Recent Advances and Challenges in Steroid Metabolomics for Biomarker Discovery

Page: [29 - 45] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Steroid hormones belong to a group of low-molecular weight compounds which are responsible for maintenance of various body functions, thus, their accurate assessment is crucial for evaluation of biosynthetic defects. The development of reliable methods allowing disease diagnosis is essential to improve early detection of various disorders connected with altered steroidogenesis. Currently, the field of metabolomics offers several improvements in terms of sensitivity and specificity of the diagnostic methods when opposed to classical diagnostic approaches. The combination of hyphenated techniques and pattern recognition methods allows to carry out a comprehensive assessment of the slightest alterations in steroid metabolic pathways and can be applied as a tool for biomarker discovery.

Methods: We have performed an extensive literature search applying various bibliographic databases for peer-reviewed articles concentrating on the applications of hyphenated techniques and pattern recognition methods incorporated into the steroid metabolomic approach for biomarker discovery.

Results: The review discusses strengths, challenges and recent developments in steroidbased metabolomics. We present methods of sample collection and preparation, methods of separation and detection of steroid hormones in biological material, data analysis, and interpretation as well as examples of applications of steroid metabolomics for biomarker discovery (cancer, mental and central nervous system disorders, endocrine diseases, monitoring of drug therapy and doping control).

Conclusion: Information presented in this review will be valuable to anyone interested in the application of metabolomics for biomarker discovery with a special emphasis on disorders of steroid hormone synthesis and metabolism.

Keywords: Metabolomics, biomarkers, steroid hormones, metabolic profiling, endocrine diseases, chromatography, mass spectrometry.

[1]
Goodacre, R.; Vaidyanathan, S.; Dunn, W.B.; Harrigan, G.G.; Kell, D.B. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol., 2004, 22, 245-252.
[2]
Morel, N.M.; Holland, J.M.; van der Greef, J.; Marple, E.W.; Clish, C.; Loscalzo, J.; Naylor, S. Primer on medical genomics. Part XIV: Introduction to systems biology--a new approach to understanding disease and treatment. Mayo Clin. Proc., 2004, 79(5), 651-658.
[3]
Peng, B.; Li, H.; Peng, X.X. Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein Cell, 2015, 6(9), 628-637.
[4]
Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytical techniques in metabolomics analysis. Modern analytical techniques in metabolomics analysis. Analyst, 2012, 137(2), 293-300.
[5]
Gowda, G.A.N.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based Methods for Early Disease Diagnostics: A Review. Expert Rev. Mol. Diagn., 2008, 8(5), 617-633.
[6]
Gebregiworgis, T.; Powers, R. Application of NMR metabolomics to search for human disease biomarkers. Comb. Chem. High Throughput Screen., 2012, 15(8), 595-610.
[7]
Oliver, S.G. Functional genomics: lessons from yeast. Philos. Trans. R. Soc. Lond. B, 2002, 357, 17-23.
[8]
Ramirez, T.; Daneshian, M.; Kamp, H.; Bois, F.Y.; Clench, M.R.; Coen, M.; Donley, B.; Fischer, S.M.; Ekman, D.R.; Fabian, E.; Guillou, C.; Heuer, J.; Hogberg, H.T.; Jungnickel, H.; Keun, H.C.; Krennrich, G.; Krupp, E.; Luch, A.; Noor, F.; Peter, E.; Riefke, B.; Seymour, M.; Skinner, N.; Smirnova, L.; Verheij, E.; Wagner, S.; Hartung, T.; van Ravenzwaay, B.; Leist, M. Metabolomics in toxicology and preclinical research. ALTEX, 2013, 30(2), 209-225.
[9]
Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted Metabolomics. In: Curr. Protoc. Mol. Biol; , 2012; Chapter 30, p. Unit30.2, 1-24.
[10]
Cajka, T.; Fiehn, O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal. Chem., 2016, 88(1), 524-545.
[11]
Monteiro, M.S.; Carvalho, M.; Bastos, M.L.; Guedes de Pinho, P. Metabolomics analysis for biomarker discovery: advances and challenges. Curr. Med. Chem., 2013, 20(2), 257-271.
[12]
Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature, 2008, 455(7216), 1054-1056.
[13]
Kitteringham, N.R.; Jenkins, R.E.; Lane, C.S.; Elliott, V.L.; Park, B.K. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(13), 1229-1239.
[14]
Zhang, A.; Hui, Sun H.; Yan, G.; Wang, P.; Wang, X. Metabolomics for biomarker discovery: Moving to the clinic. BioMed Res. Int., 2015, 354671, 1-6.
[15]
Mayeux, R. Biomarkers: Potential Uses and Limitations. NeuroRx, 2004, 2, 182-188.
[16]
Shackleton, C.H.L. Profiling steroid hormones and urinary steroids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 1986, 379, 91-156.
[17]
Shackleton, C.H.L. Mass spectrometry: application to steroid and peptide research. Endocr. Rev., 1985, 6, 441-486.
[18]
Sanderson, J.T. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol. Sci., 2006, 94(1), 3-21.
[19]
Hammond, G.L. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J. Endocrinol., 2016, 230(1), R13-R25.
[20]
Lord, R.S.; J., Bralley A. Laboratory Evaluations for Integrative and Functional Medicine, 2nd ed; Metametrix Institute, 2008.
[21]
Kotłowska, A. Application of steroid hormone metabolomics in search of biomarkers in clinical research. Drug Dev. Res., 2012, 73(7), 381-389.
[22]
Oresic, M. Metabolomics, a novel tool for studies of nutrition, metabolism and lipid dysfunction. Nutr. Metab. Cardiovasc. Dis., 2009, 19(11), 816-824.
[23]
Mulvihill, M.M.; Nomura, D.K. Metabolomic strategies to map functions of metabolic pathways. Am. J. Physiol. Endocrinol. Metab., 2014, 307(3), E237-E244.
[24]
Mandrekar, S.J.; Sargent, D.J. Clinical trial designs for predictive biomarker validation: one size does not fit all. J. Biopharm. Stat., 2009, 19(3), 530-542.
[25]
Rege, J.; Rainey, W.E. The steroid metabolome of adrenarche. J. Endocrinol., 2012, 214(2), 133-143.
[26]
Kushnir, M.M.; Rockwood, A.L.; Roberts, W.L.; Yue, B.; Bergquist, J.; Meikle, A.W. Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical laboratories. Clin. Biochem., 2011, 44(1), 77-88.
[27]
Kotłowska, A.; Sworczak, K.; Stepnowski, P. Urine metabolomics analysis for adrenal incidentaloma activity detection and biomarker discovery. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(5-6), 359-363.
[28]
Caruso, D.; Melis, M.; Fenu, G.; Giatti, S.; Romano, S.; Grimoldi, M.; Crippa, D.; Marrosu, M.G.; Cavaletti, G.; Melcangi, R.C. Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J. Neurochem., 2014, 130(4), 591-597.
[29]
Flores-Valverde, A.M.; Hill, E.M. Methodology for profiling the steroid metabolome in animal tissues using ultraperformance liquid chromatography-electrospray-time-of-flight mass spectrometry. Anal. Chem., 2008, 80(22), 8771-8779.
[30]
McDonald, J.G.; Matthew, S.; Auchus, R.J. Steroid profiling by gas chromatography-mass spectrometry and high performance liquid chromatography-mass spectrometry for adrenal diseases. Horm. Cancer, 2011, 2(6), 324-332.
[31]
Ceglarek, U.; Werner, M.; Kortz, L.; Körner, A.; Kiess, W.; Thiery, J.; Kratzsch, J. Preclinical challenges in steroid analysis of human samples. J. Steroid Biochem. Mol. Biol., 2010, 121(3-5), 505-512.
[32]
Toone, R.J.; Peacock, O.J.; Smith, A.A.; Thompson, D.; Drawer, S.; Cook, C.; Stokes, K.A. Measurement of steroid hormones in saliva: Effects of sample storage condition. Scand. J. Clin. Lab. Invest., 2013, 73(8), 615-621.
[33]
Taylor, P.J. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin. Biochem., 2005, 38(4), 328-334.
[34]
Fischer, R.; Bowness, P.; Kessler, B.M. Two birds with one stone: Doing metabolomics with your proteomics kit. Proteomics, 2013, 13(23-24), 3371-3386.
[35]
Bruce, S.J.; Tavazzi, I.; Parisod, V.; Rezzi, S.; Kochhar, S.; Guy, P.A. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal. Chem., 2009, 81(9), 3285-3296.
[36]
Broccardo, C.J.; Schauer, K.L.; Kohrt, W.M.; Schwartz, R.S.; Murphy, J.P.; Prenni, J.E. Multiplexed analysis of steroid hormones in human serum using novel microflow tile technology and LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 934, 16-21.
[37]
Bylda, C.; Thiele, R.; Kobolda, U.; Volmer, D.A. Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst, 2014, 139, 2265-2276.
[38]
Koren, L.; Ng, E.S.; Soma, K.K.; Wynne-Edwards, K.E. Sample preparation and liquid chromatography-tandem mass spectrometry for multiple steroids in mammalian and avian circulation. PLoS One, 2012, 7(2), e32496.
[39]
Noppe, H.; Verheyden, K.; Gillis, W.; Courtheyn, D.; Vanthemsche, P.; De Brabander, H.F. Multi-analyte approach for the determination of ng L(-1) levels of steroid hormones in unidentified aqueous samples. Anal. Chim. Acta, 2007, 586(1-2), 22-29.
[40]
Allende, F.; Solari, S.; Campino, C.; Carvajal, C.A.; Lagos, C.F.; Vecchiola, A.; Valdivia, C.; Baudrand, R.; Owen, G.I.; Fardella, C.E. LC-MS/MS method for the simultaneous determination of free urinary steroids. Chromatographia, 2014, 77, 637-642.
[41]
Moon, J.Y.; Kim, K.J.; Moon, M.H.; Chung, B.C.; Choi, M.H. A novel GC-MS method in urinary estrogen analysis from postmenopausal women with osteoporosis. J. Lipid Res., 2011, 52(8), 1595-1603.
[42]
Kaklamanos, G.; Theodoridis, G.; Dabalis, T. Determination of anabolic steroids in muscle tissue by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2009, 1216(46), 8072-8079.
[43]
Chen, J.; Liang, Q.; Hua, H.; Wang, Y.; Luo, G.; Hu, M.; Na, Y. Simultaneous determination of 15 steroids in rat blood via gas chromatography-mass spectrometry to evaluate the impact of emasculation on adrenal. Talanta, 2009, 80(2), 826-832.
[44]
Jung, H.J.; Kim, S.J.; Lee, W.Y.; Chung, B.C.; Choi, M.H. Gas chromatography/mass spectrometry based hair steroid profiling may reveal pathogenesis in hair follicles of the scalp. Rapid Commun. Mass Spectrom., 2011, 25(9), 1184-1192.
[45]
Choi, M.H.; Moon, J.Y.; Cho, S.H.; Chung, B.C.; Lee, E.J. Metabolic alteration of urinary steroids in pre- and post-menopausal women, and men with papillary thyroid carcinoma. BMC Cancer, 2011, 11, 342.
[46]
Aufartová, J.; Mahugo-Santana, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Nováková, L.; Solich, P. Determination of steroid hormones in biological and environmental samples using green microextraction techniques: an overview. Anal. Chim. Acta, 2011, 704(1-2), 33-46.
[47]
Peñalver, A.; Pocurull, E.; Borrull, F.; Marcé, R.M. Method based on solid-phase microextraction--high-performance liquid chromatography with UV and electrochemical detection to determine estrogenic compounds in water samples. J. Chromatogr. A, 2002, 964(1-2), 153-160.
[48]
Zhang, Z.; Duan, H.; Zhang, L.; Chen, X.; Liu, W.; Chen, G. Direct determination of anabolic steroids in pig urine by a new SPME-GC-MS method. Talanta, 2009, 78(3), 1083-1089.
[49]
Yang, L.; Luan, T.; Lan, C. Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography-mass spectrometry. J. Chromatogr. A, 2006, 1104(1-2), 23-32.
[50]
Vo Duy, S.; Fayad, P.B.; Barbeau, B.; Prévost, M.; Sauvé, S. Using a novel sol-gel stir bar sorptive extraction method for the analysis of steroid hormones in water by laser diode thermal desorption/atmospheric chemical ionization tandem mass spectrometry. Talanta, 2012, 101, 337-345.
[51]
Huang, X.; Qiu, N.; Yuan, D.; Huang, B. A novel stir bar sorptive extraction coating based on monolithic material for apolar, polar organic compounds and heavy metal ions. Talanta, 2009, 78(1), 101-106.
[52]
Huang, X.; Yuan, D.; Huang, B. Determination of steroid sex hormones in urine matrix by stir bar sorptive extraction based on monolithic material and liquid chromatography with diode array detection. Talanta, 2008, 75(1), 172-177.
[53]
Tienpont, B.; David, F.; Desmet, K.; Sandra, P. Stir bar sorptive extraction-thermal desorption-capillary GC-MS applied to biological fluids. Anal. Bioanal. Chem., 2002, 373(1-2), 46-55.
[54]
Doué, M.; Bichon, E.; Dervilly-Pinel, G.; Pichon, V.; Chapuis-Hugon, F.; Lesellier, E.; West, C.; Monteau, F.; Le Bizec, B. Molecularly imprinted polymer applied to the selective isolation of urinary steroid hormones: an efficient tool in the control of natural steroid hormones abuse in cattle. J. Chromatogr. A, 2012, 1270, 51-61.
[55]
Gañán, J.; Morante-Zarcero, S.; Gallego-Picó, A.; Garcinuño, R.M.; Fernández-Hernando, P.; Sierra, I. Evaluation of a molecularly imprinted polymer for determination of steroids in goat milk by matrix solid phase dispersion. Talanta, 2014, 126, 157-162.
[56]
Gadzała-Kopciuch, R.; Ricanyová, J.; Buszewski, B. Isolation and detection of steroids from human urine by molecularly imprinted solid-phase extraction and liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(11-12), 1177-1184.
[57]
Ferchaud, V.; Courcoux, P.; Le Bizec, B.; Monteau, F.; André, F. Enzymatic hydrolysis of conjugated steroid metabolites: search for optimum conditions using response surface methodology. Analyst, 2000, 125(12), 2255-2259.
[58]
Shibasaki, H.; Tanabe, C.; Furuta, T.; Kasuya, Y. Hydrolysis of conjugated steroids by the combined use of beta-glucuronidase preparations from helix pomatia and ampullaria: determination of urinary cortisol and its metabolites. Steroids, 2001, 66(11), 795-801.
[59]
Bradlow, H.L. In: Chemical and Biological Aspects of Steroid Conjugation; Bernstein, S.; Solomon, S., Eds.; Springer Berlin Heidelberg, 1970, pp. 131-181.
[60]
Sadanala, K.C.; Lee, J.; Chung, B.C.; Choi, M.H. Targeted metabolite profiling: Sample preparation techniques for GC-MS-based steroid analysis. Mass Spectrometry Letters, 2012, 3(1), 4-9.
[61]
Zaikin, V.; Halket, J.M. A Handbook of Derivatives for Mass Spectrometry; IM Publications LPP, 2009.
[62]
Gao, S.; Zhang, Z.P.; Karnes, H.T. Sensitivity enhancement in liquid chromatography/atmospheric pressure ionization mass spectrometry using derivatization and mobile phase additives. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 825(2), 98-110.
[63]
Kirk, J.M.; Tarbin, J.; Keely, B.J. Analysis of androgenic steroid Girard P hydrazones using multistage tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2006, 20(8), 1247-1252.
[64]
Athanasiadou, I.; Angelis, Y.S.; Lyris, E.; Georgakopoulos, C. Chemical derivatization to enhance ionization of anabolic steroids in LC-MS for doping-control analysis. TrAC, 2013, 42, 137-156.
[65]
Gao, W.; Kirschbaum, C.; Grass, J. Stalder T. LC-MS based analysis of endogenous steroid hormones in human hair. J. Steroid Biochem. Mol. Biol., 2016, 162, 92-99.
[66]
Stanczyk, F.Z.; Clarke, N.J. Advantages and challenges of mass spectrometry assays for steroid hormones. J. Steroid Biochem. Mol. Biol., 2010, 121(3-5), 491-495.
[67]
Plenis, A.; Miękus, N.; Olędzka, I.; Bączek, T.; Lewczuk, A.; Woźniak, Z.; Koszałka, P.; Seroczyńska, B.; Skokowski, J. Chemometric evaluation of urinary steroid hormone levels as potential biomarkers of neuroendocrine tumors. Molecules, 2013, 18(10), 12857-1276.
[68]
Almeida, C.; Nogueira, J.M. Determination of steroid sex hormones in water and urine matrices by stir bar sorptive extraction and liquid chromatography with diode array detection. J. Pharm. Biomed. Anal., 2006, 41(4), 1303-1311.
[69]
Shimada, K.; Mitamura, K.; Higashi, T. Gas chromatography and high-performance liquid chromatography of natural steroids. J. Chromatogr. A, 2001, 935(1-2), 141-172.
[70]
Juricskay, S.; Telegdy, E. Urinary steroids in women with androgenic alopecia. Clin. Biochem., 2000, 33(2), 97-101.
[71]
Krone, N.; Hughes, B.A.; Lavery, G.G.; Stewart, P.M.; Arlt, W.; Shackleton, C.H.L. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol., 2010, 121(3-5), 496-504.
[72]
Penning, T.M.; Lee, S.H.; Jin, Y.; Gutierrez, A.; Blair, I.A. Liquid chromatography-mass spectrometry (LC-MS) of steroid hormone metabolites and its applications. J. Steroid Biochem. Mol. Biol., 2010, 121(3-5), 546-555.
[73]
Leinonen, A.; Kuuranne, T.; Kostiainen, R. Liquid chromatography/mass spectrometry in anabolic steroid analysis--optimization and comparison of three ionization techniques: electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization. J. Mass Spectrom., 2002, 37(7), 693-698.
[74]
Annesley, T.M. Ion suppression in mass spectrometry. Clin. Chem., 2003, 49(7), 1041-1044.
[75]
Soldin, S.J.; Soldin, O.P. Steroid hormone analysis by tandem mass spectrometry. Clin. Chem., 2009, 55(6), 1061-1066.
[76]
Gertsman, I.; Gangoiti, J.A.; Barshop, B.A. Validation of a dual LC-HRMS platform for clinical metabolic diagnosis in serum, bridging quantitative analysis and untargeted metabolomics. Metabolomics, 2014, 10(2), 312-323.
[77]
Haneef, J.; Shaharyar, M.; Husain, A.; Rashid, M.; Mishra, R.; Parveen, S.; Ahmed, N.; Pal, M.; Kumar, D. Application of LC-MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids. Journal of Pharmaceutical Analysis, 2013, 3(5), 341-348.
[78]
Lamparczyk, H. CRC Handbook of Chromatography: Analysis and Characterization of Steroids; CRC Press, 1992.
[79]
Kotłowska, A.; Maliński, E.; Sworczak, K.; Kumirska, J.; Stepnowski, P. The urinary steroid profile in patients diagnosed with adrenal incidentaloma. Clin. Biochem., 2009, 42(6), 448-454.
[80]
Caulfield, M.P.; Lynn, T.; Gottschalk, M.E.; Jones, K.L.; Taylor, N.F.; Malunowicz, E.M.; Shackleton, C.H.L.; Reitz, R.E.; Fisher, D.A. The diagnosis of congenital adrenal hyperplasia in the newborn by gas chromatography/mass spectrometry analysis of random urine specimens. J. Clin. Endocrinol. Metab., 2002, 87(8), 3682-3690.
[81]
Moon, J.; Ha, Y.; Moon, M.; Chung, B.; Choi, M. Systematic error in gas chromatography-mass spectrometry based quantitation of hydrolyzed urinary steroids. Cancer Epidemiol. Biomarkers Prev., 2010, 19, 388-397.
[82]
Moon, J.; Jung, H.; Moon, M.; Chung, B.; Choi, M. Heat-map visualization of gas chromatography-mass spectrometry based quantitative signatures on second steroids metabolism. J. Am. Soc. Mass Spectrom., 2009, 20, 1626-1637.
[83]
Hauser, B.; Deschner, T.; Boesch, C. Development of a liquid chromatography-tandem mass spectrometry method for the determination of 23 endogenous steroids in small quantities of primate urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 862(1-2), 100-112.
[84]
Naldi, A.C.; Fayad, P.B.; Prévost, M.; Sauvé, S. Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry. Chem. Cent. J., 2016, 10, 30.
[85]
Yan, Z.; Cheng, C.; Liu, S. In: LC-MS in Drug Bioanalysis; Xu, Q.A.; Madden, T.L., Eds.; Springer, US, 2012, pp. 251-286.
[86]
Santen, R.J.; Demers, L.; Ohorodnik, S.; Settlage, J.; Langecker, P.; Blanchett, D.; Gosse, P.E.; Wang, S. Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS)for estradiol for monitoring of aromatase inhibitor therapy. Steroids, 2007, 72, 666-671.
[87]
Cook, D.W.; Rutan, S.C. Chemometrics for the analysis of chromatographic data in metabolomics investigations. J. Chemometr., 2014, 9, 681-687.
[88]
Kotłowska, A. Application of chemometric techniques in search of clinically applicable biomarkers of disease. Drug Dev. Res., 2014, 75(5), 283-290.
[89]
Dessì, N.; Pascariello, E.; Pes, B. A comparative analysis of biomarker selection techniques. BioMed Res. Int., 2013, 2013, 387673.
[90]
Zarogianni, E.; Moorhead, T.W.; Lawrie, S.M. Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level. Neuroimage Clin., 2013, 3, 279-289.
[91]
Nagana Gowda, G.A.; Raftery, D. Biomarker Discovery and Translation in Metabolomics. Curr. Metabolomics, 2013, 1(3), 227-240.
[92]
Nagana Gowda, G.A.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn., 2008, 8(5), 617-633.
[93]
Tomasi, G.; van den Berg, F.; Andersson, C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemometr., 2004, 18(5), 231-241.
[94]
Struck, W.; Wiczling, P.; Waszczuk-Jankowska, M.; Kaliszan, R.; Markuszewski, M.J. New supervised alignment method as a preprocessing tool for chromatographic data in metabolomic studies. J. Chromatogr. A, 2012, 1256, 150-159.
[95]
Ahn, J.K.; Kim, S.; Hwang, J.; Kim, J.; Lee, Y.S.; Koh, E.M.; Kim, K.H.; Cha, H.S. Metabolomic Elucidation of the Effects of Curcumin on Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. PLoS One, 2015, 10(12), e0145539.
[96]
Cuperlović-Culf, M.; Belacel, N.; Culf, A.S.; Chute, I.C.; Ouellette, R.J.; Burton, I.W.; Karakach, T.K.; Walter, J.A. NMR metabolic analysis of samples using fuzzy K-means clustering. Magn. Reson. Chem., 2009, 47(l), S96-S104.
[97]
Yamamoto, H.; Yamaji, H.; Abe, Y.; Harada, K.; Waluyo, D.; Fukusaki, E.; Kondo, A.; Ohno, H.; Fukuda, H. Dimensionality reduction for metabolome data using PCA, PLS, OPLS, and RFDA with differential penalties to latent variables. Chemom. Intell. Lab. Syst., 2009, 98(2), 136-142.
[98]
Alonso, A.; Marsal, S.; Julià, A. Analytical Methods in Untargeted Metabolomics: State of the Art in 2015. Front. Bioeng. Biotechnol., 2015, 3, 3-20.
[99]
Worley, B.; Powers, R. Multivariate Analysis in Metabolomic. Curr. Metabolomics, 2013, 1(1), 92-107.
[100]
Jiang, J.H.; Wang, J.H.; Chu, X.; Yu, R.Q. Neural network learning to non-linear principal component analysis. Anal. Chim. Acta, 1996, 336, 209-222.
[101]
Rantalainen, M.; Bylesjö, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. Kernel-based orthogonal projections to latent structures (K-OPLS). J. Chemometr., 2007, 21, 376-38.
[102]
Rubingh, C.M.; Bijlsma, S.; Derks, E.P.; Bobeldijk, I.; Verheij, E.R.; Kochhar, S.; Smilde, A.K. Assessing the performance of statistical validation tools for megavariate metabolomics data. Metabolomics, 2006, 2(2), 53-61.
[103]
Bro, R.; Kjeldahl, K.; Smilde, A.K.; Kiers, H.A. Cross-validation of component models: a critical look at current methods. Anal. Bioanal. Chem., 2008, 390(5), 1241-1251.
[104]
Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med., 2013, 4(2), 627-635.
[105]
Vexler, A.; Chen, X.; Yu, J. Evaluations and comparisons of treatment effects based on best combinations of biomarkers with applications to biomedical studies. J. Comput. Biol., 2014, 21(9), 709-721.
[106]
Ma, Y.C.; Kim, H.Y. Determination of Steroids by Liquid Chromatography/Mass Spectrometry. J. Am. Soc. Mass Spectrom., 1997, 8(9), 1010-1020.
[107]
Rauh, M. Steroid measurement with LC-MS/MS. Application examples in pediatrics. J. Steroid Biochem. Mol. Biol., 2010, 121(3-5), 520-527.
[108]
Kalogera, E.; Pistos, C.; Provatopoulou, X.; Christophi, C.A.; Zografos, G.C.; Stefanidou, M.; Spiliopoulou, C.; Athanaselis, S.; Gounaris, A. Bioanalytical LC-MS Method for the Quantification of Plasma Androgens and Androgen Glucuronides in Breast Cancer. J. Chromatogr. Sci., 2016, 54(4), 583-592.
[109]
Konieczna, L.; Bączek, T.; Belka, M.; Fel, A.; Markuszewski, M.; Struck, W.; Markuszewski, M.; Kaliszan, R. Steroid profiles as potential biomarkers in patients with urogenital tract cancer for diagnostic investigations analyzed by liquid chromatography coupled to mass spectrometry. J. Pharm. Biomed. Anal., 2013, 73, 108-115.
[110]
Bicikova, M.; Hill, M.; Ripova, D.; Mohr, P.; Hampl, R. Determination of steroid metabolome as a possible tool for laboratory diagnosis of schizophrenia. J. Steroid Biochem. Mol. Biol., 2013, 133, 77-83.
[111]
Vaňková, M.; Hill, M.; Velíková, M.; Včelák, J.; Vacínová, G.; Dvořáková, K.; Lukášová, P.; Vejražková, D.; Rusina, R.; Holmerová, I.; Jarolímová, E.; Vaňková, H.; Kancheva, R.; Bendlová, B.; Stárka, L. Preliminary evidence of altered steroidogenesis in women with Alzheimer’s disease: Have the patients “OLDER” adrenal zona reticularis? J. Steroid Biochem. Mol. Biol., 2016, 158, 157-177.
[112]
Arlt, W.; Biehl, M.; Taylor, A.E.; Hahner, S.; Libé, R.; Hughes, B.A.; Schneider, P.; Smith, D.J.; Stiekema, H.; Krone, N.; Porfiri, E.; Opocher, G.; Bertherat, J.; Mantero, F.; Allolio, B.; Terzolo, M.; Nightingale, P.; Shackleton, C.H.L.; Bertagna, X.; Fassnacht, M.; Stewart, P.M. Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab., 2011, 96(12), 3775-3784.
[113]
Kao, P.C.; Machacek, D.A.; Magera, M.J.; Lacey, J.M.; Rinaldo, P. Diagnosis of adrenal cortical dysfunction by liquid chromatography-tandem mass spectrometry. Ann. Clin. Lab. Sci., 2001, 31(2), 199-204.
[114]
Cheng, J.; Ma, X.; Krausz, K.W.; Idle, J.R.; Gonzalez, F.J. Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity. Drug Metab. Dispos., 2009, 37(8), 1611-1621.
[115]
Kim, B.; Moon, J.Y.; Choi, M.H.; Yang, H.H.; Lee, S.; Lim, K.S.; Yoon, S.H.; Yu, K.S.; Jang, I.J.; Cho, J.Y. Global metabolomics and targeted steroid profiling reveal that rifampin, a strong human PXR activator, alters endogenous urinary steroid markers. J. Proteome Res., 2013, 12(3), 1359-1368.
[116]
McManus, F.; Fraser, R.; Davies, E.; Connell, J.M.; Freel, E.M. Plasma steroid profiling and response to trophins to illustrate intra-adrenal dynamics. J. Endocrinol., 2015, 224(2), 149-157.
[117]
Badoud, F.; Boccard, J.; Schweizer, C.; Pralong, F.; Saugy, M.; Baume, N. Profiling of steroid metabolites after transdermal and oral administration of testosterone by ultra-high pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J. Steroid Biochem. Mol. Biol., 2013, 138, 222-235.
[118]
Norli, H.R.; Esbensen, K.; Westad, F.; Birkeland, K.I.; Hemmersbach, P. Chemometric evaluation of urinary steroid profiles in doping control. J. Steroid Biochem. Mol. Biol., 1995, 54(1-2), 83-88.
[119]
Medina, S.; Ferreres, F.; García-Viguera, C.; Horcajada, M.N.; Orduna, J.; Savirón, M.; Zurek, G.; Martínez-Sanz, J.M.; Gil, J.I.; Gil-Izquierdo, A. Non-targeted metabolomic approach reveals urinary metabolites linked to steroid biosynthesis pathway after ingestion of citrus juice. Food Chem., 2013, 136(2), 938-946.
[120]
Keefe, C.C.; Goldman, M.M.; Zhang, K.; Clarke, N.; Reitz, R.E.; Welt, C.K. Simultaneous measurement of thirteen steroid hormones in women with polycystic ovary syndrome and control women using liquid chromatography-tandem mass spectrometry. PLoS One, 2014, 9(4), e93805.