Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering

Page: [2456 - 2474] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmentally friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure is comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc. are reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications.

Keywords: Lignocellulosic biomass, biomedical materials, biological applications, cellulose, hemicellulose, lignin.

[1]
Zhou, C.H.; Xia, X.; Lin, C.X.; Tong, D.S.; Beltramini, J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev., 2011, 40(11), 5588-5617. [http://dx.doi.org/10.1039/c1cs15124j]. [PMID: 21863197].
[2]
Somerville, C.; Youngs, H.; Taylor, C.; Davis, S.C.; Long, S.P. Feedstocks for lignocellulosic biofuels. Science, 2010, 329(5993), 790-792. [http://dx.doi.org/10.1126/science.1189268]. [PMID: 20705851].
[3]
Taarning, E.; Osmundsen, C.M.; Yang, X.; Voss, B.; Andersen, S.I.; Christensen, C.H. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci., 2011, 4(3), 793-804. [http://dx.doi.org/10.1039/C004518G].
[4]
Ahn, Y.; Lee, S.H.; Kim, H.J.; Yang, Y-H.; Hong, J.H.; Kim, Y-H.; Kim, H. Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydr. Polym., 2012, 88(1), 395-398. [http://dx.doi.org/10.1016/j.carbpol.2011.12.016].
[5]
Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol., 2010, 61, 263-289. [http://dx.doi.org/10.1146/annurev-arplant-042809-112315]. [PMID: 20192742].
[6]
Laurichesse, S.; Avérous, L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci., 2014, 39(7), 1266-1290. [http://dx.doi.org/10.1016/j.progpolymsci.2013.11.004].
[7]
Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem., 2015, 6(25), 4497-4559. [http://dx.doi.org/10.1039/C5PY00263J].
[8]
de Souza Lima, M.M.; Borsali, R. Rodlike Cellulose Microcrystals: Structure, Properties, and Applications. Macromol. Rapid Commun., 2004, 25(7), 771-787. [http://dx.doi.org/10.1002/marc.200300268].
[9]
Kolpak, F.J.; Blackwell, J. Determination of the structure of cellulose II. Macromolecules, 1976, 9(2), 273-278. [http://dx.doi.org/10.1021/ma60050a019]. [PMID: 1263576].
[10]
Pizzi, A.; Eaton, N.J. Part 4. Crystalline Cellulose II. Journal of Macromolecular Science. Part A, 1987, 24(8), 901-918.
[11]
Zhu, H.; Luo, W.; Ciesielski, P.N.; Fang, Z.; Zhu, J.Y.; Henriksson, G.; Himmel, M.E.; Hu, L. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chem. Rev., 2016, 116(16), 9305-9374. [http://dx.doi.org/10.1021/acs.chemrev.6b00225]. [PMID: 27459699].
[12]
Medronho, B.; Lindman, B. Competing forces during cellulose dissolution: From solvents to mechanisms. Curr. Opin. Colloid Interface Sci., 2014, 19(1), 32-40. [http://dx.doi.org/10.1016/j.cocis.2013.12.001].
[13]
Giummarella, N.; Lindgren, C.; Lindstrom, M.E.; Henriksson, G. Lignin Prepared by Ultrafiltration of Black Liquor: Investigation of Solubility, Viscosity, and Ash Content. BioResources, 2016, 11(2), 3494-3510. [http://dx.doi.org/10.15376/biores.11.2.3494-3510].
[14]
Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci., 2008, 9(9), 1621-1651. [http://dx.doi.org/10.3390/ijms9091621]. [PMID: 19325822].
[15]
Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res., 2009, 48(8), 3713-3729. [http://dx.doi.org/10.1021/ie801542g].
[16]
Müller, F.A.; Müller, L.; Hofmann, I.; Greil, P.; Wenzel, M.M.; Staudenmaier, R. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials, 2006, 27(21), 3955-3963. [http://dx.doi.org/10.1016/j.biomaterials.2006.02.031]. [PMID: 16530823].
[17]
Liuyun, J.; Yubao, L.; Chengdong, X. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J. Biomed. Sci., 2009, 16(1), 65. [http://dx.doi.org/10.1186/1423-0127-16-65]. [PMID: 19594953].
[18]
Crowley, M.M.; Schroeder, B.; Fredersdorf, A.; Obara, S.; Talarico, M.; Kucera, S.; McGinity, J.W. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int. J. Pharm., 2004, 269(2), 509-522. [http://dx.doi.org/10.1016/j.ijpharm.2003.09.037]. [PMID: 14706261].
[19]
Mohd Amin, M.C.; Ahmad, N.; Halib, N.; Ahmad, I. Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr. Polym., 2012, 88(2), 465-473. [http://dx.doi.org/10.1016/j.carbpol.2011.12.022].
[20]
Tungprapa, S.; Jangchud, I.; Supaphol, P. Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer (Guildf.), 2007, 48(17), 5030-5041. [http://dx.doi.org/10.1016/j.polymer.2007.06.061].
[21]
Ye, S.H.; Watanabe, J.; Iwasaki, Y.; Ishihara, K. Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials, 2003, 24(23), 4143-4152. [http://dx.doi.org/10.1016/S0142-9612(03)00296-5]. [PMID: 12853244].
[22]
Ma, H.; Burger, C.; Hsiao, B.S.; Chu, B. Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J. Mater. Chem., 2011, 21(21), 7507. [http://dx.doi.org/10.1039/c0jm04308g].
[23]
Bhattacharya, M.; Malinen, M.M.; Lauren, P.; Lou, Y.R.; Kuisma, S.W.; Kanninen, L.; Lille, M.; Corlu, A. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Control. Release, 2012, 164(3), 291-298.
[24]
Lou, Y.R.; Kanninen, L.; Kuisma, T.; Niklander, J.; Noon, L.A.; Burks, D.; Urtti, A.; Yliperttula, M. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev., 2014, 23(4), 380-392. [http://dx.doi.org/10.1089/scd.2013.0314]. [PMID: 24188453].
[25]
Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D.L.; Brittberg, M.; Gatenholm, P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 2005, 26(4), 419-431. [http://dx.doi.org/10.1016/j.biomaterials.2004.02.049]. [PMID: 15275816].
[26]
Wan, Y.Z.; Huang, Y.; Yuan, C.D.; Raman, S.; Zhu, Y.; Jiang, H.J.; He, F.; Gao, C. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater. Sci. Eng. C, 2007, 27(4), 855-864. [http://dx.doi.org/10.1016/j.msec.2006.10.002].
[27]
Dunweg, G.; Steinfeld, L.; Ansorge, W. Dialysis membrane made of cellulose acetate. U.S. Patent,, No. 5,403,485. 1995.
[28]
Ishihara, K.; Miyazaki, H.; Kurosaki, T.; Nakabayashi, N. Improvement of blood compatibility on cellulose dialysis membrane. III. Synthesis and performance of water-soluble cellulose grafted with phospholipid polymer as coating material on cellulose dialysis membrane. J. Biomed. Mater. Res., 1995, 29(2), 181-188. [http://dx.doi.org/10.1002/jbm.820290207]. [PMID: 7738064].
[29]
Idris, A.; Yet, L.K. The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. J. Membr. Sci., 2006, 280(1), 920-927. [http://dx.doi.org/10.1016/j.memsci.2006.03.010].
[30]
Qiu, X.; Ren, X.; Hu, S. Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP. Carbohydr. Polym., 2013, 92(2), 1887-1895. [http://dx.doi.org/10.1016/j.carbpol.2012.11.080]. [PMID: 23399233].
[31]
Ma, Z.; Ramakrishna, S. Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J. Membr. Sci., 2008, 319(1), 23-28. [http://dx.doi.org/10.1016/j.memsci.2008.03.045].
[32]
Lin, M.; Xu, P.; Zhong, W. Preparation, characterization, and release behavior of aspirin-loaded poly(2-hydroxyethyl acrylate)/silica hydrogels. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(4), 1114-1120. [http://dx.doi.org/10.1002/jbm.b.32678]. [PMID: 22447532].
[33]
Wei, L.; Cai, C.; Lin, J.; Chen, T. Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials, 2009, 30(13), 2606-2613. [http://dx.doi.org/10.1016/j.biomaterials.2009.01.006]. [PMID: 19162320].
[34]
Wei, W.; Hu, X.; Qi, X.; Yu, H.; Liu, Y.; Li, J.; Zhang, J.; Dong, W. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): synthesis and characterization. Colloids Surf. B Biointerfaces, 2015, 125, 1-11. [http://dx.doi.org/10.1016/j.colsurfb.2014.10.057]. [PMID: 25460596].
[35]
Xu, Y.; Lin, Z.; Huang, X.; Liu, Y.; Huang, Y.; Duan, X. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano, 2013, 7(5), 4042-4049. [http://dx.doi.org/10.1021/nn4000836]. [PMID: 23550832].
[36]
Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M.T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun., 2013, 4, 1943. [http://dx.doi.org/10.1038/ncomms2941]. [PMID: 23733138].
[37]
Abe, K.; Yano, H. Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose, 2012, 19(6), 1907-1912. [http://dx.doi.org/10.1007/s10570-012-9784-3].
[38]
Rimdusit, S.; Somsaeng, K.; Kewsuwan, P.; Jubsilp, C.; Tiptipakorn, S. Comparison of gamma radiation crosslinking and chemical crosslinking on properties of methylcellulose hydrogel. Eng. J. (N.Y.), 2012, 16(4), 15-28.
[39]
Zhao, L.; Mitomo, H. Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM-cellulose hydrogels synthesized by irradiation. J. Appl. Polym. Sci., 2008, 110(3), 1388-1395. [http://dx.doi.org/10.1002/app.28718].
[40]
Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip, 2010, 10(4), 477-483. [http://dx.doi.org/10.1039/B917150A]. [PMID: 20126688].
[41]
Kuek Lawrence, C.S.; Tan, S.N.; Floresca, C.Z.A. “green” cellulose paper based glucose amperometric biosensor. Sens. Actuators B Chem., 2014, 193, 536-541. [http://dx.doi.org/10.1016/j.snb.2013.11.054].
[42]
Schyrr, B.; Pasche, S.; Voirin, G.; Weder, C.; Simon, Y.C.; Foster, E.J. Biosensors based on porous cellulose nanocrystal-poly(vinyl alcohol) scaffolds. ACS Appl. Mater. Interfaces, 2014, 6(15), 12674-12683. [http://dx.doi.org/10.1021/am502670u]. [PMID: 24955644].
[43]
Sadasivuni, K.K.; Kafy, A.; Kim, H-C.; Ko, H-U.; Mun, S.; Kim, J. Reduced graphene oxide filled cellulose films for flexible temperature sensor application. Synth. Met., 2015, 206, 154-161. [http://dx.doi.org/10.1016/j.synthmet.2015.05.018].
[44]
Han, J-W.; Kim, B.; Li, J.; Meyyappan, M. Carbon nanotube based humidity sensor on cellulose paper. J. Phys. Chem. C, 2012, 116(41), 22094-22097. [http://dx.doi.org/10.1021/jp3080223].
[45]
Mahadeva, S.K.; Yun, S.; Kim, J. Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens. Actuators A Phys., 2011, 165(2), 194-199. [http://dx.doi.org/10.1016/j.sna.2010.10.018].
[46]
Maniruzzaman, M.; Jang, S-D.; Kim, J. Titanium dioxide–cellulose hybrid nanocomposite and its glucose biosensor application. Mater. Sci. Eng. B, 2012, 177(11), 844-848. [http://dx.doi.org/10.1016/j.mseb.2012.04.003].
[47]
Gírio, F.M.; Fonseca, C.; Carvalheiro, F.; Duarte, L.C.; Marques, S.; Bogel-Łukasik, R. Hemicelluloses for fuel ethanol: A review. Bioresour. Technol., 2010, 101(13), 4775-4800. [http://dx.doi.org/10.1016/j.biortech.2010.01.088]. [PMID: 20171088].
[48]
Peng, P.; She, D. Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review. Carbohydr. Polym., 2014, 112, 701-720. [http://dx.doi.org/10.1016/j.carbpol.2014.06.068]. [PMID: 25129800].
[49]
Petzold, K.; Schwikal, K.; Heinze, T. Carboxymethyl xylan—synthesis and detailed structure characterization. Carbohydr. Polym., 2006, 64(2), 292-298. [http://dx.doi.org/10.1016/j.carbpol.2005.11.037].
[50]
Ren, J-L.; Sun, R-C.; Peng, F. Carboxymethylation of hemicelluloses isolated from sugarcane bagasse. Polym. Degrad. Stabil., 2008, 93(4), 786-793. [http://dx.doi.org/10.1016/j.polymdegradstab.2008.01.011].
[51]
Sun, X.F.; Sun, R.C.; Zhao, L.; Sun, J.X. Acetylation of sugarcane bagasse hemicelluloses under mild reaction conditions by using NBS as a catalyst. J. Appl. Polym. Sci., 2004, 92(1), 53-61. [http://dx.doi.org/10.1002/app.13636].
[52]
Ren, J.L.; Sun, R.C.; Liu, C.F.; Cao, Z.N.; Luo, W. Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst. Carbohydr. Polym., 2007, 70(4), 406-414. [http://dx.doi.org/10.1016/j.carbpol.2007.04.022].
[53]
Sun, X-F.; Sun, R-C.; Sun, J-X. Oleoylation of sugarcane bagasse hemicelluloses usingN-bromosuccinimide as a catalyst. J. Sci. Food Agric., 2004, 84(8), 800-810. [http://dx.doi.org/10.1002/jsfa.1735].
[54]
Sun, R.C.; Sun, X.F.; Bing, X. Succinoylation of wheat straw hemicelluloses with a low degree of substitution in aqueous systems. J. Appl. Polym. Sci., 2002, 83(4), 757-766. [http://dx.doi.org/10.1002/app.2270].
[55]
Ren, J.L.; Xu, F.; Sun, R.C.; Peng, B.; Sun, J.X. Studies of the lauroylation of wheat straw hemicelluloses under heating. J. Agric. Food Chem., 2008, 56(4), 1251-1258. [http://dx.doi.org/10.1021/jf072983q]. [PMID: 18237136].
[56]
Peng, X.W.; Ren, J.L.; Zhong, L.X.; Sun, R.C. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules, 2011, 12(9), 3321-3329. [http://dx.doi.org/10.1021/bm2008795]. [PMID: 21815695].
[57]
Hartman, J.; Albertsson, A.C.; Sjöberg, J. Surface- and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromolecules, 2006, 7(6), 1983-1989. [http://dx.doi.org/10.1021/bm060129m]. [PMID: 16768423].
[58]
Gröndahl, M.; Gustafsson, A.; Gatenholm, P. Gas-phase surface fluorination of arabinoxylan films. Macromolecules, 2006, 39(7), 2718-2712. [http://dx.doi.org/10.1021/ma052066q].
[59]
Kayserilioğlu, B.S.; Bakir, U.; Yilmaz, L.; Akkaş, N. Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: mechanical, solubility and water vapor transfer rate properties. Bioresour. Technol., 2003, 87(3), 239-246. [http://dx.doi.org/10.1016/S0960-8524(02)00258-4]. [PMID: 12507862].
[60]
Zhang, P.; Whistler, R.L. Mechanical properties and water vapor permeability of thin film from corn hull arabinoxylan. J. Appl. Polym. Sci., 2004, 93(6), 2896-2902. [http://dx.doi.org/10.1002/app.20910].
[61]
Silva, A.K.; da Silva, E.L.; Oliveira, E.E.; Nagashima, T., Jr; Soares, L.A.; Medeiros, A.C.; Araújo, J.H.; Araújo, I.B.; Carriço, A.S.; Egito, E.S. Synthesis and characterization of xylan-coated magnetite microparticles. Int. J. Pharm., 2007, 334(1-2), 42-47. [http://dx.doi.org/10.1016/j.ijpharm.2006.10.019]. [PMID: 17113734].
[62]
Zhao, W.; Odelius, K.; Edlund, U.; Zhao, C.; Albertsson, A.C. In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules, 2015, 16(8), 2522-2528. [http://dx.doi.org/10.1021/acs.biomac.5b00801]. [PMID: 26196600].
[63]
Hansen, N.M.; Plackett, D. Sustainable films and coatings from hemicelluloses: A review. Biomacromolecules, 2008, 9(6), 1493-1505. [http://dx.doi.org/10.1021/bm800053z]. [PMID: 18457452].
[64]
Peng, X.W.; Ren, J.L.; Zhong, L.X.; Peng, F.; Sun, R.C. Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J. Agric. Food Chem., 2011, 59(15), 8208-8215. [http://dx.doi.org/10.1021/jf201589y]. [PMID: 21721522].
[65]
Peng, X.W.; Zhong, L.X.; Ren, J.L.; Sun, R.C. Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J. Agric. Food Chem., 2012, 60(15), 3909-3916. [http://dx.doi.org/10.1021/jf300387q]. [PMID: 22468965].
[66]
Roos, A.A.; Edlund, U.; Sjöberg, J.; Albertsson, A.C.; Stålbrand, H. Protein release from galactoglucomannan hydrogels: influence of substitutions and enzymatic hydrolysis by β-mannanase. Biomacromolecules, 2008, 9(8), 2104-2110. [http://dx.doi.org/10.1021/bm701399m]. [PMID: 18590309].
[67]
Raschip, I.E.; Hitruc, E.G.; Oprea, A.M.; Popescu, M-C.; Vasile, C. In vitro evaluation of the mixed xanthan/lignin hydrogels as vanillin carriers. J. Mol. Struct., 2011, 1003(1), 67-74. [http://dx.doi.org/10.1016/j.molstruc.2011.07.023].
[68]
Ciolacu, D.; Oprea, A.M.; Anghel, N.; Cazacu, G.; Cazacu, M. New cellulose–lignin hydrogels and their application in controlled release of polyphenols. Mater. Sci. Eng. C, 2012, 32(3), 452-463. [http://dx.doi.org/10.1016/j.msec.2011.11.018].
[69]
Feng, Q.H.; Chen, F.G.; Wu, H.R. Preparation and characterization of a temperature-sensitive lignin-based hydrogel. BioResources, 2011, 6(4), 4942-4952.
[70]
Peng, Z.; Chen, F. Synthesis and properties of lignin-based polyurethane hydrogels. Int. J. Polym. Mater., 2011, 60(9), 674-683. [http://dx.doi.org/10.1080/00914037.2010.551353].
[71]
Griffith, W.L.; Compere, A.L. Separation of alcohols from solution by lignin gels. Sep. Sci. Technol., 2008, 43(9-10), 2396-2405. [http://dx.doi.org/10.1080/01496390802148571].
[72]
Wohl, B.M.; Engbersen, J.F. Responsive layer-by-layer materials for drug delivery. J. Control. Release, 2012, 158(1), 2-14.
[73]
Manchun, S.; Dass, C.R.; Sriamornsak, P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci., 2012, 90(11-12), 381-387. [http://dx.doi.org/10.1016/j.lfs.2012.01.008]. [PMID: 22326503].
[74]
Felber, A.E.; Dufresne, M.H.; Leroux, J.C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev., 2012, 64(11), 979-992. [http://dx.doi.org/10.1016/j.addr.2011.09.006]. [PMID: 21996056].
[75]
Hebeish, A.; Farag, S.; Sharaf, S.; Shaheen, T.I. Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr. Polym., 2014, 102, 159-166. [http://dx.doi.org/10.1016/j.carbpol.2013.10.054]. [PMID: 24507268].
[76]
Buenger, D.; Topuz, F.; Groll, J. Hydrogels in sensing applications. Prog. Polym. Sci., 2012, 37(12), 1678-1719. [http://dx.doi.org/10.1016/j.progpolymsci.2012.09.001].
[77]
Islam, A.; Yasin, T.; Bano, I.; Riaz, M. Controlled release of aspirin from pH-sensitive chitosan/poly(vinyl alcohol) hydrogel. J. Appl. Polym. Sci., 2012, 124(5), 4184-4192. [http://dx.doi.org/10.1002/app.35392].
[78]
Hua, R.; Li, Z. Sulfhydryl functionalized hydrogel with magnetism: Synthesis, characterization, and adsorption behavior study for heavy metal removal. Chem. Eng. J., 2014, 249, 189-200. [http://dx.doi.org/10.1016/j.cej.2014.03.097].
[79]
Xu, F.J.; Zhu, Y.; Liu, F.S.; Nie, J.; Ma, J.; Yang, W.T. Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjug. Chem., 2010, 21(3), 456-464. [http://dx.doi.org/10.1021/bc900337p]. [PMID: 20178357].
[80]
Liang, H.F.; Hong, M.H.; Ho, R.M.; Chung, C.K.; Lin, Y.H.; Chen, C.H.; Sung, H.W. Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules, 2004, 5(5), 1917-1925. [http://dx.doi.org/10.1021/bm049813w]. [PMID: 15360306].
[81]
Rodríguez, R.; Alvarez-Lorenzo, C.; Concheiro, A. Cationic cellulose hydrogels: Kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. J. Control. Release, 2003, 86(2-3), 253-265. [http://dx.doi.org/10.1016/S0168-3659(02)00410-8]. [PMID: 12526822].
[82]
Chang, C.; He, M.; Zhou, J.; Zhang, L. Swelling behaviors of pH- and Salt-responsive Cellulose-based hydrogels. Macromolecules, 2011, 44(6), 1642-1648. [http://dx.doi.org/10.1021/ma102801f].
[83]
Wang, S.; Zhang, Q.; Tan, B.; Liu, L.; Shi, L. pH-Sensitive Poly(Vinyl Alcohol)/Sodium Carboxymethylcellulose Hydrogel Beads for Drug Delivery. J. Macromol. Sci. Part B Phys., 2011, 50(12), 2307-2317. [http://dx.doi.org/10.1080/00222348.2011.563196].
[84]
Estrada, R.; Rodríguez, R.; Castaño, V.M. Smart polymeric membranes: pH-induced non-linear changes in pore size. Appl. Phys., A Mater. Sci. Process., 2010, 99(4), 723-728. [http://dx.doi.org/10.1007/s00339-010-5554-y].
[85]
Estrada, R.F.; Rodriguez, R.; Castano, V.M. Smart polymeric membranes with adjustable pore size. Int. J. Polym. Mater., 2003, 52(9), 833-843. [http://dx.doi.org/10.1080/713743715].
[86]
Zhang, K.; Wu, X.Y. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials, 2004, 25(22), 5281-5291. [http://dx.doi.org/10.1016/j.biomaterials.2003.12.032]. [PMID: 15110479].
[87]
Atyabi, F.; Khodaverdi, E.; Dinarvand, R. Temperature modulated drug permeation through liquid crystal embedded cellulose membranes. Int. J. Pharm., 2007, 339(1-2), 213-221. [http://dx.doi.org/10.1016/j.ijpharm.2007.03.004]. [PMID: 17448615].
[88]
Suedee, R.; Jantarat, C.; Lindner, W.; Viernstein, H.; Songkro, S.; Srichana, T. Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs. J. Control. Release, 2010, 142(1), 122-131.
[89]
Zhang, K.; Wu, X.Y. Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J. Control. Release, 2002, 80(1-3), 169-178. [http://dx.doi.org/10.1016/S0168-3659(02)00024-X]. [PMID: 11943396].
[90]
Ichikawa, H.; Fukumori, Y. A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J. Control. Release, 2000, 63(1-2), 107-119. [http://dx.doi.org/10.1016/S0168-3659(99)00181-9]. [PMID: 10640584].
[91]
Karewicz, A.; Zasada, K.; Szczubiałka, K.; Zapotoczny, S.; Lach, R.; Nowakowska, M. “Smart” alginate-hydroxypropylcellulose microbeads for controlled release of heparin. Int. J. Pharm., 2010, 385(1-2), 163-169. [http://dx.doi.org/10.1016/j.ijpharm.2009.10.021]. [PMID: 19840839].
[92]
Fang, A.; Cathala, B. Smart swelling biopolymer microparticles by a microfluidic approach: Synthesis, in situ encapsulation and controlled release. Colloids Surf. B Biointerfaces, 2011, 82(1), 81-86. [http://dx.doi.org/10.1016/j.colsurfb.2010.08.020]. [PMID: 20833004].