Smart Organic-Inorganic Nanogels for Activatable Theranostics

Page: [1366 - 1376] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Intelligent polymeric nanogels, with the rationally designed stimuli-responsive drug delivery and controlled drug release, have attracted considerable attention as an ideal nanoplatform for activatable therapy. On the other hand, functional inorganic nanomaterials are widely used as medical imaging agents due to their unique magnetic or optical properties. The construction of stimuli-responsive polymeric nanogels incorporating with functional inorganic nanomaterials inherits the excellent properties of both polymers and inorganic nanomaterials, consequently, the resulted organic-inorganic hybrid nanogels naturally exhibit stimuli-responsive multi-functionalities for both imaging and therapy. In this review, we summarize the recent advances of stimuli-responsive organic-inorganic hybrid nanogels. Firstly, we discuss the physical and chemical methods thus far developed for the integration of polymeric nanogels and inorganic nanomaterials, and then we show the typical examples of activatable theranostic applications using organic-inorganic hybrid nanogels. In the end, the existing challenges and future directions are briefly discussed.

Keywords: Stimuli-responsive, organic-inorganic nanogels, inorganic nanomaterials, theranostics, glycol chitosan (GC) monomer and Reactive Oxygen Species (ROS).

[1]
Kelkar, S.S.; Reineke, T.M. Theranostics: combining imaging and therapy. Bioconjug. Chem., 2011, 22(10), 1879-1903.
[2]
Muthu, M.S.; Leong, D.T.; Mei, L.; Feng, S.S. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 2014, 4(6), 660-677.
[3]
Huang, P.; Lin, J.; Wang, X.; Wang, Z.; Zhang, C.; He, M.; Wang, K.; Chen, F.; Li, Z.; Shen, G.; Cui, D.; Chen, X. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater., 2012, 24(37), 5104-5110.
[4]
Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res., 2011, 44(10), 1039-1049.
[5]
Ma, X.; Zhao, Y.; Liang, X.J. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc. Chem. Res., 2011, 44(10), 1114-1122.
[6]
Jia, F.; Liu, X.; Li, L.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J. Control. Release, 2013, 172(3), 1020-1034.
[7]
Li, F.; Bae, B.C.; Na, K. Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells. Bioconjug. Chem., 2010, 21(7), 1312-1320.
[8]
Lemieux, P.; Vinogradov, S.V.; Gebhart, C.L.; Guérin, N.; Paradis, G.; Nguyen, H.K.; Ochietti, B.; Suzdaltseva, Y.G.; Bartakova, E.V.; Bronich, T.K.; St-Pierre, Y.; Alakhov, V.Y.; Kabanov, A.V. Block and graft copolymers and NanoGel copolymer networks for DNA delivery into cell. J. Drug Target., 2000, 8(2), 91-105.
[9]
Vinogradov, S.; Batrakova, E.; Kabanov, A. Poly (ethylene glycol)–polyethyleneimine NanoGel™ particles, novel drug delivery systems for antisense oligonucleotides. Colloid Surface B., 1999, 16(1–4), 291-304.
[10]
Sasaki, Y.; Akiyoshi, K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem. Rec., 2010, 10(6), 366-376.
[11]
Sultana, F. Manirujjaman; Imran-Ul-Haque; Arafat, M.; Sharmin, S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci., 2013, 3(8), 95-105.
[12]
Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderón, M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem. Soc. Rev., 2015, 44(17), 6161-6186.
[13]
Liang, R.; Wei, M.; Evans, D.G.; Duan, X. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem. Commun. (Camb.), 2014, 50(91), 14071-14081.
[14]
Zhang, C.L.; Yu, S.H. Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev., 2014, 43(13), 4423-4448.
[15]
Xia, Y.; Li, W.; Cobley, C.M.; Chen, J.; Xia, X.; Zhang, Q.; Yang, M.; Cho, E.C.; Brown, P.K. Gold nanocages: from synthesis to theranostic applications. Acc. Chem. Res., 2011, 44(10), 914-924.
[16]
Huang, P.; Rong, P.; Lin, J.; Li, W.; Yan, X.; Zhang, M.G.; Nie, L.; Niu, G.; Lu, J.; Wang, W.; Chen, X. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics. J. Am. Chem. Soc., 2014, 136(23), 8307-8313.
[17]
Ling, D.; Hyeon, T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small, 2013, 9(9-10), 1450-1466.
[18]
Cai, H.; Yao, P. In situ preparation of gold nanoparticle-loaded lysozyme-dextran nanogels and applications for cell imaging and drug delivery. Nanoscale, 2013, 5(7), 2892-2900.
[19]
Rejinold, N.S.; Ranjusha, R.; Balakrishnan, A.; Mohammed, N.; Jayakumar, R. Gold–chitin–manganese dioxide ternary composite nanogels for radio frequency assisted cancer therapy. RSC Advances, 2014, 4(11), 5819-5825.
[20]
Zhu, H.; Li, Y.; Qiu, R.; Shi, L.; Wu, W.; Zhou, S. Responsive fluorescent Bi(2)O(3)@PVA hybrid nanogels for temperature-sensing, dual-modal imaging, and drug delivery. Biomaterials, 2012, 33(10), 3058-3069.
[21]
Pich, A.; Zhang, F.; Shen, L.; Berger, S.; Ornatsky, O.; Baranov, V.; Winnik, M.A. Biocompatible hybrid nanogels. Small, 2008, 4(12), 2171-2175.
[22]
Sasaki, Y.; Akiyoshi, K. Self-assembled nanogel engineering for advanced biomedical technology. Chem. Lett., 2012, 41(3), 202-208.
[23]
Raemdonck, K.; Demeester, J.; Smedt, S.D. Advanced nanogel engineering for drug delivery. Soft Matter, 2008, 5(4), 707-715.
[24]
Wang, X.; Niu, D.; Wu, Q.; Bao, S.; Su, T.; Liu, X.; Zhang, S.; Wang, Q. Iron oxide/manganese oxide co-loaded hybrid nanogels as pH-responsive magnetic resonance contrast agents. Biomaterials, 2015, 53, 349-357.
[25]
Katagiri, K.; Ohta, K.; Sako, K.; Inumaru, K.; Hayashi, K.; Sasaki, Y.; Akiyoshi, K. Development and potential theranostic applications of a self‐assembled hybrid of magnetic nanoparticle clusters with polysaccharide nanogels. ChemPlusChem, 2014, 79(11), 1631-1637.
[26]
Wang, H.; Ke, F.; Mararenko, A.; Wei, Z.; Banerjee, P.; Zhou, S. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging. Nanoscale, 2014, 6(13), 7443-7452.
[27]
Chen, L.; Xue, Y.; Xia, X.; Song, M.; Huang, J.; Zhang, H.; Yu, B.; Long, S.; Liu, Y.; Liu, L. A redox stimuli-responsive superparamagnetic nanogel with chemically anchored DOX for enhanced anticancer efficacy and low systemic adverse effects. J. Mater. Chem. B, 2015, 3(46), 8949-8962.
[28]
Kawasaki, R.; Sasaki, Y.; Katagiri, K.; Mukai, S.A.; Sawada, S.; Akiyoshi, K. Magnetically guided protein transduction by hybrid nanogel chaperones with iron oxide nanoparticles. Angew. Chem. Int. Ed. Engl., 2016, 55(38), 11377-11381.
[29]
Wang, X.; Niu, D.; Li, P.; Wu, Q.; Bo, X.; Liu, B.; Bao, S.; Su, T.; Xu, H.; Wang, Q. Dual-enzyme loaded multifunctional hybrid nanogel system for pathological responsive ultrasound imaging and T2-weighted magnetic resonance imaging. ACS Nano, 2015, 9(6), 5646-5656.
[30]
Wang, H.; Di, J.; Sun, Y.; Fu, J.; Wei, Z.; Matsui, H.; Alejandra, D.C.A.; Zhou, S. Biocompatible PEG-chitosan@carbon dots hybrid nanogels for two‐photon fluorescence imaging, near‐infrared light/pH dual‐responsive drug carrier, and synergistic therapy. Adv. Funct. Mater., 2015, 25(34), 5537-5547.
[31]
Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem., 2005, 15(35-36), 3559-3592.
[32]
Riedinger, A.; Pernia, L.M.; Deka, S.R.; George, C.; Franchini, I.R.; Falqui, A.; Cingolani, R.; Pellegrino, T. “Nanohybrids” based on pH-responsive hydrogels and inorganic nanoparticles for drug delivery and sensor applications. Nano Lett., 2011, 11(8), 3136-3141.
[33]
Jiang, L.; Zhou, Q.; Mu, K.; Xie, H.; Zhu, Y.; Zhu, W.; Zhao, Y.; Xu, H.; Yang, X. pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials, 2013, 34(30), 7418-7428.
[34]
Su, S.; Wang, H.; Liu, X.; Wu, Y.; Nie, G. iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials, 2013, 34(13), 3523-3533.
[35]
Kim, S.; Lee, D.J.; Kwag, D.S.; Lee, U.Y.; Youn, Y.S.; Lee, E.S. Acid pH-activated glycol chitosan/fullerene nanogels for efficient tumor therapy. Carbohydr. Polym., 2014, 101(1), 692-698.
[36]
Kawano, T.; Niidome, Y.; Mori, T.; Katayama, Y.; Niidome, T. PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser. Bioconjug. Chem., 2009, 20(2), 209-212.
[37]
Jalani, G.; Naccache, R.; Rosenzweig, D.H.; Haglund, L.; Vetrone, F.; Cerruti, M. Photocleavable hydrogel coated upconverting nanoparticles, a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J. Am. Chem. Soc., 2016, 138(3), 1078-1083.
[38]
Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials, 2010, 31(32), 8371-8381.
[39]
Goswami, N.; Lin, F.; Liu, Y.; Leong, D.T.; Xie, J. Highly luminescent thiolated gold nanoclusters impregnated in nanogel. Chem. Mater., 2016, 28(11), 4009-4016.
[40]
Maya, S.; Sarmento, B.; Nair, A.; Rejinold, N.S.; Nair, S.V.; Jayakumar, R. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr. Pharm. Des., 2013, 19(41), 7203-7218.
[41]
Ma, Y.; Ge, Y.; Li, L. Advancement of multifunctional hybrid nanogel systems: Construction and application in drug co-delivery and imaging technique. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 71, 1281-1292.
[42]
Ling, D.; Hackett, M.J.; Hyeon, T. Cancer imaging: Lighting up tumours. Nat. Mater., 2014, 13(2), 122-124.
[43]
Ling, D.; Park, W.; Park, S.J.; Lu, Y.; Kim, K.S.; Hackett, M.J.; Kim, B.H.; Yim, H.; Jeon, Y.S.; Na, K.; Hyeon, T. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc., 2014, 136(15), 5647-5655.
[44]
Xia, H.; Li, F.; Hu, X.; Park, W.; Wang, S.; Jang, Y.; Du, Y.; Baik, S.; Cho, S.; Kang, T.; Kim, D.H.; Ling, D.; Hui, K.M.; Hyeon, T. pH-sensitive Pt nanocluster assembly overcomes cisplatin resistance and heterogeneous stemness of hepatocellular carcinoma. ACS Cent. Sci., 2016, 2(11), 802-811.
[45]
Wu, W.; Aiello, M.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S. In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials, 2010, 31(11), 3023-3031.
[46]
Wu, W.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S. Smart core−shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery. Chem. Mater., 2010, 22(22), 1966-1976.
[47]
Yahia-Ammar, A.; Sierra, D.; Mérola, F.; Hildebrandt, N.; Le, G.X. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano, 2016, 10(2), 2591-2599.
[48]
Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery, from molecular design to applications. Polym. Chem., 2014, 5(5), 1519-1528.
[49]
Cook, J.A.; Gius, D.; Wink, D.A.; Krishna, M.C.; Russo, A.; Mitchell, J.B. Oxidative stress, redox, and the tumor microenvironment. Semin. Radiat. Oncol., 2004, 14(3), 259-266.
[50]
Kuppusamy, P.; Li, H.; Ilangovan, G.; Cardounel, A.J.; Zweier, J.L.; Yamada, K.; Krishna, M.C.; Mitchell, J.B. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res., 2002, 62(1), 307-312.
[51]
Maciel, D.; Figueira, P.; Xiao, S.; Hu, D.; Shi, X.; Rodrigues, J.; Tomás, H.; Li, Y. Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromolecules, 2013, 14(9), 3140-3146.
[52]
Brülisauer, L.; Gauthier, M.A.; Leroux, J.C. Disulfide-containing parenteral delivery systems and their redox-biological fate. J. Control. Release, 2014, 195, 147-154.
[53]
Qiao, L.; Wang, X.; Gao, Y.; Wei, Q.; Hu, W.; Wu, L.; Li, P.; Zhu, R.; Wang, Q. Laccase-mediated formation of mesoporous silica nanoparticle based redox stimuli-responsive hybrid nanogels as a multifunctional nanotheranostic agent. Nanoscale, 2016, 8(39), 17241-17249.
[54]
Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev., 2006, 58(15), 1655-1670.
[55]
Koc, K.; Alveroglu, E. Tuning the gel size and LCST of N-isopropylacrylamide nanogels by anionic fluoroprobe. Colloid Polym. Sci., 2016, 294(2), 285-290.
[56]
van der Zee, J. Heating the patient: a promising approach? Ann. Oncol., 2002, 13(8), 1173-1184.
[57]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[58]
Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev., 2009, 38(6), 1759-1782.
[59]
Zhu, C.H.; Lu, Y.; Chen, J.F.; Yu, S.H. Photothermal poly(N-isopropylacrylamide)/Fe3O4 nanocomposite hydrogel as a movable position heating source under remote control. Small, 2014, 10(14), 2796-2800, 2741.
[60]
Zhu, C.; Lu, Y.; Peng, J.; Chen, J.; Yu, S. Photothermally Sensitive Poly (N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light-Controlled Liquid Microvalves. Adv. Funct. Mater., 2012, 22(19), 4017-4022.
[61]
Guo, L.; Yan, D.D.; Yang, D.; Li, Y.; Wang, X.; Zalewski, O.; Yan, B.; Lu, W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano, 2014, 8(6), 5670-5681.
[62]
Huang, X. EI-Sayed, I.H.; Qian, W.; EI-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc., 2006, 8(6), 5670-5681.
[63]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[64]
Zhao, X.; Wang, T.; Liu, W.; Wang, C.; Wang, D.; Shang, T.; Shen, L.; Ren, L. Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. J. Mater. Chem., 2011, 21(20), 7240-7247.
[65]
Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc., 2014, 136(20), 7317-7326.
[66]
Chen, R.; Ling, D.; Zhao, L.; Wang, S.; Liu, Y.; Bai, R.; Baik, S.; Zhao, Y.; Chen, C.; Hyeon, T. Parallel Comparative studies on mouse toxicity of oxide nanoparticle- and gadolinium-based T1 MRI contrast agents. ACS Nano, 2015, 9(12), 12425-12435.
[67]
Kim, B.H.; Lee, N.; Kim, H.; An, K.; Park, Y.I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S.G.; Na, H.B.; Park, J.G.; Ahn, T.Y.; Kim, Y.W.; Moon, W.K.; Choi, S.H.; Hyeon, T. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc., 2011, 133(32), 12624-12631.
[68]
Na, H.B.; Song, I.C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater., 2009, 21(21), 2133-2148.
[69]
Adriane, K.; Huang, J.; Ding, G.; Chen, J.; Liu, Y. Self assembled magnetic PVP/PVA hydrogel microspheres; magnetic drug targeting of VX2 auricular tumours using pingyangmycin. J. Drug Target., 2006, 14(4), 243-253.
[70]
Oliveira, H.; Pérez-Andrés, E.; Thevenot, J.; Sandre, O.; Berra, E.; Lecommandoux, S. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J. Control. Release, 2013, 169(3), 165-170.
[71]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[72]
Purushotham, S.; Ramanujan, R.V. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater., 2010, 6(2), 502-510.
[73]
Wang, H.; Yi, J.; Mukherjee, S.; Banerjee, P.; Zhou, S. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release. Nanoscale, 2014, 6(21), 13001-13011.
[74]
Chang, B.; Chen, D.; Wang, Y.; Chen, Y.; Jiao, Y.; Sha, X.; Yang, W. Bioresponsive controlled drug release based on mesoporous silica nanoparticles coated with reductively sheddable polymer shell. Chem. Mater., 2013, 25(4), 574-585.
[75]
Chang, B.; Sha, X.; Guo, J.; Jiao, Y.; Wang, C.; Yang, W. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem., 2011, 21(25), 9239-9247.
[76]
Ghorbani, M.; Hamishehkar, H.; Arsalani, N.; Entezami, A.A. A novel dual-responsive core-crosslinked magnetic-gold nanogel for triggered drug release. Mater. Sci. Eng. C, 2016, 68(1), 436-444.
[77]
Yang, J.; Yao, M.H.; Wen, L.; Song, J.T.; Zhang, M.Z.; Zhao, Y.D.; Liu, B. Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery. Nanoscale, 2014, 6(19), 11282-11292.