Biological Therapy of Hematologic Malignancies: Toward a Chemotherapy- free Era

Page: [1002 - 1018] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Less than 70 years ago, the vast majority of hematologic malignancies were untreatable diseases with fatal prognoses. The development of modern chemotherapy agents, which had begun after the Second World War, was markedly accelerated by the discovery of the structure of DNA and its role in cancer biology and tumor cell division. The path travelled from the first temporary remissions observed in children with acute lymphoblastic leukemia treated with single-agent antimetabolites until the first cures achieved by multi-agent chemotherapy regimens was incredibly short. Despite great successes, however, conventional genotoxic cytostatics suffered from an inherently narrow therapeutic index and extensive toxicity, which in many instances limited their clinical utilization. In the last decade of the 20th century, increasing knowledge on the biology of certain malignancies resulted in the conception and development of first molecularly targeted agents designed to inhibit specific druggable molecules involved in the survival of cancer cells. Advances in technology and genetic engineering enabled the production of structurally complex anticancer macromolecules called biologicals, including therapeutic monoclonal antibodies, antibody-drug conjugates and antibody fragments. The development of drug delivery systems (DDSs), in which conventional drugs were attached to various types of carriers including nanoparticles, liposomes or biodegradable polymers, represented an alternative approach to the development of new anticancer agents. Despite the fact that the antitumor activity of drugs attached to DDSs was not fundamentally different, the improved pharmacokinetic profiles, decreased toxic side effects and significantly increased therapeutic indexes resulted in their enhanced antitumor efficacy compared to conventional (unbound) drugs.

Approval of the first immune checkpoint inhibitor for the treatment of cancer in 2011 initiated the era of cancer immunotherapy. Checkpoint inhibitors, bispecific T-cell engagers, adoptive T-cell approaches and cancer vaccines have joined the platform so far, represented mainly by recombinant cytokines, therapeutic monoclonal antibodies and immunomodulatory agents. In specific clinical indications, conventional drugs have already been supplanted by multi-agent, chemotherapy-free regimens comprising diverse immunotherapy and/or targeted agents. The very distinct mechanisms of the anticancer activity of new immunotherapy approaches not only call for novel response criteria, but might also change fundamental treatment paradigms of certain types of hematologic malignancies in the near future.

Keywords: Hematologic malignancies, biologicals, monoclonal antibodies, immune checkpoint inhibitors, antibody- drug conjugates (ADC), biodegradable polymers, immunomodulatory agents (IMiD), bispecific T-cell engagers (BiTE).

[1]
Farber, S.; Diamond, L.K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med., 1948, 238(23), 787-793.
[2]
Karnofsky, D.A.; Burchenal, J.H. Experimental observations on the effects of the nitrogen mustards on neoplastic tissues. Cancer Res., 1947, 7(1), 50.
[3]
Burchenal, J.H.; Murphy, M.L.; Ellison, R.R.; Sykes, M.P.; Tan, T.C.; Leone, L.A.; Karnofsky, D.A.; Craver, L.F.; Dargeon, H.W.; Rhoads, C.P. Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in the treatment of leukemia and allied diseases. Blood, 1953, 8(11), 965-999.
[4]
Galton, D.A. Myleran in chronic myeloid leukaemia; Results of treatment. Lancet, 1953, 264(6753), 208-213.
[5]
Foye, L.V., Jr; Chapman, C.G.; Willett, F.M.; Adams, W.S. Cyclophosphamide. A preliminary study of a new alkylating agent. Cancer Chemother. Rep., 1960, 6, 39-40.
[6]
Dixon, R.L.; Adamson, R.H. Antitumor activity and pharmacologic disposition of cytosine arabinoside (NSC-63878). Cancer Chemother. Rep., 1965, 48, 11-16.
[7]
Tan, C.; Tasaka, H.; Yu, K.P.; Murphy, M.L.; Karnofsky, D.A. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer, 1967, 20(3), 333-353.
[8]
Warwick, O.H.; Darte, J.M.; Brown, T.C.; Beer, C.T.; Cutts, J.H.; Noble, R.L. Some biological effects of Vincaleukoblastine, an alkaloid in Vinca rosea Linn in patients with malignant disease. Cancer Res., 1960, 20, 1032-1040.
[9]
Lippman, A.J.; Helson, C.; Helson, L.; Krakoff, I.H. Clinical trials of cis-diamminedichloroplatinum (NSC-119875). Cancer Chemother. Rep., 1973, 57(2), 191-200.
[10]
Klener, P., Jr; Klener, P. Molecularly-targeted and biological anti-cancer therapy. Folia Biol. (Praha), 2012, 58(1), 1-6.
[11]
Maloney, D.G.; Grillo-López, A.J.; White, C.A.; Bodkin, D.; Schilder, R.J.; Neidhart, J.A.; Janakiraman, N.; Foon, K.A.; Liles, T.M.; Dallaire, B.K.; Wey, K.; Royston, I.; Davis, T.; Levy, R. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood, 1997, 90(6), 2188-2195.
[12]
Marwick, C. Monoclonal antibody to treat lymphoma. JAMA, 1997, 278(8), 616-618.
[13]
Anderson, D.R.; Grillo-López, A.; Varns, C.; Chambers, K.S.; Hanna, N. Targeted anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin’s B-cell lymphoma. Biochem. Soc. Trans., 1997, 25(2), 705-708.
[14]
Druker, B.J.; Tamura, S.; Buchdunger, E.; Ohno, S.; Segal, G.M.; Fanning, S.; Zimmermann, J.; Lydon, N.B. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med., 1996, 2(5), 561-566.
[15]
Druker, B.J.; Talpaz, M.; Resta, D.J.; Peng, B.; Buchdunger, E.; Ford, J.M.; Lydon, N.B.; Kantarjian, H.; Capdeville, R.; Ohno-Jones, S.; Sawyers, C.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 2001, 344(14), 1031-1037.
[16]
Druker, B.J.; David, A.; David, A. Karnofsky Award lecture. Imatinib as a paradigm of targeted therapies. J. Clin. Oncol., 2003, 21(23)(Suppl.), 239s-245s.
[17]
Schiestl, M.; Stangler, T.; Torella, C.; Cepeljnik, T.; Toll, H.; Grau, R. Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat. Biotechnol., 2011, 29(4), 310-312.
[18]
Weiner, L.M.; Dhodapkar, M.V.; Ferrone, S. Monoclonal antibodies for cancer immunotherapy. Lancet, 2009, 373(9668), 1033-1040.
[19]
Campoli, M.; Ferris, R.; Ferrone, S.; Wang, X. Immunotherapy of malignant disease with tumor antigen-specific monoclonal antibodies. Clin. Cancer Res., 2010, 16(1), 11-20.
[20]
Ferris, R.L.; Jaffee, E.M.; Ferrone, S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: Clinical response, cellular immunity, and immunoescape. J. Clin. Oncol., 2010, 28(28), 4390-4399.
[21]
Bruns, I.; Fox, F.; Reinecke, P.; Kobbe, G.; Kronenwett, R.; Jung, G.; Haas, R. Complete remission in a patient with relapsed angioimmunoblastic T-cell lymphoma following treatment with bevacizumab. Leukemia, 2005, 19(11), 1993-1995.
[22]
Aguiar Bujanda, D. Complete response of relapsed angioimmunoblastic T-cell lymphoma following therapy with bevacizumab. Ann. Oncol., 2008, 19(2), 396-397.
[23]
Kawasaki, N.; Itoh, S.; Hashii, N.; Takakura, D.; Qin, Y.; Huang, X.; Yamaguchi, T. The significance of glycosylation analysis in development of biopharmaceuticals. Biol. Pharm. Bull., 2009, 32(5), 796-800.
[24]
Plosker, G.L.; Figgitt, D.P. Rituximab: A review of its use in non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs, 2003, 63(8), 803-843.
[25]
Weiner, G.J. Rituximab: mechanism of action. Semin. Hematol., 2010, 47(2), 115-123.
[26]
Cheson, B.D. Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J. Clin. Oncol., 2010, 28(21), 3525-3530.
[27]
Pawluczkowycz, A.W.; Beurskens, F.J.; Beum, P.V.; Lindorfer, M.A.; van de Winkel, J.G.; Parren, P.W.; Taylor, R.P. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J. Immunol., 2009, 183(1), 749-758.
[28]
Teeling, J.L.; French, R.R.; Cragg, M.S.; van den Brakel, J.; Pluyter, M.; Huang, H.; Chan, C.; Parren, P.W.; Hack, C.E.; Dechant, M.; Valerius, T.; van de Winkel, J.G.; Glennie, M.J. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood, 2004, 104(6), 1793-1800.
[29]
Hamlin, P.A. Obinutuzumab plus bendamustine in rituximab-refractory indolent lymphoma. Lancet Oncol., 2016, 17(8), 1023-1025.
[30]
Strati, P.; Lanasa, M.; Call, T.G.; Leis, J.F.; Brander, D.M.; LaPlant, B.R.; Pettinger, A.M.; Ding, W.; Parikh, S.A.; Hanson, C.A.; Chanan-Khan, A.A.; Bowen, D.A.; Conte, M.; Kay, N.E.; Shanafelt, T.D. Ofatumumab monotherapy as a consolidation strategy in patients with previously untreated chronic lymphocytic leukaemia: A phase 2 trial. Lancet Haematol., 2016, 3(9), e407-e414.
[31]
Hillmen, P.; Robak, T.; Janssens, A.; Babu, K.G.; Kloczko, J.; Grosicki, S.; Doubek, M.; Panagiotidis, P.; Kimby, E.; Schuh, A.; Pettitt, A.R.; Boyd, T.; Montillo, M.; Gupta, I.V.; Wright, O.; Dixon, I.; Carey, J.L.; Chang, C.N.; Lisby, S.; McKeown, A.; Offner, F. Chlorambucil plus ofatumumab versus chlorambucil alone in previously untreated patients with chronic lymphocytic leukaemia (COMPLEMENT 1): A randomised, multicentre, open-label phase 3 trial. Lancet, 2015, 385(9980), 1873-1883.
[32]
van Oers, M.H.; Kuliczkowski, K.; Smolej, L.; Petrini, M.; Offner, F.; Grosicki, S.; Levin, M.D.; Gupta, I.; Phillips, J.; Williams, V.; Manson, S.; Lisby, S.; Geisler, C. Ofatumumab maintenance versus observation in relapsed chronic lymphocytic leukaemia (PROLONG): An open-label, multicentre, randomised phase 3 study. Lancet Oncol., 2015, 16(13), 1370-1379.
[33]
Lemery, S.J.; Zhang, J.; Rothmann, M.D.; Yang, J.; Earp, J.; Zhao, H.; McDougal, A.; Pilaro, A.; Chiang, R.; Gootenberg, J.E.; Keegan, P.; Pazdur, R.U.S. Food and Drug Administration approval: ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab. Clin. Cancer Res., 2010, 16(17), 4331-4338.
[34]
Remer, M.; Al-Shamkhani, A.; Glennie, M.; Johnson, P. Mogamulizumab and the treatment of CCR4-positive T-cell lymphomas. Immunotherapy, 2014, 6(11), 1187-1206.
[35]
Sanford, D.S.; Wierda, W.G.; Burger, J.A.; Keating, M.J.; O’Brien, S.M. Three newly approved drugs for chronic lymphocytic leukemia: incorporating ibrutinib, idelalisib, and obinutuzumab into clinical practice. Clin. Lymphoma Myeloma Leuk., 2015, 15(7), 385-391.
[36]
Tobinai, K.; Klein, C.; Oya, N.; Fingerle-Rowson, G. A Review of Obinutuzumab (GA101), a Novel Type II Anti-CD20 Monoclonal Antibody, for the Treatment of Patients with B-Cell Malignancies. Adv. Ther., 2017, 34(2), 324-356.
[37]
Lonial, S.; Weiss, B.M.; Usmani, S.Z.; Singhal, S.; Chari, A.; Bahlis, N.J.; Belch, A.; Krishnan, A.; Vescio, R.A.; Mateos, M.V.; Mazumder, A.; Orlowski, R.Z.; Sutherland, H.J.; Bladé, J.; Scott, E.C.; Oriol, A.; Berdeja, J.; Gharibo, M.; Stevens, D.A.; LeBlanc, R.; Sebag, M.; Callander, N.; Jakubowiak, A.; White, D.; de la Rubia, J.; Richardson, P.G.; Lisby, S.; Feng, H.; Uhlar, C.M.; Khan, I.; Ahmadi, T.; Voorhees, P.M. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): An open-label, randomised, phase 2 trial. Lancet, 2016, 387(10027), 1551-1560.
[38]
Lonial, S.; Dimopoulos, M.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.V.; Magen, H.; Belch, A.; Reece, D.; Beksac, M.; Spencer, A.; Oakervee, H.; Orlowski, R.Z.; Taniwaki, M.; Röllig, C.; Einsele, H.; Wu, K.L.; Singhal, A.; San-Miguel, J.; Matsumoto, M.; Katz, J.; Bleickardt, E.; Poulart, V.; Anderson, K.C.; Richardson, P. Elotuzumab therapy for relapsed or refractory multiple myeloma. N. Engl. J. Med., 2015, 373(7), 621-631.
[39]
Cannons, J.L.; Tangye, S.G.; Schwartzberg, P.L. SLAM family receptors and SAP adaptors in immunity. Annu. Rev. Immunol., 2011, 29, 665-705.
[40]
Magen, H.; Muchtar, E. Elotuzumab: The first approved monoclonal antibody for multiple myeloma treatment. Ther. Adv. Hematol., 2016, 7(4), 187-195.
[41]
Matas-Cespedes, A.; Vidal-Crespo, A.; Rodriguez, V.; Villamor, N.; Delgado, J.; Gine, E.; Roca-Ho, H.; Menendez, P.; Campo, E.; Lopez-Guillermo, A.; Colomer, D.; Roue, G.; Wiestner, A.; Parren, P.W.; Doshi, P.; Lammerts-van Bueren, J.J.; Perez-Galan, P. The human CD38 monoclonal antibody daratumumab shows anti-tumor activity and hampers leukemia-microenvironment interactions in chronic lymphocytic leukemia. Clin. Cancer Res., 2016.
[42]
Ramsay, A.G.; Clear, A.J.; Kelly, G.; Fatah, R.; Matthews, J.; Macdougall, F.; Lister, T.A.; Lee, A.M.; Calaminici, M.; Gribben, J.G. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood, 2009, 114(21), 4713-4720.
[43]
Lagrue, K.; Carisey, A.; Morgan, D.J.; Chopra, R.; Davis, D.M. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds. Blood, 2015, 126(1), 50-60.
[44]
Ghosh, N.; Grunwald, M.R.; Fasan, O.; Bhutani, M. Expanding role of lenalidomide in hematologic malignancies. Cancer Manag. Res., 2015, 7, 105-119.
[45]
Vitolo, U.; Chiappella, A.; Franceschetti, S.; Carella, A.M.; Baldi, I.; Inghirami, G.; Spina, M.; Pavone, V.; Ladetto, M.; Liberati, A.M.; Molinari, A.L.; Zinzani, P.; Salvi, F.; Fattori, P.P.; Zaccaria, A.; Dreyling, M.; Botto, B.; Castellino, A.; Congiu, A.; Gaudiano, M.; Zanni, M.; Ciccone, G.; Gaidano, G.; Rossi, G. Lenalidomide plus R-CHOP21 in elderly patients with untreated diffuse large B-cell lymphoma: results of the REAL07 open-label, multicentre, phase 2 trial. Lancet Oncol., 2014, 15(7), 730-737.
[46]
Arora, M.; Gowda, S.; Tuscano, J. A comprehensive review of lenalidomide in B-cell non-Hodgkin lymphoma. Ther. Adv. Hematol., 2016, 7(4), 209-221.
[47]
Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; Plesner, T.; Yoon, S.S.; Ben Yehuda, D.; Richardson, P.G.; Goldschmidt, H.; Reece, D.; Lisby, S.; Khokhar, N.Z.; O’Rourke, L.; Chiu, C.; Qin, X.; Guckert, M.; Ahmadi, T.; Moreau, P. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med., 2016, 375(14), 1319-1331.
[48]
Chan, T.S.; Khong, P.L.; Kwong, Y.L. Pembrolizumab and lenalidomide induced remission in refractory double-hit lymphoma. Ann. Hematol., 2016, 95(11), 1917-1918.
[49]
Jagadeesh, D.; Smith, M.R. Antibody Drug Conjugates (ADCs): Changing the Treatment Landscape of Lymphoma. Curr. Treat. Options Oncol., 2016, 17(10), 55.
[50]
Thomas, A.; Teicher, B.A.; Hassan, R. Antibody-drug conjugates for cancer therapy. Lancet Oncol., 2016, 17(6), e254-e262.
[51]
Mondello, P.; Cuzzocrea, S.; Navarra, M.; Mian, M. 90 Y-ibritumomab tiuxetan: A nearly forgotten opportunityr. Oncotarget, 2016, 7(7), 7597-7609.
[52]
Chevallier, P.; Eugene, T.; Robillard, N.; Isnard, F.; Nicolini, F.; Escoffre-Barbe, M.; Huguet, F.; Hunault, M.; Marcais, A.; Gaschet, J.; Cherel, M.; Guillaume, T.; Delaunay, J.; Peterlin, P.; Eveillard, M.; Thomas, X.; Ifrah, N.; Lapusan, S.; Bodet-Milin, C.; Barbet, J.; Faivre-Chauvet, A.; Ferrer, L.; Bene, M.C.; Le Houerou, C.; Goldenberg, D.M.; Wegener, W.A.; Kraeber-Bodéré, F. (90)Y-labelled anti-CD22 epratuzumab tetraxetan in adults with refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia: A phase 1 dose-escalation study. Lancet Haematol., 2015, 2(3), e108-e117.
[53]
Oflazoglu, E.; Stone, I.J.; Gordon, K.A.; Grewal, I.S.; van Rooijen, N.; Law, C.L.; Gerber, H.P. Macrophages contribute to the antitumor activity of the anti-CD30 antibody SGN-30. Blood, 2007, 110(13), 4370-4372.
[54]
Forero-Torres, A.; Leonard, J.P.; Younes, A.; Rosenblatt, J.D.; Brice, P.; Bartlett, N.L.; Bosly, A.; Pinter-Brown, L.; Kennedy, D.; Sievers, E.L.; Gopal, A.K. A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br. J. Haematol., 2009, 146(2), 171-179.
[55]
Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm., 2011, 8(6), 2101-2141.
[56]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[57]
Venditto, V.J.; Szoka, F.C., Jr Cancer nanomedicines: so many papers and so few drugs! Adv. Drug Deliv. Rev., 2013, 65(1), 80-88.
[58]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1-2), 271-284.
[59]
Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release, 2008, 126(3), 187-204.
[60]
Kopeček, J. Polymer-drug conjugates: origins, progress to date and future directions. Adv. Drug Deliv. Rev., 2013, 65(1), 49-59.
[61]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[62]
Lammers, T.; Hennink, W.E.; Storm, G. Tumour-targeted nanomedicines: Principles and practice. Br. J. Cancer, 2008, 99(3), 392-397.
[63]
Ulbrich, K.; Etrych, T.; Chytil, P.; Jelínková, M.; Ríhová, B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J. Drug Target., 2004, 12(8), 477-489.
[64]
Etrych, T.; Mrkvan, T.; Rihova, B.; Ulbrich, K. Star-shaped immunoglobulin-containing HPMA-based conjugates with doxorubicin for cancer therapy. J. Control. Release, 2007, 122(1), 31-38.
[65]
Anselmo, A.C.; Mitragotri, S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release, 2014, 190, 15-28.
[66]
Lidický, O.; Janoušková, O.; Strohalm, J.; Alam, M.; Klener, P.; Etrych, T. Anti-Lymphoma Efficacy Comparison of Anti-Cd20 Monoclonal Antibody-Targeted and Non-Targeted Star-Shaped Polymer-Prodrug Conjugates. Molecules, 2015, 20(11), 19849-19864.
[67]
Etrych, T.; Strohalm, J.; Kovar, L.; Kabesova, M.; Rihova, B.; Ulbrich, K. HPMA copolymer conjugates with reduced anti-CD20 anti-body for cell-specific drug targeting. I. Synthesis and in vitro evaluation of binding efficacy and cytostatic activity. J. Control. Release, 2009, 140(1), 18-26.
[68]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[69]
Ma, W.; Gilligan, B.M.; Yuan, J.; Li, T. Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J. Hematol. Oncol., 2016, 9(1), 47.
[70]
Savage, K.J.; Steidl, C. Immune checkpoint inhibitors in Hodgkin and non-Hodgkin lymphoma: how they work and when to use them. Expert Rev. Hematol., 2016, 9(11), 1007-1009.
[71]
Cameron, F.; Whiteside, G.; Perry, C. Ipilimumab: first global approval. Drugs, 2011, 71(8), 1093-1104.
[72]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[73]
Robert, C.; Thomas, L.; Bondarenko, I.; O’Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J.F.; Testori, A.; Grob, J.J.; Davidson, N.; Richards, J.; Maio, M.; Hauschild, A.; Miller, W.H., Jr; Gascon, P.; Lotem, M.; Harmankaya, K.; Ibrahim, R.; Francis, S.; Chen, T.T.; Humphrey, R.; Hoos, A.; Wolchok, J.D. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med., 2011, 364(26), 2517-2526.
[74]
Batlevi, C.L.; Matsuki, E.; Brentjens, R.J.; Younes, A. Novel immunotherapies in lymphoid malignancies. Nat. Rev. Clin. Oncol., 2016, 13(1), 25-40.
[75]
Westin, J.R.; Chu, F.; Zhang, M.; Fayad, L.E.; Kwak, L.W.; Fowler, N.; Romaguera, J.; Hagemeister, F.; Fanale, M.; Samaniego, F.; Feng, L.; Baladandayuthapani, V.; Wang, Z.; Ma, W.; Gao, Y.; Wallace, M.; Vence, L.M.; Radvanyi, L.; Muzzafar, T.; Rotem-Yehudar, R.; Davis, R.E.; Neelapu, S.S. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: A single group, open-label, phase 2 trial. Lancet Oncol., 2014, 15(1), 69-77.
[76]
Lesokhin, A.M.; Ansell, S.M.; Armand, P.; Scott, E.C.; Halwani, A.; Gutierrez, M.; Millenson, M.M.; Cohen, A.D.; Schuster, S.J.; Lebovic, D.; Dhodapkar, M.; Avigan, D.; Chapuy, B.; Ligon, A.H.; Freeman, G.J.; Rodig, S.J.; Cattry, D.; Zhu, L.; Grosso, J.F.; Bradley Garelik, M.B.; Shipp, M.A.; Borrello, I.; Timmerman, J. Nivolumab in patients with relapsed or refractory hematologic malignancy: Preliminary results of a phase Ib study. J. Clin. Oncol., 2016, 34(23), 2698-2704.
[77]
Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; Rodig, S.J.; Chapuy, B.; Ligon, A.H.; Zhu, L.; Grosso, J.F.; Kim, S.Y.; Timmerman, J.M.; Shipp, M.A.; Armand, P. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med., 2015, 372(4), 311-319.
[78]
Younes, A.; Santoro, A.; Shipp, M.; Zinzani, P.L.; Timmerman, J.M.; Ansell, S.; Armand, P.; Fanale, M.; Ratanatharathorn, V.; Kuruvilla, J.; Cohen, J.B.; Collins, G.; Savage, K.J.; Trneny, M.; Kato, K.; Farsaci, B.; Parker, S.M.; Rodig, S.; Roemer, M.G.; Ligon, A.H.; Engert, A. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: A multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol., 2016, 17(9), 1283-1294.
[79]
Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; Shaheen, M.; Ernstoff, M.S.; Minor, D.; Salama, A.K.; Taylor, M.; Ott, P.A.; Rollin, L.M.; Horak, C.; Gagnier, P.; Wolchok, J.D.; Hodi, F.S. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med., 2015, 372(21), 2006-2017.
[80]
Hude, I.; Sasse, S.; Engert, A.; Bröckelmann, P.J. The emerging role of immune checkpoint inhibition in malignant lymphoma. Haematologica, 2017, 102(1), 30-42.
[81]
Choudhary, S.; Mathew, M.; Verma, R.S. Therapeutic potential of anticancer immunotoxins. Drug Discov. Today, 2011, 16(11-12), 495-503.
[82]
Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Degenhard, E.; Goebeler, M.E.; Klinger, M.; Neumann, S.A.; Horst, H.A.; Raff, T.; Viardot, A.; Stelljes, M.; Schaich, M.; Köhne-Volland, R.; Brüggemann, M.; Ottmann, O.G.; Burmeister, T.; Baeuerle, P.A.; Nagorsen, D.; Schmidt, M.; Einsele, H.; Riethmüller, G.; Kneba, M.; Hoelzer, D.; Kufer, P.; Bargou, R.C. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood, 2012, 120(26), 5185-5187.
[83]
Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Klappers, P.; Stelljes, M.; Neumann, S.; Viardot, A.; Marks, R.; Diedrich, H.; Faul, C.; Reichle, A.; Horst, H.A.; Brüggemann, M.; Wessiepe, D.; Holland, C.; Alekar, S.; Mergen, N.; Einsele, H.; Hoelzer, D.; Bargou, R.C. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol., 2014, 32(36), 4134-4140.
[84]
Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; Arslan, Ö.; Sanz, M.A.; Bergeron, J.; Demirkan, F.; Lech-Maranda, E.; Rambaldi, A.; Thomas, X.; Horst, H.A.; Brüggemann, M.; Klapper, W.; Wood, B.L.; Fleishman, A.; Nagorsen, D.; Holland, C.; Zimmerman, Z.; Topp, M.S. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med., 2017, 376(9), 836-847.
[85]
Lichtenegger, F.S.; Krupka, C.; Haubner, S.; Köhnke, T.; Subklewe, M. Recent developments in immunotherapy of acute myeloid leukemia. J. Hematol. Oncol., 2017, 10(1), 142.
[86]
Cohen, J.E.; Merims, S.; Frank, S.; Engelstein, R.; Peretz, T.; Lotem, M. Adoptive cell therapy: Past, present and future. Immunotherapy, 2017, 9(2), 183-196.
[87]
Fesnak, A.D.; June, C.H.; Levine, B.L. Engineered T cells: The promise and challenges of cancer immunotherapy. Nat. Rev. Cancer, 2016, 16(9), 566-581.
[88]
Hartmann, J.; Schüßler-Lenz, M.; Bondanza, A.; Buchholz, C.J. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol. Med., 2017, 9(9), 1183-1197.
[89]
Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; Steinberg, S.M.; Stroncek, D.; Tschernia, N.; Yuan, C.; Zhang, H.; Zhang, L.; Rosenberg, S.A.; Wayne, A.S.; Mackall, C.L. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet, 2015, 385(9967), 517-528.
[90]
Kochenderfer, J.N.; Dudley, M.E.; Kassim, S.H.; Somerville, R.P.; Carpenter, R.O.; Stetler-Stevenson, M.; Yang, J.C.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; Raffeld, M.; Feldman, S.; Lu, L.; Li, Y.F.; Ngo, L.T.; Goy, A.; Feldman, T.; Spaner, D.E.; Wang, M.L.; Chen, C.C.; Kranick, S.M.; Nath, A.; Nathan, D.A.; Morton, K.E.; Toomey, M.A.; Rosenberg, S.A. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol., 2015, 33(6), 540-549.
[91]
Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Rheingold, S.R.; Shen, A.; Teachey, D.T.; Levine, B.L.; June, C.H.; Porter, D.L.; Grupp, S.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 2014, 371(16), 1507-1517.
[92]
Turtle, C.J.; Hanafi, L.A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; Robinson, E.; Steevens, N.N.; Chaney, C.; Soma, L.; Chen, X.; Yeung, C.; Wood, B.; Li, D.; Cao, J.; Heimfeld, S.; Jensen, M.C.; Riddell, S.R.; Maloney, D.G. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest., 2016, 126(6), 2123-2138.
[93]
Bhoj, V.G.; Arhontoulis, D.; Wertheim, G.; Capobianchi, J.; Callahan, C.A.; Ellebrecht, C.T.; Obstfeld, A.E.; Lacey, S.F.; Melenhorst, J.J.; Nazimuddin, F.; Hwang, W.T.; Maude, S.L.; Wasik, M.A.; Bagg, A.; Schuster, S.; Feldman, M.D.; Porter, D.L.; Grupp, S.A.; June, C.H.; Milone, M.C. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood, 2016, 128(3), 360-370.
[94]
Brudno, J.N.; Kochenderfer, J.N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol., 2018, 15(1), 31-46.
[95]
Berrien-Elliott, M.M.; Romee, R.; Fehniger, T.A. Improving natural killer cell cancer immunotherapy. Curr. Opin. Organ Transplant., 2015, 20(6), 671-680.
[96]
Guillerey, C.; Huntington, N.D.; Smyth, M.J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol., 2016, 17(9), 1025-1036.
[97]
Pichler, W.J. Adverse side-effects to biological agents. Allergy, 2006, 61(8), 912-920.
[98]
Demlova, R.; Valík, D.; Obermannova, R. ZdraŽilová-Dubská, L. The safety of therapeutic monoclonal antibodies: Implications for cancer therapy including immuno-checkpoint inhibitors. Physiol. Res., 2016, 65(Suppl. 4), S455-S462.
[99]
van de Donk, N.W.; Otten, H.G.; El Haddad, O.; Axel, A.; Sasser, A.K.; Croockewit, S.; Jacobs, J.F. Interference of daratumumab in monitoring multiple myeloma patients using serum immunofixation electrophoresis can be abrogated using the daratumumab IFE reflex assay (DIRA). Clin. Chem. Lab. Med., 2016, 54(6), 1105-1109.
[100]
Dizon, M.F. The Challenges of daratumumab in transfusion medicine. Lab. Med., 2016, 48(1), 6-9.
[101]
Chapuy, C.I.; Aguad, M.D.; Nicholson, R.T.; AuBuchon, J.P.; Cohn, C.S.; Delaney, M.; Fung, M.K.; Unger, M.; Doshi, P.; Murphy, M.F.; Dumont, L.J.; Kaufman, R.M. International validation of a dithiothreitol (DTT)-based method to resolve the daratumumab interference with blood compatibility testing. Transfusion, 2016, 56(12), 2964-2972.
[102]
Barrett, D.M.; Teachey, D.T.; Grupp, S.A. Toxicity management for patients receiving novel T-cell engaging therapies. Curr. Opin. Pediatr., 2014, 26(1), 43-49.
[103]
Weber, J.S.; Yang, J.C.; Atkins, M.B.; Disis, M.L. Toxicities of immunotherapy for the practitioner. J. Clin. Oncol., 2015, 33(18), 2092-2099.
[104]
Fitzgerald, J.C.; Weiss, S.L.; Maude, S.L.; Barrett, D.M.; Lacey, S.F.; Melenhorst, J.J.; Shaw, P.; Berg, R.A.; June, C.H.; Porter, D.L.; Frey, N.V.; Grupp, S.A.; Teachey, D.T. Cytokine release syndrome after chimeric antigen receptor t cell therapy for acute lymphoblastic leukemia. Crit. Care Med., 2017, 45(2), e124-e131.
[105]
Frey, N.V.; Porter, D.L. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematology (Am. Soc. Hematol. Educ. Program), 2016, 2016(1), 567-572.