Current Medicinal Chemistry

Author(s): Lin Dai and Chuanling Si*

DOI: 10.2174/0929867324666170711131353

Recent Advances on Cellulose-Based Nano-Drug Delivery Systems: Design of Prodrugs and Nanoparticles

Page: [2410 - 2429] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: Cellulose being the first abundant biopolymers in nature has many fascinating properties, including low-cost, good biodegradability, and excellent biocompatibility, which made cellulose a real potential material to create nano-drug delivery systems (nano-DDS). This review aims to present and discuss some remarkable recent advances on the drug delivery applications of cellulosebased prodrugs and nanoparticles.

Methods: By searching the research literatures over last decade, a variety featured studies on cellulosebased nano-DDS were summarized and divided into prodrugs, prodrug nanoparticles, solid or derivative nanopartilces, amphiphilic copolymer nanoparticles, and polyelectrolyte complex nanoparticles. Various methods employed for the functionalization, pharmacodynamic actions and applications were described and discussed.

Results: Many types of cellulose-based nano-DDS can ensure efficient encapsulation of various drugs and then overcome the free drug molecule shortcomings. Among all the method described, cellulosebased amphiphilic nanoparticles are most frequently used. These formulations have the higher drug loading capability, a simple and flexible way to achieve multi-functional. Apart from hydrophilic or hydrophobic modification, cellulose or its derivatives can form nanoparticles with different small molecules and macromolecules, leading to a large spectrum of cellulose-based nano-DDS and providing some unexpected advantages.

Conclusion: Thorough physicochemical characterization and profound understanding of interactions of the cellulose-based nano-DDS with cells and tissues is indispensable. Moreover, studies toward technics parameter optimization and scale up from the laboratory to production level should be undertaken. The development of intravenous and orally applicable cellulose-based nano-DDS will be an important research area, and these systems will have more commercial status in the market.

Keywords: Cellulose, nanoparticles, prodrugs, drug delivery systems, chemically modified cellulose, nanomedicine.

[1]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627. [http://dx.doi.org/10.1038/nrd2591]. [PMID: 20616808].
[2]
Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm., 2011, 8(6), 2101-2141. [http://dx.doi.org/10.1021/mp200394t]. [PMID: 21974749].
[3]
Hu, C.M.; Zhang, L. Therapeutic nanoparticles to combat cancer drug resistance. Curr. Drug Metab., 2009, 10(8), 836-841. [http://dx.doi.org/10.2174/138920009790274540]. [PMID: 20214578].
[4]
Du, J.Z.; Du, X.J.; Mao, C.Q.; Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc., 2011, 133(44), 17560-17563. [http://dx.doi.org/10.1021/ja207150n]. [PMID: 21985458].
[5]
Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release, 2012, 161(2), 175-187. [http://dx.doi.org/10.1016/j.jconrel.2011.09.063]. [PMID: 21945285].
[6]
Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J.H. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev., 2013, 65(1), 315-499. [http://dx.doi.org/10.1124/pr.112.005660]. [PMID: 23383426].
[7]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157. [http://dx.doi.org/10.1016/j.jconrel.2014.12.030]. [PMID: 25545217].
[8]
Geetha, P.; Sivaram, A.J.; Jayakumar, R.; Gopi Mohan, C. Integration of in silico modeling, prediction by binding energy and experimental approach to study the amorphous chitin nanocarriers for cancer drug delivery. Carbohydr. Polym., 2016, 142, 240-249. [http://dx.doi.org/10.1016/j.carbpol.2016.01.059]. [PMID: 26917396].
[9]
Smitha, K.T.; Anitha, A.; Furuike, T.; Tamura, H.; Nair, S.V.; Jayakumar, R. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids Surf. B Biointerfaces, 2013, 104, 245-253. [http://dx.doi.org/10.1016/j.colsurfb.2012.11.031]. [PMID: 23337120].
[10]
Anitha, A.; Sowmya, S.; Kumar, P.T.S.; Deepthi, S.; Chennazhi, K.P.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R. Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci., 2014, 39(9), 1644-1667. [http://dx.doi.org/10.1016/j.progpolymsci.2014.02.008].
[11]
Feng, C.; Song, R.; Sun, G.; Kong, M.; Bao, Z.; Li, Y.; Cheng, X.; Cha, D.; Park, H.; Chen, X. Immobilization of coacervate microcapsules in multilayer sodium alginate beads for efficient oral anticancer drug delivery. Biomacromolecules, 2014, 15(3), 985-996. [http://dx.doi.org/10.1021/bm401890x]. [PMID: 24502683].
[12]
Zhang, Z.; Huang, J.; Jiang, S.; Liu, Z.; Gu, W.; Yu, H.; Li, Y. Porous starch based self-assembled nano-delivery system improves the oral absorption of lipophilic drug. Int. J. Pharm., 2013, 444(1-2), 162-168. [http://dx.doi.org/10.1016/j.ijpharm.2013.01.021]. [PMID: 23340325].
[13]
Zhang, A.; Zhang, Z.; Shi, F.; Ding, J.; Xiao, C.; Zhuang, X.; He, C.; Chen, L.; Chen, X. Disulfide crosslinked PEGylated starch micelles as efficient intracellular drug delivery platforms. Soft Matter, 2013, 9(7), 2224-2233. [http://dx.doi.org/10.1039/c2sm27189c].
[14]
Narayanan, D.; Nair, S.; Menon, D. A systematic evaluation of hydroxyethyl starch as a potential nanocarrier for parenteral drug delivery. Int. J. Biol. Macromol., 2015, 74, 575-584. [http://dx.doi.org/10.1016/j.ijbiomac.2014.12.012]. [PMID: 25572720].
[15]
Levy, T.; Déjugnat, C.; Sukhorukov, G.B. Polymer Microcapsules with Carbohydrate-Sensitive Properties. Adv. Funct. Mater., 2008, 18(10), 1586-1594. [http://dx.doi.org/10.1002/adfm.200701291].
[16]
Jiang, D.; Liang, J.; Noble, P.W. Hyaluronan as an immune regulator in human diseases. Physiol. Rev., 2011, 91(1), 221-264. [http://dx.doi.org/10.1152/physrev.00052.2009]. [PMID: 21248167].
[17]
Jiang, S.; Kai, D.; Dou, Q.Q.; Loh, X.J. Multi-arm carriers composed of an antioxidant lignin core and poly(glycidyl methacrylate-co-poly(ethylene glycol)methacrylate) derivative arms for highly efficient gene delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(34), 6897-6904. [http://dx.doi.org/10.1039/C5TB01202C].
[18]
Oliveira, E.E.; Silva, A.E.; Júnior, T.N.; Gomes, M.C.S.; Aguiar, L.M.; Marcelino, H.R.; Araújo, I.B.; Bayer, M.P.; Ricardo, N.M.P.S.; Oliveira, A.G.; Egito, E.S.T. Xylan from corn cobs, a promising polymer for drug delivery: production and characterization. Bioresour. Technol., 2010, 101(14), 5402-5406. [http://dx.doi.org/10.1016/j.biortech.2010.01.137]. [PMID: 20171878].
[19]
Ernsting, M.J.; Tang, W.L.; MacCallum, N.; Li, S.D. Synthetic modification of carboxymethylcellulose and use thereof to prepare a nanoparticle forming conjugate of docetaxel for enhanced cytotoxicity against cancer cells. Bioconjug. Chem., 2011, 22(12), 2474-2486. [http://dx.doi.org/10.1021/bc200284b]. [PMID: 22014112].
[20]
Dai, L.; Yang, T.; He, J.; Deng, L.; Liu, J.; Wang, L.; Lei, J.; Wang, L. Cellulose-graft-poly(l-lactic acid) nanoparticles for efficient delivery of anti-cancer drugs. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(39), 6749-6757. [http://dx.doi.org/10.1039/C4TB00956H].
[21]
Dai, L.; Liu, K-F.; Si, C-L.; He, J.; Lei, J-D.; Guo, L-Q. A novel self-assembled targeted nanoparticle platform based on carboxymethylcellulose co-delivery of anticancer drugs. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(32), 6605-6617. [http://dx.doi.org/10.1039/C5TB00900F].
[22]
Tsioptsias, C.; Stefopoulos, A.; Kokkinomalis, I.; Papadopoulou, L.; Panayiotou, C. Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem., 2008, 10(9), 965-971. [http://dx.doi.org/10.1039/b803869d].
[23]
Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479-3500. [http://dx.doi.org/10.1021/cr900339w]. [PMID: 20201500].
[24]
Roy, D.; Semsarilar, M.; Guthrie, J.T.; Perrier, S. Cellulose modification by polymer grafting: a review. Chem. Soc. Rev., 2009, 38(7), 2046-2064. [http://dx.doi.org/10.1039/b808639g]. [PMID: 19551181].
[25]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994. [http://dx.doi.org/10.1039/c0cs00108b]. [PMID: 21566801].
[26]
Gong, J.; Chen, M.; Zheng, Y.; Wang, S.; Wang, Y. Polymeric micelles drug delivery system in oncology. J. Control. Release, 2012, 159(3), 312-323. [http://dx.doi.org/10.1016/j.jconrel.2011.12.012]. [PMID: 22285551].
[27]
Merino, S.; Martín, C.; Kostarelos, K.; Prato, M.; Vázquez, E. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano, 2015, 9(5), 4686-4697. [http://dx.doi.org/10.1021/acsnano.5b01433]. [PMID: 25938172].
[28]
Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem. Rev., 2016, 116(5), 2826-2885. [http://dx.doi.org/10.1021/acs.chemrev.5b00148]. [PMID: 26799741].
[29]
Bala, V.; Rao, S.; Boyd, B.J.; Prestidge, C.A. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J. Control. Release, 2013, 172(1), 48-61. [http://dx.doi.org/10.1016/j.jconrel.2013.07.022]. [PMID: 23928356].
[30]
Li, W.; Zhan, P.; De Clercq, E.; Lou, H.; Liu, X. Current drug research on PEGylation with small molecular agents. Prog. Polym. Sci., 2013, 38(3-4), 421-444. [http://dx.doi.org/10.1016/j.progpolymsci.2012.07.006].
[31]
Gericke, M.; Trygg, J.; Fardim, P. Functional cellulose beads: preparation, characterization, and applications. Chem. Rev., 2013, 113(7), 4812-4836. [http://dx.doi.org/10.1021/cr300242j]. [PMID: 23540980].
[32]
Abeer, M.M.; Mohd Amin, M.C.; Martin, C. A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J. Pharm. Pharmacol., 2014, 66(8), 1047-1061. [http://dx.doi.org/10.1111/jphp.12234]. [PMID: 24628270].
[33]
Zhu, L.; Kumar, V.; Banker, G.S. Examination of oxidized cellulose as a macromolecular prodrug carrier: preparation and characterization of an oxidized cellulose-phenylpropanolamine conjugate. Int. J. Pharm., 2001, 223(1-2), 35-47. [http://dx.doi.org/10.1016/S0378-5173(01)00725-6]. [PMID: 11451630].
[34]
Kumar, S.; Negi, Y.S. Cellulose and Xylan Based Prodrug of Diclofenac Sodium: Synthesis, Physicochemical Characterization and In Vitro Release. Int. J. Polym. Mater., 2014, 63(6), 283-292. [http://dx.doi.org/10.1080/00914037.2013.830256].
[35]
Zou, M.; Okamoto, H.; Cheng, G.; Hao, X.; Sun, J.; Cui, F.; Danjo, K. Synthesis and properties of polysaccharide prodrugs of 5-aminosalicylic acid as potential colon-specific delivery systems. Eur. J. Pharm. Biopharm., 2005, 59(1), 155-160. [http://dx.doi.org/10.1016/j.ejpb.2004.06.004]. [PMID: 15567313].
[36]
Ernsting, M.J.; Foltz, W.D.; Undzys, E.; Tagami, T.; Li, S.D. Tumor-targeted drug delivery using MR-contrasted docetaxel - carboxymethylcellulose nanoparticles. Biomaterials, 2012, 33(15), 3931-3941. [http://dx.doi.org/10.1016/j.biomaterials.2012.02.019]. [PMID: 22369962].
[37]
Ernsting, M.J.; Murakami, M.; Undzys, E.; Aman, A.; Press, B.; Li, S.D. A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases. J. Control. Release, 2012, 162(3), 575-581. [http://dx.10.1016/j.jconrel.2012.07.043]. [PMID: 22967490].
[38]
Ernsting, M.J.; Tang, W.L.; MacCallum, N.W.; Li, S.D. Preclinical pharmacokinetic, biodistribution, and anti-cancer efficacy studies of a docetaxel-carboxymethylcellulose nanoparticle in mouse models. Biomaterials, 2012, 33(5), 1445-1454. [http://dx.doi.org/10.1016/j.biomaterials.2011.10.061]. [PMID: 22079003].
[39]
Ernsting, M.J.; Hoang, B.; Lohse, I.; Undzys, E.; Cao, P.; Do, T.; Gill, B.; Pintilie, M.; Hedley, D.; Li, S.D. Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulose-docetaxel nanoparticle. J. Control. Release, 2015, 206, 122-130. [http://dx.doi.org/10.1016/j.jconrel.2015.03.023]. [PMID: 25804872].
[40]
Roy, A.; Ernsting, M.J.; Undzys, E.; Li, S-D. A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors. Biomaterials, 2015, 52, 335-346. [http://dx.doi.org/10.1016/j.biomaterials.2015.02.041]. [PMID: 25818440].
[41]
Yang, Y.; Bteich, J.; Li, S.D. Current Update of a Carboxymethylcellulose-PEG Conjugate Platform for Delivery of Insoluble Cytotoxic Agents to Tumors. AAPS J., 2016. [PMID: 27873118].
[42]
Rahmat, D.; Muller, C.; Barthelmes, J.; Shahnaz, G.; Martien, R.; Bernkop-Schnurch, A. Thiolated hydroxyethyl cellulose: design and in vitro evaluation of mucoadhesive and permeation enhancing nanoparticles. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2013, 83(2), 149-155. [http://dx.doi.org/10.1016/j.ejpb.2012.10.008].
[43]
Dai, L.; Liu, R.; Hu, L-Q.; Wang, J-H.; Si, C-L. Self-assembled PEG–carboxymethylcellulose nanoparticles/α-cyclodextrin hydrogels for injectable and thermosensitive drug delivery. RSC Advances, 2017, 7(5), 2905-2912. [http://dx.doi.org/10.1039/C6RA25793C].
[44]
Hussain, M.A.; Abbas, K.; Amin, M.; Lodhi, B.A.; Iqbal, S.; Tahir, M.N.; Tremel, W. Novel high-loaded, nanoparticulate and thermally stable macromolecular prodrug design of NSAIDs based on hydroxypropylcellulose. Cellulose, 2014, 22(1), 461-471. [http://dx.doi.org/10.1007/s10570-014-0464-3].
[45]
Amin, M.; Abbas, N.S.; Hussain, M.A.; Edgar, K.J.; Tahir, M.N.; Tremel, W.; Sher, M. Cellulose ether derivatives: a new platform for prodrug formation of fluoroquinolone antibiotics. Cellulose, 2015, 22(3), 2011-2022. [http://dx.doi.org/10.1007/s10570-015-0625-z].
[46]
Abbas, N.S.; Amin, M.; Hussain, M.A.; Edgar, K.J.; Tahir, M.N.; Tremel, W. Extended release and enhanced bioavailability of moxifloxacin conjugated with hydrophilic cellulose ethers. Carbohydr. Polym., 2016, 136, 1297-1306. [http://dx.doi.org/10.1016/j.carbpol.2015.10.052]. [PMID: 26572474].
[47]
Yallapu, M.M.; Dobberpuhl, M.R.; Maher, D.M.; Jaggi, M.; Chauhan, S.C. Design of curcumin loaded cellulose nanoparticles for prostate cancer. Curr. Drug Metab., 2012, 13(1), 120-128. [http://dx.doi.org/10.2174/138920012798356952]. [PMID: 21892919].
[48]
Pan-In, P.; Banlunara, W.; Chaichanawongsaroj, N.; Wanichwecharungruang, S. Ethyl cellulose nanoparticles: clarithomycin encapsulation and eradication of H. pylori. Carbohydr. Polym., 2014, 109, 22-27. [http://dx.doi.org/10.1016/j.carbpol.2014.03.025]. [PMID: 24815396].
[49]
El-Habashy, S.E.; Allam, A.N.; El-Kamel, A.H. Ethyl cellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: formulation and in vitro/in vivo evaluation. Int. J. Nanomedicine, 2016, 11, 2369-2380. [PMID: 27307735].
[50]
Ha, E.S.; Choo, G.H.; Baek, I.H.; Kim, J.S.; Cho, W.; Jung, Y.S.; Jin, S.E.; Hwang, S.J.; Kim, M.S. Dissolution and bioavailability of lercanidipine-hydroxypropylmethyl cellulose nanoparticles with surfactant. Int. J. Biol. Macromol., 2015, 72, 218-222. [http://dx.doi.org/10.1016/j.ijbiomac.2014.08.017]. [PMID: 25159878].
[51]
Hsieh, M-F.; Cuong, N.V.; Chen, C-H.; Chen, Y.T.; Yeh, J-M. Nano-sized micelles of block copolymers of methoxy poly(ethylene glycol)-poly(ε-caprolactone)-graft-2-hydroxyethyl cellulose for doxorubicin delivery. J. Nanosci. Nanotechnol., 2008, 8(5), 2362-2368. [http://dx.doi.org/10.1166/jnn.2008.322]. [PMID: 18572650].
[52]
Dong, H.; Xu, Q.; Li, Y.; Mo, S.; Cai, S.; Liu, L. The synthesis of biodegradable graft copolymer cellulose-graft-poly(L-lactide) and the study of its controlled drug release. Colloids Surf. B Biointerfaces, 2008, 66(1), 26-33. [http://dx.doi.org/10.1016/j.colsurfb.2008.05.007]. [PMID: 18583109].
[53]
Guo, Y.; Wang, X.; Shu, X.; Shen, Z.; Sun, R.C. Self-assembly and paclitaxel loading capacity of cellulose-graft-poly(lactide) nanomicelles. J. Agric. Food Chem., 2012, 60(15), 3900-3908. [http://dx.doi.org/10.1021/jf3001873]. [PMID: 22439596].
[54]
Li, M.; Tang, Z.; Lin, J.; Zhang, Y.; Lv, S.; Song, W.; Huang, Y.; Chen, X. Synergistic antitumor effects of doxorubicin-loaded carboxymethyl cellulose nanoparticle in combination with endostar for effective treatment of non-small-cell lung cancer. Adv. Healthc. Mater., 2014, 3(11), 1877-1888. [http://dx.doi.org/10.1002/adhm.201400108]. [PMID: 24846434].
[55]
Arias, J.L.; López-Viota, M.; Delgado, Á.V.; Ruiz, M.A. Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids Surf. B Biointerfaces, 2010, 77(1), 111-116. [http://dx.doi.org/10.1016/j.colsurfb.2010.01.030]. [PMID: 20153955].
[56]
Song, Y.; Chen, L. Effect of net surface charge on physical properties of the cellulose nanoparticles and their efficacy for oral protein delivery. Carbohydr. Polym., 2015, 121, 10-17. [http://dx.doi.org/10.1016/j.carbpol.2014.12.019]. [PMID: 25659666].
[57]
Liang, H.; Huang, Q.; Zhou, B.; He, L.; Lin, L.; An, Y.; Li, Y.; Liu, S.; Chen, Y.; Li, B. Self-assembled zein–sodium carboxymethyl cellulose nanoparticles as an effective drug carrier and transporter. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(16), 3242-3253. [http://dx.doi.org/10.1039/C4TB01920B].
[58]
Elumalai, R.; Patil, S.; Maliyakkal, N.; Rangarajan, A.; Kondaiah, P.; Raichur, A.M. Protamine-carboxymethyl cellulose magnetic nanocapsules for enhanced delivery of anticancer drugs against drug resistant cancers. Nanomedicine (Lond.), 2015, 11(4), 969-981. [http://dx.doi.org/10.1016/j.nano.2015.01.005]. [PMID: 25659647].
[59]
Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl., 2005, 44(22), 3358-3393. [http://dx.doi.org/10.1002/anie.200460587]. [PMID: 15861454].
[60]
Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci., 2016, 53, 169-206. [http://dx.doi.org/10.1016/j.progpolymsci.2015.07.003].
[61]
Edgar, K.J. Cellulose esters in drug delivery. Cellulose, 2006, 14(1), 49-64. [http://dx.doi.org/10.1007/s10570-006-9087-7].
[62]
Stevens, M.P. Polymer chemistry : an introduction.Oxford University Press: New Uork [etc.]. 1999.
[63]
Hoang, B.; Ernsting, M.J.; Roy, A.; Murakami, M.; Undzys, E.; Li, S-D. Docetaxel-carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent mechanism. Biomaterials, 2015, 59, 66-76. [http://dx.doi.org/10.1016/j.biomaterials.2015.04.032]. [PMID: 25956852].
[64]
Yang, Y.; Roy, A.; Zhao, Y.; Undzys, E.; Li, S-D. Comparison of tumor penetration of podophyllotoxin-carboxymethylcellulose conjugates with various chemical compositions in tumor spheroid culture and in vivo solid tumor. Bioconjug. Chem., 2017, 28(5), 1505-1518. [http://dx.doi.org/10.1021/acs.bioconjchem.7b00165]. [PMID: 28437080].
[65]
Rahmat, D.; Sakloetsakun, D.; Shahnaz, G.; Perera, G.; Kaindl, R.; Bernkop-Schnürch, A. Design and synthesis of a novel cationic thiolated polymer. Int. J. Pharm., 2011, 411(1-2), 10-17. [http://dx.doi.org/10.1016/j.ijpharm.2011.02.063]. [PMID: 21382457].
[66]
Rahmat, D.; Sakloetsakun, D.; Shahnaz, G.; Sarti, F.; Laffleur, F.; Schnürch, A.B. HEC-cysteamine conjugates: influence of degree of thiolation on efflux pump inhibitory and permeation enhancing properties. Int. J. Pharm., 2012, 422(1-2), 40-46. [http://dx.doi.org/10.1016/j.ijpharm.2011.10.024]. [PMID: 22027393].
[67]
Danhier, F.; Feron, O.; Preat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146. [http://dx.doi.org/10.1016/j.jconrel.2010.08.027]. [PMID: 20797419].
[68]
Duncan, R. Polymer therapeutics as nanomedicines: new perspectives. Curr. Opin. Biotechnol., 2011, 22(4), 492-501. [http://dx.doi.org/10.1016/j.copbio.2011.05.507]. [PMID: 21676609].
[69]
Liebert, T.; Kostag, M.; Wotschadlo, J.; Heinze, T. Stable cellulose nanospheres for cellular uptake. Macromol. Biosci., 2011, 11(10), 1387-1392. [http://dx.doi.org/10.1002/mabi.201100113]. [PMID: 21830298].
[70]
Bardonnet, P.L.; Faivre, V.; Pugh, W.J.; Piffaretti, J.C.; Falson, F. Gastroretentive dosage forms: overview and special case of Helicobacter pylori. J. Control. Release, 2006, 111(1-2), 1-18. [http://dx.doi.org/10.1016/j.jconrel.2005.10.031]. [PMID: 16403588].
[71]
Kim, M.S. Influence of hydrophilic additives on the supersaturation and bioavailability of dutasteride-loaded hydroxypropyl-β-cyclodextrin nanostructures. Int. J. Nanomedicine, 2013, 8, 2029-2039. [http://dx.doi.org/10.2147/IJN.S44795]. [PMID: 23737668].
[72]
Couto, R.; Chambon, S.; Aymonier, C.; Mignard, E.; Pavageau, B.; Erriguible, A.; Marre, S. Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly(3-hexylthiophene) nanoparticles for OFET devices. Chem. Commun. (Camb.), 2015, 51(6), 1008-1011. [http://dx.doi.org/10.1039/C4CC07878K]. [PMID: 25364796].
[73]
Prosapio, V.; De Marco, I.; Scognamiglio, M.; Reverchon, E. Folic acid–PVP nanostructured composite microparticles by supercritical antisolvent precipitation. Chem. Eng. J., 2015, 277, 286-294. [http://dx.doi.org/10.1016/j.cej.2015.04.149].
[74]
Fraile, M.; Buratto, R.; Gómez, B.; Martín, Á.; Cocero, M.J. Enhanced Delivery of Quercetin by Encapsulation in Poloxamers by Supercritical Antisolvent Process. Ind. Eng. Chem. Res., 2014, 53(11), 4318-4327. [http://dx.doi.org/10.1021/ie5001136].
[75]
Goodwin, D.J.; Martini, L.G.; Lawrence, M.J. Production of nabumetone nanoparticles: Effect of molecular weight, concentration and nature of cellulose ether stabiliser. Int. J. Pharm., 2016, 514(2), 428-444. [http://dx.doi.org/10.1016/j.ijpharm.2016.09.079]. [PMID: 27693736].
[76]
Guo, Y.; Liu, Q.; Chen, H.; Wang, X.; Shen, Z.; Shu, X.; Sun, R. Direct grafting modification of pulp in ionic liquids and self-assembly behavior of the graft copolymers. Cellulose, 2012, 20(2), 873-884. [http://dx.doi.org/10.1007/s10570-012-9847-5].
[77]
Dai, L.; Xiao, S.; Shen, Y.; Qinshu, B.; He, J. (L-lactide) by Ring-opening Polymerization and the Study of Its Degradability. Bull. Korean Chem. Soc., 2012, 33(12), 4122-4126. [http://dx.doi.org/10.5012/bkcs.2012.33.12.4122].
[78]
Dai, L.; Li, D.; He, J. Degradation of graft polymer and blend based on cellulose and poly(L-lactide). J. Appl. Polym. Sci., 2013, 130(4), 2257-2264. [http://dx.doi.org/10.1002/app.39451].
[79]
Dai, L.; Wang, L-Y.; Yuan, T-Q.; He, J. Study on thermal degradation kinetics of cellulose-graft-poly(l-lactic acid) by thermogravimetric analysis. Polym. Degrad. Stabil., 2014, 99, 233-239. [http://dx.doi.org/10.1016/j.polymdegradstab.2013.10.024].
[80]
Nikolajski, M.; Wotschadlo, J.; Clement, J.H.; Heinze, T. Amino-functionalized cellulose nanoparticles: preparation, characterization, and interactions with living cells. Macromol. Biosci., 2012, 12(7), 920-925. [http://dx.doi.org/10.1002/mabi.201200040]. [PMID: 22535832].
[81]
Wiegand, C.; Nikolajski, M.; Hipler, U.C.; Heinze, T. Nanoparticle formulation of AEA and BAEA cellulose carbamates increases biocompatibility and antimicrobial activity. Macromol. Biosci., 2015, 15(9), 1242-1251. [http://dx.doi.org/10.1002/mabi.201500031]. [PMID: 25981384].
[82]
Wang, J-S.; Matyjaszewski, K. Controlled/”living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc., 1995, 117(20), 5614-5615. [http://dx.doi.org/10.1021/ja00125a035].
[83]
Wang, J-S.; Matyjaszewski, K. Controlled/”Living” Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II). Redox Process. Macromolecules, 1995, 28(23), 7901-7910. [http://dx.doi.org/10.1021/ma00127a042].
[84]
Yamanaka, H.; Teramoto, Y.; Nishio, Y. Orientation and Birefringence Compensation of Trunk and Graft Chains in Drawn Films of Cellulose Acetate-graft-PMMA Synthesized by ATRP. Macromolecules, 2013, 46(8), 3074-3083. [http://dx.doi.org/10.1021/ma400155f].
[85]
Lacerda, P.S.; Barros-Timmons, A.M.; Freire, C.S.; Silvestre, A.J.; Neto, C.P. Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromolecules, 2013, 14(6), 2063-2073. [http://dx.doi.org/10.1021/bm400432b]. [PMID: 23692287].
[86]
Liu, Y.; Yao, K.; Chen, X.; Wang, J.; Wang, Z.; Ploehn, H.J.; Wang, C.; Chu, F.; Tang, C. Sustainable thermoplastic elastomers derived from renewable cellulose, rosin and fatty acids. Polym. Chem., 2014, 5(9), 3170-3181. [http://dx.doi.org/10.1039/c3py01260c].
[87]
Wang, Z.; Zhang, Y.; Jiang, F.; Fang, H.; Wang, Z. Synthesis and characterization of designed cellulose-graft-polyisoprene copolymers. Polym. Chem., 2014, 5(10), 3379-3388. [http://dx.doi.org/10.1039/c3py01574b].
[88]
Joubert, F.; Musa, O.M.; Hodgson, D.R.W.; Cameron, N.R. The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem. Soc. Rev., 2014, 43(20), 7217-7235. [http://dx.doi.org/10.1039/C4CS00053F]. [PMID: 25016958].
[89]
Yu, J.; Liu, Y.; Liu, X.; Wang, C.; Wang, J.; Chu, F.; Tang, C. Integration of renewable cellulose and rosin towards sustainable copolymers by “grafting from” ATRP. Green Chem., 2014, 16(4), 1854-1864. [http://dx.doi.org/10.1039/c3gc41550c].
[90]
Bagheri, M.; Pourmirzaei, L. Synthesis and characterization of cholesteryl-modified graft copolymer from hydroxypropyl cellulose and its application as nanocarrier. Macromol. Res., 2013, 21(7), 801-808. [http://dx.doi.org/10.1007/s13233-013-1080-z].
[91]
Sivakumar, B.; Aswathy, R.G.; Nagaoka, Y.; Suzuki, M.; Fukuda, T.; Yoshida, Y.; Maekawa, T.; Sakthikumar, D.N. Multifunctional carboxymethyl cellulose-based magnetic nanovector as a theragnostic system for folate receptor targeted chemotherapy, imaging, and hyperthermia against cancer. Langmuir, 2013, 29(10), 3453-3466. [http://dx.doi.org/10.1021/la305048m]. [PMID: 23409925].
[92]
Thanh, N.T.K.; Green, L.A.W. Functionalisation of nanoparticles for biomedical applications. Nano Today, 2010, 5(3), 213-230. [http://dx.doi.org/10.1016/j.nantod.2010.05.003].
[93]
da Silva, D.G.; Hiroshi Toma, S.; de Melo, F.M.; Carvalho, L.V.C.; Magalhães, A.; Sabadini, E.; dos Santos, A.D.; Araki, K.; Toma, H.E. Direct synthesis of magnetite nanoparticles from iron(II) carboxymethylcellulose and their performance as NMR contrast agents. J. Magn. Magn. Mater., 2016, 397, 28-32. [http://dx.doi.org/10.1016/j.jmmm.2015.08.092].
[94]
Gaharwar, A.K.; Wong, J.E.; Müller-Schulte, D.; Bahadur, D.; Richtering, W. Magnetic nanoparticles encapsulated within a thermoresponsive polymer. J. Nanosci. Nanotechnol., 2009, 9(9), 5355-5361. [http://dx.doi.org/10.1166/jnn.2009.1265]. [PMID: 19928227].
[95]
Mallick, N.; Asfer, M.; Anwar, M.; Kumar, A.; Samim, M.; Talegaonkar, S.; Ahmad, F.J. Rhodamine-loaded, cross-linked, carboxymethyl cellulose sodium-coated super-paramagnetic iron oxide nanoparticles: Development and in vitro localization study for magnetic drug-targeting applications. Colloids Surf. A Physicochem. Eng. Asp., 2015, 481, 51-62. [http://dx.doi.org/10.1016/j.colsurfa.2015.03.056].
[96]
Geissler, A.; Scheid, D.; Li, W.; Gallei, M.; Zhang, K. Facile formation of stimuli-responsive, fluorescent and magnetic nanoparticles based on cellulose stearoyl ester via nanoprecipitation. Cellulose, 2014, 21(6), 4181-4194. [http://dx.doi.org/10.1007/s10570-014-0412-2].
[97]
Song, Y.; Zhou, Y.; Chen, L. Wood cellulose-based polyelectrolyte complex nanoparticles as protein carriers. J. Mater. Chem., 2012, 22(6), 2512-2519. [http://dx.doi.org/10.1039/C1JM13735B].
[98]
Nagel, M.C.V.; Koschella, A.; Voiges, K.; Mischnick, P.; Heinze, T. Homogeneous methylation of wood pulp cellulose dissolved in LiOH/urea/H2O. Eur. Polym. J., 2010, 46(8), 1726-1735. [http://dx.doi.org/10.1016/j.eurpolymj.2010.05.009].
[99]
Song, Y.; Zhou, Y.; van Drunen Littel-van den Hurk, S.; Chen, L. Cellulose-based polyelectrolyte complex nanoparticles for DNA vaccine delivery. Biomater. Sci., 2014, 2(10), 1440-1449. [http://dx.doi.org/10.1039/C4BM00202D].