Nanoscience & Nanotechnology-Asia

Author(s): Ram Singh* and Geetanjali

DOI: 10.2174/2210681208666171211160433

Nanoneuromedicines for Neurodegenerative Diseases

Page: [58 - 63] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Neurodegenerative disease is a collective term for a number of diseases that affect the neurons in the human brain. The location of the neuronal loss in the brain leads to the specified disease based on the progression of the clinical symptoms. No drugs are available for complete cure of these diseases. Most of the drugs only slow down the progression of neuronal damage. The combination of drugs with nanotechnology gave a new promising hope for the treatment of neurological disorders. Nanomedicines are extremely useful for safe, effective, target oriented and sustained delivery. Due to their size in nanometer, they possess distinct and improved properties in comparison to their bulk counterpart. The utility of nanomedicines in neurological disorders including neurodegenerative diseases constitutes nanoneuromedicines.

Conclusion: In this article, a comprehensive overview of the application of nanoneuromedicines in neurodegenerative diseases such as Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and Amyotrophic Lateral Sclerosis (ALS) is provided.

Keywords: Nanoneuromedicine, diagnostics, neurodegenerative disorders, nanotechnology, drug development.

Graphical Abstract

[1]
Singh, D.; McMillan, J.M.; Kabanov, A.V.; Sokolsky-Papkov, M.; Gendelman, H.E. Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine (Lond.), 2014, 9, 501-516.
[2]
Gendelmana, H.E.; Anantharam, V.; Bronich, T.; Ghaisas, S.; Jin, H.; Kanthasamy, A.G.; Liua, X.; McMillan, J.; Mosley, R.L.; Narasimhan, B.; Mallapragada, S.K. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine, 2015, 11, 751-767.
[3]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: current status and future prospects. FASEB J., 2005, 19, 311-330.
[4]
Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Current concepts nanomedicine. New . Engl. J. Med., 2010, 363, 2434-2443.
[5]
Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Intl. Ed. Engl., 2009, 48, 60-103.
[6]
Mahmoudi, M.; Stroeve, P.; Milani, A.S.; Arbab, A. Superparamagnetic iron oxide nanoparticles for biomedical applications; Nova Science Publishers, Inc.: New York, 2010.
[7]
Ronca, S.E.; Dineley, K.T.; Paessler, S. Neurological sequelae resulting from encephalitic alphavirus infection. Front. Microbiol., 2016, 7, 959.
[8]
Wagner, V.; Dullaart, A.; Bock, A.; Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol., 2006, 10, 1211-1217.
[9]
Busquets, M.A.; Sabaté, R.; Estelrich, J. Potential applications of magnetic particles to detect and treat Alzheimer’s disease. Nanoscale Res. Let., 2014, 9, 538-548.
[10]
Poole, C.P. Introduction to Nanotechnology; John Wiley & Sons: Hoboken, New Jersey, 2003.
[11]
Crozals, G.D.; Bonnet, R.; Farre, C.; Chaix, C. Nanoparticles with multiple properties for biomedical applications: A strategic guide. Nano Today, 2016, 11, 435-463.
[12]
Chhikara, B.S. Prospects of applied nanomedicine, Appl. Nanomed.,, 2016, 1, Pi-Pii.
[13]
Farokhzad, O.C.; Langer, R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliver. Rev., 2006, 58, 1456-1459.
[14]
Gendelman, H.; Mosley, L.; Boska, M.D.; McMillan, J. The promise of nanoneuromedicine. Nanomedicine, 2014, 9, 171-176.
[15]
Singh, R. Geetanjali; Sharma, N. Monoamine oxidase inhibitors for neurological disorders: A review. Chem. Biol. Lett., 2014, 1, 33-39.
[16]
Butler, C. Neurological syndromes which can be mistaken for psychiatric conditions. J. Neurol. Neurosurg. Psychiatry, 2005, 76, i31-i38.
[17]
Kanwar, J.R.; Sun, X.; Punj, V.; Sriramoju, B.; Mohan, R.R.; Zhou, S.F.; Chauhan, A.; Kanwar, R.K. Nanoparticles in the treatment and diagnosis of neurological disorders: Untamed dragon with fire power to heal. Nanomedicine., 2012, 8, 399-414.
[18]
Przedborski, S.; Vila, M.; Lewis, V.J. Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111, 3-10.
[19]
Tanner, C.M. Epidemiology of parkinson’s disease. Neurol. Clin., 1992, 10, 317-329.
[20]
Sulkava, R.; Haltia, M.; Paetau, A.; Wikstrom, J.; Palo, J. Accuracy of clinical diagnosis in primary degenerative dementia: Correlation with neuropathological findings. J. Neurol. Neurosurg. Psychiatry, 1983, 46, 9-13.
[21]
Palmer, A.M.; Francis, P.T. Alzheimer disease: From acetylcholine to β-amyloid. Neurodegeneration, 1996, 5, 379-380.
[22]
Palmer, A.M. Neurochemical studies of alzheimer disease. Neurodegeneration, 1996, 5, 381-391.
[23]
Rubinsztein, D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 2006, 443, 780-786.
[24]
Tanner, C.M.; Ottman, R.; Goldman, S.M.; Ellenberg, J.; Chan, P.; Mayeux, R.; Langston, J.W. Parkinson disease in twins: An etiologic study. JAMA, 1999, 281, 341-346.
[25]
Kurtland, L.T. Amyotrophic lateral sclerosis and Parkinson’s disease complex on Guam linked to an environmental neurotoxin. Trends Neurosci., 1988, 11, 51-54.
[26]
Przedborski, S.; Vila, M. MPTP: A review of its mechanisms of neurotoxicity. Clin. Neurosci. Res., 2001, 1, 407-418.
[27]
Alam, M.I.; Beg, S.; Samad, A.; Baboota, S.; Kohli, K.; Ali, J.; Ahuja, A.; Akbar, M. Strategy for effective brain drug delivery. Eur. J. Pharm. Sci., 2010, 40, 385-403.
[28]
Wang, H.; Chen, X. Applications for site-directed molecular imaging agents coupled with drug delivery potential. Exp Opin. Drug Deliv., 2009, 6, 745-768.
[29]
Lopac, S.K.; Torres, M.P.; Wilson, W.J.H.; Wannemuehler, M.J.; Narasimhan, B. Effect of polymer chemistry and fabrication method on protein release and stability from polyanhydride microspheres. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 91, 938-947.
[30]
Torres, M.P.; Vogel, B.M.; Narasimhan, B.; Mallapragada, S.K. Synthesis and characterization of novel polyanhydrides with tailored erosion mechanisms. J. Biomed. Mater. Res. A, 2006, 76, 102-110.
[31]
Mallapragada, S.K.; Brenza, T.M.; McMillanb, J.M.; Narasimhan, B.; Sakaguchi, D.S.; Sharmaa, A.D.; Zbarska, S.; Gendelman, H.E. Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. Nanomed. Nanotechnol. Biol. Med., 2015, 11, 715-729.
[32]
Katzman, R. The prevalence and malignancy of alzheimer disease: A major killer. Arch. Neurol., 1976, 33, 217-218.
[33]
Hurd, M.D.; Martorell, P.; Delavande, A.; Mullen, K.J.; Langa, K.M. Monetary costs of dementia in the United States. New . Engl. J. Med., 2013, 368, 1326-1334.
[34]
Saraceno, C.; Musardo, S.; Marcello, E.; Pelucchi, S.; DiLuca, M. Modeling alzheimer’s disease: From past to future. Pharmacology, 2013, 4, 1-22.
[35]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297, 353-356.
[36]
Barage, S.H.; Sonawane, K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides, 2015, 52, 1-18.
[37]
Fazil, M.; Baboota, S.S.; Sahni, J.K.; Ali, J. Nanotherapeutics for Alzheimer’s disease (AD): Past, present and future. J. Drug Targeting., 2012, 20, 97-113.
[38]
Begley, D.J. Delivery of therapeutic agents to the central nervous system: The problems and the possibilities. Pharmacol. Ther., 2004, 104, 29-45.
[39]
Gabathuler, R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol. Dis., 2010, 37, 48-57.
[40]
Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A.; Mallikarjuana, N.N.; Manohar, S.; Liang, H.F.; Kulkarni, A.R.; Sung, H.W.; Sairam, M.; Aminabhavi, T.M. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J. Control. Release, 2005, 108, 193-214.
[41]
Tanifum, E.A.; Dasgupta, I.; Srivastava, M.; Bhavane, R.C.; Sun, L.; Berridge, J.; Pourgarzham, H.; Kamath, R.; Espinosa, G.; Cook, S.C.; Eriksen, J.L.; Annapragada, A. Intravenous delivery of targeted liposomes to amyloid-beta pathology in APP/PSEN1 transgenic mice. PLoS One, 2012, 7, e48515.
[42]
Laurent, S.; Ejtehadi, M.R.; Rezaei, M.; Kehoe, P.G.; Mahmoudi, M. Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer’s disease. RSC Adv., 2012, 2, 5008-5033.
[43]
Fei, L.; Perrett, S. Effect of nanoparticles on protein folding and fibrillogenesis. Int. J. Mol. Sci., 2009, 10, 646-655.
[44]
Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Duyne, R.P.V. Biosensing with plasmonic nanosensors. Nat. Mater., 2008, 7, 442-453.
[45]
Thakur, G.; Micic, M.; Yang, Y.; Li, W.; Movia, D.; Giordani, S.; Zhang, H.; Leblanc, R.M. Conjugated quantum dots inhibit the amyloid β (1-42) fibrillation process. Int. J. Alz Dis., 2011, 2011, 1-15.
[46]
Pankhurst, Q.A.; Hautot, D.; Kahn, N.; Dobson, J. Increase levels of magnetic iron compounds in Alzheimer’s disease. J. Alz Dis., 2008, 13, 49-52.
[47]
Wadghiri, Y.Z.; Sigurdsson, E.M. Sadowski, M.; Elliott, J.I.; Li, Y.Scholtzova, H.; Tang, C.Y.; Aguinaldo, G.; Pappolla, M.; Duff, K.; Wisniewski, T.; Turnbull, D.H. Detection of alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med., 2003, 50, 293-302.
[48]
Yang, J.; Wadghiri, Y.Z.; Hoang, D.M.; Tsui, W.; Sun, Y.; Chung, E.; Li, Y.; Wang, A.; de Leon, M.; Wisniewski, T. Detection of amyloid plaques targeted by USPIO-Aβ1-42 in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. Neuroimage, 2011, 55, 1600-1609.
[49]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386, 896-912.
[50]
Kowal, S.L.; Dall, T.M.; Chakrabarti, R.; Storm, M.V.; Jain, A. The current and projected economic burden of Parkinson’s disease in the United States. Mov. Disord., 2013, 28, 311-318.
[51]
Ragothaman, M.; Govindappa, S.T.; Rattihalli, R.; Subbakrishna, D.K.; Muthane, U.B. Direct cost of managing Parkinson’s disease in india: Concerns in a developing country. Mov. Disord., 2006, 21, 1755-1758.
[52]
Verhagen, M.L.; Del, D.P.; LePoole, K.; Konitsiotis, S.; Fang, J.; Chase, T.N. Amantadine for levodopa-induced dyskinesias. A 1-year follow-up study. Arch. Neurol., 1999, 56, 1383-1386.
[53]
Przuntek, H.; Muller, T. Clinical efficacy of budipine in Parkinson’s disease. J. Neural Transm. Suppl., 1999, 56, 75-82.
[54]
Linazasoro, G. Potential applications of nanotechnologies to Parkinson’s disease therapy. Parkinsonism Relat. Disord., 2008, 14, 383-392.
[55]
Pillay, S.; Pillay, V.; Choonara, Y.E.; Naidoo, D.; Khan, R.A.; du Toit, L.C.; Ndesendo, V.M.; Modi, G.; Danckwerts, M.P.; Iyuke, S.E. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. Int. J. Pharm., 2009, 382, 277-290.
[56]
Trapani, A.; De, G.E.; Cafagna, D.; Denora, N.; Agrimi, G.; Cassano, T.; Gaetani, S.; Cuomo, V.; Trapani, G. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int. J. Pharm., 2011, 419, 296-307.
[57]
De, G.E.; Trapani, A.; Cafagna, D.; Sabbatini, L.; Cometa, S. Dopamine loaded chitosan nanoparticles: Formulation and analytical characterization. Anal. Bioanal. Chem., 2011, 400, 1997-2002.
[58]
Rashed, E.R.; Abd-El-Rehim, H.A.; El-Ghazaly, M.A. Potential efficacy of dopamine loaded-PVP/PAA nanogel in experimental models of Parkinsonism: Possible disease modifying activity. J. Biomed. Mater. Res. A, 2015, 103, 1713-1720.
[59]
Adhikary, R.R.; Sandbhor, P.; Banerjee, R. Nanotechnology platforms in parkinson’s disease. ADMET DMPK, 2015, 3, 155-181.
[60]
Kurzatkowska, K.; Dolusic, E.; Dehaen, W.; Sieroń-Stołtny, K.; Sieroń, A.; Radecka, H. Gold electrode incorporating corrole as an ion-channel mimetic sensor for determination of dopamine. Anal. Chem., 2009, 81, 7397-7405.
[61]
Tashkhourian, J.; Hormozi Nezhad, M.R.; Khodavesi, J.; Javadi, S. Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J. Electroanal. Chem., 2009, 633, 85-91.
[62]
Yue, H.Y.; Huang, S.; Chang, J.; Heo, C.; Yao, F.; Adhikari, S.; Gunes, F.; Liu, L.C.; Lee, T.H.; Oh, E.S.; Li, B.; Zhang, J.J.; Huy, T.Q.; Luan, N.V.; Lee, Y.H. ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of parkinson’s disease. ACS Nano, 2014, 8, 1639-1646.
[63]
Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral sclerosis. Lancet, 2011, 377, 942-955.
[64]
Gendelman, H.E.; Mosley, R.L.; Boska, M.D.; McMillan, J. The promise of nanoneuromedicine. Nanomedicine, 2014, 9, 171-176.
[65]
Zoccolella, S.; Beghi, E.; Palagano, G.; Fraddosio, A.; Guerra, V.; Samarelli, V.; Lepore, V.; Simone, I.L.; Lamberti, P.; Serlenga, L.; Logroscino, G. Signs and symptoms at diagnosis of amyotrophic lateral sclerosis survival: A population-based study in southern Italy. Eur. J. Neurol., 2006, 13, 789-792.
[66]
Shaw, P.J. Molecular and cellular pathways of neurodegeneration in motor neurone disease. J. Neurol. Neurosurg. Psychiatry, 2005, 76, 1046-1057.
[67]
Hong, S.; Choi, I.; Lee, S.; Yang, Y.I.; Kang, T.; Yi, J. Sensitive and colorimetric detection of the structural evolution of superoxide dismutase with gold nanoparticles. Anal. Chem., 2009, 81, 1378-1382.
[68]
Reddy, M.K.; Wu, L.; Kou, W.; Ghorpade, A.; Labhasetwar, V. Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress. Appl. Biochem. Biotechnol., 2008, 151, 565-577.
[69]
Ali, S.S.; Hardt, J.I.; Dugan, L.L. SOD activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study. Nanomedicine., 2008, 4, 283-294.
[70]
Bondi, M.L.; Craparo, E.F.; Giammona, G.; Drago, F. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine., 2010, 5, 25-32.
[71]
Nath, A. Neuroinfectious diseases: A crisis in neurology and a call for action. JAMA Neurol., 2015, 72, 143-144.
[72]
Nath, A.; Tyler, K.L. Novel approaches and challenges to treatment of central nervous system viral infections. Ann. Neurol., 2013, 74, 412-422.
[73]
Wilson, M.; Tyler, K.L. Emerging diagnostic and therapeutic tools for central nervous system infections. JAMA Neurol., 2016, 73, 1389-1390.
[74]
Millichap, J.J.; Epstein, L.G. Emerging subspecialties in neurology: Neuroinfectious diseases. Neurology, 2009, 73, e14-e15.
[75]
Klein, R.S.; Garber, C.; Howard, N. Infectious immunity in the central nervous system and brain function. Nat. Immunol., 2017, 18, 132-141.
[76]
Ronca, S.E.; Dineley, K.T.; Paessler, S. Neurological sequelae resulting from encephalitic alphavirus infection. Front. Microbiol., 2016, 7, 959.
[77]
McMillan, J.; Batrakova, E.; Gendelman, H.E. Cell delivery of therapeutic nanoparticles. Prog. Mol. Biol. Transl. Sci., 2011, 104, 563-601.
[78]
Liu, L.; Xu, K.; Wang, H.; Tan, P.K.; Fan, W.; Venkatraman, S.S.; Li, L.; Yang, Y.Y. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol., 2009, 4, 457-463.
[79]
Wang, H.; Xu, K.; Liu, L.; Tan, J.P.; Chen, Y.; Li, Y.; Fan, W.; Wei, Z.; Sheng, J.; Yang, Y.Y.; Li, L. The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials, 2010, 31, 2874-2881.
[80]
Ullas, P.T.; Madhusudana, S.N.; Desai, A.; Sagar, B.K.; Jayamurugan, G.; Rajesh, Y.B.; Jayaraman, N. Enhancement of immunogenicity and efficacy of a plasmid DNA rabies vaccine by nanoformulation with a fourthgeneration amine-terminated poly(ether imine) dendrimer. Int. J. Nanomed., 2014, 9, 627-634.