-glycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. J. Biol. Chem., 2005, 280(15), 14892-14899.
[36]
Sinha, S.; Arora, S.; Kosalai, K.; Namane, A.; Pym, A.S.; Cole, S.T. Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. Comp. Funct. Genomics, 2002, 3(6), 470-483.
[37]
Albrethsen, J.; Agner, J.; Piersma, S.R.; Højrup, P.; Pham, T.V.; Weldingh, K.; Jimenez, C.R.; Andersen, P.; Rosenkrands, I. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol. Cell. Proteomics, 2013, 12(5), 1180-1191.
[38]
Tuberculist. Institut Pasteur. http://genolist.pasteur.fr/TubercuList/ [Accessed July 24 2016];
[39]
Bibb, L.A.; Hancox, M.I.; Hatfull, G.F. Integration and excision by the large serine recombinase phiRv1 integrase. Mol. Microbiol., 2005, 55(6), 1896-1910.
[40]
Uniprot. Uniprot Consortium. http://www.uniprot.org/ Accessed August 02 2016]
[41]
Lin, P.L.; Dietrich, J.; Tan, E.; Abalos, R.M.; Burgos, J.; Bigbee, C.; Bigbee, M.; Milk, L.; Gideon, H.P.; Rodgers, M.; Cochran, C.; Guinn, K.M.; Sherman, D.R.; Klein, E.; Janssen, C.; Flynn, J.L.; Andersen, P. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J. Clin. Invest., 2012, 122(1), 303-314.
[42]
Olsen, I.; Balasingham, S.V.; Davidsen, T.; Debebe, E.; Rødland, E.A.; van Soolingen, D.; Kremer, K.; Alseth, I.; Tønjum, T. Characterization of the major formamidopyrimidine-DNA glycosylase homolog in Mycobacterium tuberculosis and its linkage to variable tandem repeats. FEMS Immunol. Med. Microbiol., 2009, 56(2), 151-161.
[43]
Mowbray, S.L.; Kathiravan, M.K.; Pandey, A.A.; Odell, L.R. Inhibition of glutamine synthetase: a potential drug target in Mycobacterium tuberculosis. Molecules, 2014, 19(9), 13161-13176.
[44]
Chandra, H.; Basir, S.F.; Gupta, M.; Banerjee, N. Glutamine synthetase encoded by glnA-1 is necessary for cell wall resistance and pathogenicity of Mycobacterium bovis. Microbiology, 2010, 156(Pt 12), 3669-3677.
[45]
Singhal, A.; Arora, G.; Sajid, A.; Maji, A.; Bhat, A.; Virmani, R.; Upadhyay, S.; Nandicoori, V.K.; Sengupta, S.; Singh, Y. Regulation of homocysteine metabolism by Mycobacterium tuberculosis S-adenosylhomocysteine hydrolase. Sci. Rep., 2013, 3, 2264.
[46]
Singhal, N.; Sharma, P.; Kumar, M.; Joshi, B.; Bisht, D. Analysis of intracellular expressed proteins of Mycobacterium tuberculosis clinical isolates. Proteome Sci., 2012, 10(1), 14.