Prediction and Analysis of Three-Dimensional Structure of the p7- Transactivated Protein1 of Hepatitis C Virus

Page: [55 - 66] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: The p7-transactivated protein1 of Hepatitis C virus is a small integral membrane protein of 127 amino acids, which is crucial for assembly and release of infectious virions. Ab initio or comparative modelling, is an essential tool to solve the problem of protein structure prediction and to comprehend the physicochemical fundamental of how proteins fold in nature.

Results: Only one domain (1-127) of p7-transactivated protein1 has been predicted using the systematic in silico approach, ThreaDom. I-TASSER was ranked as the best server for full-length 3-D protein structural predictions of p7-transactivated protein1 where the benchmarked scoring system such as C-score, TM-score, RMSD and Z-score are used to obtain quantitative assessments of the I-TASSER models. Scanning protein motif databases, along with secondary and surface accessibility predictions integrated with post translational modification sites (PTMs) prediction revealed functional and protein binding motifs. Three protein binding motifs (two Asp/Glutamnse, CTNNB1- bd_N) with high sequence conservation and two PTMs prediction: Camp_phospho_site and Myristyl site were predicted using BLOCKS and PROSITE scan. These motifs and PTMs were related to the function of p7-transactivated protein1 protein in inducing ion channel/pore and release of infectious virions. Using SCOP, only one hit matched protein sequence at 71-120 was classified as small proteins and FYVE/PHD zinc finger superfamily.

Conclusion: Integrating this information about the p7-transactivated protein1 with SCOP and CATH annotations of the templates facilitates the assignment of structure–function/ evolution relationships to the known and the newly determined protein structures.

Keywords: Hepatitis C virus, p7-transactivated protein1, Ab initio, protein structure prediction, motifs and PTMs.

Graphical Abstract

[1]
Graham, C.S.; Swan, T. A path to eradication of hepatitis C in low- and middle-income countries. Antiviral Res., 2015, 119, 89-96.
[2]
Gower, E.; Estes, C.; Blach, S.; Razavi-Shearer, K.; Razavi, H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J. Hepatol., 2014, 61(1), S45-S57.
[3]
Sugiyama, K. [Genomic structure and function of untranslated region, structural region and non-structural region of hepatitis C virus RNA]. Nihon Rinsho, 2004, 62(Pt 1), 32-37.
[4]
Simmonds, P. The origin of hepatitis C virus. Curr. Top. Microbiol. Immunol., 2013, 369, 1-15.
[5]
Niepmann, M. Hepatitis C virus RNA translation. Curr. Top. Microbiol. Immunol., 2013, 369, 143-166.
[6]
Moradpour, D.; Penin, F. Hepatitis C virus proteins: from structure to function. Curr. Top. Microbiol. Immunol., 2013, 369, 113-142.
[7]
Montserret, R.; Saint, N.; Vanbelle, C.; Salvay, A.G.; Simorre, J.P.; Ebel, C.; Sapay, N.; Renisio, J.G.; Böckmann, A.; Steinmann, E.; Pietschmann, T.; Dubuisson, J.; Chipot, C.; Penin, F. NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J. Biol. Chem., 2010, 285(41), 31446-31461.
[8]
Cheng, J.; Baldi, P. Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinformatics, 2007, 8, 113.
[9]
Wu, S.; Zhang, Y. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformatics, 2008, 24(7), 924-931.
[10]
Klepeis, J.L.; Wei, Y.; Hecht, M.H.; Floudas, C.A. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Proteins, 2005, 58(3), 560-570.
[11]
Liwo, A.; Khalili, M.; Scheraga, H.A. Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proc. Natl. Acad. Sci. USA, 2005, 102(7), 2362-2367.
[12]
Pei, J.; Grishin, N.V. PROMALS: Towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics, 2007, 23(7), 802-808.
[13]
Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J.D.; Higgins, D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 2011, 7, 539.
[14]
Hall, H. BioEdit version 5.0.6; North Carolina State University, Department of Microbiology, 2001.
[15]
Katoh, K.; Kuma, K.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res., 2005, 33(2), 511-518.
[16]
Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol., 2016, 33(7), 1870-1874.
[17]
Xue, Z.; Xu, D.; Wang, Y.; Zhang, Y. ThreaDom: Extracting protein domain boundary information from multiple threading alignments. Bioinformatics, 2013, 29(13), i247-i256.
[18]
Bru, C.; Courcelle, E.; Carrère, S.; Beausse, Y.; Dalmar, S.; Kahn, D. The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res., 2005, 33(Database issue), D212-D215.
[19]
Pollastri, G.; McLysaght, A. Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics, 2005, 21(8), 1719-1720.
[20]
McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics, 2000, 16(4), 404-405.
[21]
Cheng, J.; Randall, A.Z.; Sweredoski, M.J.; Baldi, P. SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Res, 2005, 33(Web Server issue), W72-6..
[22]
Lin, K.; Simossis, V.A.; Taylor, W.R.; Heringa, J. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics, 2005, 21(2), 152-159.
[23]
Combet, C.; Blanchet, C.; Geourjon, C.; Deléage, G. NPS@: Network protein sequence analysis. Trends Biochem. Sci., 2000, 25(3), 147-150.
[24]
Drozdetskiy, A.; Cole, C.; Procter, J.; Barton, G.J. JPred4: A protein secondary structure prediction server. Nucleic Acids Res., 2015, 43(W1), W389-94.
[25]
Rost, B.; Yachdav, G.; Liu, J. The PredictProtein server. Nucleic Acids Res., 2004, 32, W321-6.
[26]
Ko, J.; Park, H.; Heo, L.; Seok, C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res., 2012, 40, W294-7.
[27]
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res., 2014, 42, W252-8.
[28]
Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: protein structure and function prediction. Nat. Methods, 2015, 12(1), 7-8.
[29]
Ginalski, K.; Elofsson, A.; Fischer, D.; Rychlewski, L. 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics, 2003, 19(8), 1015-1018.
[30]
Wu, S.; Zhang, Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res., 2007, 35(10), 3375-3382.
[31]
Wallner, B.; Elofsson, A. Pcons5: combining consensus, structural evaluation and fold recognition scores. Bioinformatics, 2005, 21(23), 4248-4254.
[32]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 2015, 10(6), 845-858.
[33]
Xu, D.; Zhang, Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins, 2012, 80(7), 1715-1735.
[34]
Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J., 2011, 101(10), 2525-2534.
[35]
Bhattacharya, D.; Cheng, V. 3-Drefine: Consistent Protein Structure Refinement by Optimizing Hydrogen-Bonding Network and Atomic-Level Energy Minimization. Proteins, 2013, 81(1), 119-131.
[36]
Benkert, P.; Tosatto, S.C.E.; Schomburg, D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins, 2008, 71(1), 261-277.
[37]
Benkert, P.; Biasini, M.; Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 2011, 27(3), 343-350.
[38]
Berjanskii, M.; Liang, Y.; Zhou, J.; Tang, P.; Stothard, P.; Zhou, Y.; Cruz, J.; Macdonell, C.; Lin, G.; Lu, P.; Wishart, D.S. PROSESS: A protein structure evaluation suite and server. Nucleic Acids Res., 2010, 8, W633-40.
[39]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26, 283-291.
[40]
Hooft, R.W.; Vriend, G.; Sander, C.; Abola, E.E. Errors in protein structures. Nature, 1996, 381(6580), 272.
[41]
Sigrist, C.J.A.; de Castro, E.; Cerutti, L.; Cuche, B.A.; Hulo, N.; Bridge, A.; Bougueleret, L.; Xenarios, I. New and continuing developments at PROSITE. Nucleic Acids Res., 2013, 41, D344-D347.
[42]
Henikoff, J.G.; Greene, E.A.; Pietrokovski, S.; Henikoff, S. Increased coverage of protein families with the blocks database servers. Nucleic Acids Res., 2000, 28(1), 228-230.
[43]
Henikoff, S.; Henikoff, J.G.; Pietrokovski, S. Blocks: A non-redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics, 1999, 15(6), 471-479.
[44]
Attwood, T.K.; Bongcam-Rudloff, E.; Brazas, M.E.; Corpas, M.; Gaudet, P.; Lewitter, F.; Mulder, N.; Palagi, P.M.; Schneider, M.V.; van Gelder, C.W. Correction: GOBLET: The Global Organisation for Bioinformatics Learning, Education and Training. PLOS Comput. Biol., 2015, 11(5), e1004281.
[45]
Kahn, D.; Rezvoy, C.; Vivien, F. Parallel large scale inference of protein domain families. Proceedings of the 14th International Conference on Parallel and Distributed Systems, 2008, pp. 72-79.
[46]
Letunic, I.; Doerks, T.; Bork, P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res., 2015, 43(Database issue), D257-D260.
[47]
Wan, J.; Kang, S.; Tang, C.; Yan, J.; Ren, Y.; Liu, J.; Gao, X.; Banerjee, A.; Ellis, L.B.M.; Li, T. Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection. Nucleic Acids Res., 2008, 36(4), e22.
[48]
Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins, 2004, 1; 57(4), 702-10.
[49]
Wu, S.; Zhang, Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res., 2007, 35(10), 3375-3382.
[50]
Eidhammer, I.; Jonassen, I.; Taylor, W.R. Protein bioinformatics: An algorithmic approach to sequence and structure analysis., 2005.
[51]
Wu, S.; Zhang, Y. MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins, 2008, 72(2), 547-556.
[52]
Atkinson, R.A.; Williams, R.J. Solution structure of the kringle 4 domain from human plasminogen by 1H nuclear magnetic resonance spectroscopy and distance geometry. J. Mol. Biol., 1990, 212(3), 541-552.
[53]
Linding, R.; Jensen, L.J.; Diella, F.; Bork, P.; Gibson, T.J.; Russell, R.B. Protein disorder prediction: implications for structural proteomics. Structure, 2003, 11(11), 1453-1459.
[54]
Laity, J.H.; Lee, B.M.; Wright, P.E. Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol., 2001, 11(1), 39-46.
[55]
Madan, V.; Bartenschlager, R. Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin. Viruses, 2015, 7(8), 4461-4481.
[56]
Gonzalez, M.E.; Carrasco, L. Viroporins. FEBS Lett., 2003, 552(1), 28-34.
[57]
Nieva, J.L.; Madan, V.; Carrasco, L. Viroporins: structure and biological functions. Nat. Rev. Microbiol., 2012, 10(8), 563-574.
[58]
Farazi, T.A.; Waksman, G.; Gordon, J.I. The biology and enzymology of protein N-myristoylation. J. Biol. Chem., 2001, 276(43), 39501-39504.
[59]
Hayashi, N. U.; Titani, K. N-myristoylated proteins, key components in intracellular signal transduction systems enabling rapid and flexible cell responses. Proc. J. pn. Acad., 2010, Ser. B 86, 494-508.
[60]
Farag, N.F.; Breitinger, U.; Breitinger, H.G.; El Azizi, M.A. The p7 viroporin of the hepatitis C virus contributes to liver inflammation by stimulating the production of Interleukin-1β., 2013.https://www.escmid. org/escmid_library/online_lecture_library/material/?mid=26934