Biofunctional Beverage: Antihyperglycemic Effect of Green Tea in Alloxan Induced Diabetic Rabbits

Page: [120 - 124] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Background: Diabetes is a chronic metabolic syndrome that affecting millions of people around the world. There are several therapeutic options for the treatment of diabetes but adequate glycemic control is still a challenge. In this regard, daily food item has been focus to evaluate their effect on blood glucose control.

Methods: Our study investigated the effect of oral consumption of crude extract and its subsequent solvent fractions (hexane, ethyl acetate and aqueous) of Green Tea purchased from local market in alloxan- induced diabetic rabbits. Plasma glucose level and overall affect on body weight was observed on daily basis up t 26th day at 25 and 50 mg/kg p.o.

Results: The results showed significant (P<0.05) reduction in hyperglycemia-induced in rabbits. The crude extract was most dominant in its effect after 26th of administration, while hexane fraction did not produce any antihyperglycemic effect. However, the remaining fractions elicited moderate effects. When the effect of these extracts were studied on body weight of diabetic rabbits, marked recovery in body weight was observed.

Conclusion: In short, it is concluded, that the various extracts of green tea possessed strong antidiabetic and weight regaining effects in alloxan-induced diabetic rabbits, and thus appeared as a significant biofunctional food in diabetes management. Furthermore, bioactivity guided isolation of secondary metabolites could provide chemical background.

Keywords: Green tea, alloxan-induced diabetic rabbits, antidiabetic and weight regaining effect, hyperglycemia-induced, solvent fractions.

Graphical Abstract

[1]
Duffy, S.J.; Keaney, J.F., Jr; Holbrook, M.; Gokce, N.; Swerdloff, P.L.; Frei, B.; Vita, J.A. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation, 2001, 104(2), 151-156.
[2]
Cabrera, C.; Artacho, R.; Giménez, R. Beneficial effects of green tea-a review. J. Am. Coll. Nutr., 2006, 25(2), 79-99.
[3]
Wang, Z.Y.; Huang, M-T.; Lou, Y-R.; Xie, J-G.; Reuhl, K.R.; Newmark, H.L.; Ho, C-T.; Yang, C.S.; Conney, A.H. Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz[a]anthracene-initiated SKH-1 mice. Cancer Res., 1994, 54(13), 3428-3435.
[4]
Serafini, M.; Ghiselli, A.; Ferro-Luzzi, A. In vivo antioxidant effect of green and black tea in man. Eur. J. Clin. Nutr., 1996, 50(1), 28-32.
[5]
Gomes, A.; Vedasiromoni, J.R.; Das, M.; Sharma, R.M.; Ganguly, D.K. Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat. J. Ethnopharmacol., 1995, 45(3), 223-226.
[6]
van het Hof, K.H.; Kivits, G.A.; Weststrate, J.A.; Tijburg, L.B. Bioavailability of catechins from tea: the effect of milk. Eur. J. Clin. Nutr., 1998, 52(5), 356-359.
[7]
Perva-Uzunalić, A.; Škerget, M.; Knez, Ž.; Weinreich, B.; Otto, F.; Grüner, S. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem., 2006, 96(4), 597-605.
[8]
Hasegawa, T.; Akutsu, K.; Kishi, Y.; Nakamura, K. Constituents of the green tea seeds of Camellia sinensis. Nat. Prod. Commun., 2011, 6(3), 371-374.
[9]
Ortiz-Andrade, R.R.; Sánchez-Salgado, J.C.; Navarrete-Vázquez, G.; Webster, S.P.; Binnie, M.; García-Jiménez, S.; León-Rivera, I.; Cigarroa-Vázquez, P.; Villalobos-Molina, R.; Estrada-Soto, S. Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes Obes. Metab., 2008, 10(11), 1097-1104.
[10]
Khan, H.; Khan, M.A. Abdullah, Antibacterial, antioxidant and cytotoxic studies of total saponin, alkaloid and sterols contents of decoction of Joshanda: Identification of components through thin layer chromatography. Toxicol. Ind. Health, 2015, 31(3), 202-208.
[11]
Sultan, K.; Zakir, M.; Khan, H.; Rauf, A.; Akber, N.U.; Khan, M.A. Biofunctional properties of Eruca sativa Miller (rocket salad) hydroalcoholic extract. Nat. Prod. Res., 2016, 30(10), 1202-1204.
[12]
Sultan, K.; Zakir, M.; Khan, H.; Khan, I.U.; Ayaz, S.; Khan, I.; Khan, J.; Khan, M.A. Antihyperglycemic effect of Persea duthieion blood glucose levels and body weight in alloxan induced diabetic rabbits. Pak. J. Pharm. Sci., 2016, 29(3), 837-842.
[13]
The Lancet. Towards a better understanding of type 1 diabetes. Lancet, 2016, 387(10035), 2264.
[14]
Domekouo, U.L.; Longo, F.; Tarkang, P.A.; Tchinda, A.T.; Tsabang, N.; Donfagsiteli, N.T.; Tamze, V.; Kamtchouing, P.; Agbor, G.A. Evaluation of the antidiabetic and antioxidant properties of Morinda lucida stem bark extract in streptozotocin intoxicated rats. Pak. J. Pharm. Sci., 2016, 29(3), 903-911.
[15]
Chang, W.; Zhang, M.; Meng, Z.; Yu, Y.; Yao, F.; Hatch, G.M.; Chen, L. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5′-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells. Eur. J. Pharmacol., 2015, 769, 55-63.
[16]
Vinik, A.I. Diabetic Sensory and Motor Neuropathy. N. Engl. J. Med., 2016, 374(15), 1455-1464.
[17]
Liu, Z.-X.; Liu, C.-T.; Liu, Q.-B.; Ren, J.; Li, L.-Z.; Huang, X.-X.; Wang, Z.-Z.; Song, S.-J. 2015.Iridoid glycosides from the flower buds of Lonicera japonica and their nitric oxide production and α-glucosidase inhibitory activities. J. Funct. Foods,,2015, 18, Part A, 512-519.
[18]
Khan, M.A.; Khan, H.; Ali, T. Withanolides isolated from Withania somnifera with α-glucosidase inhibition. Med. Chem. Res., 2014, 23(5), 2386-2390.
[19]
Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med., 2016, 375(4), 323-334.
[20]
Khattak, S.; Khan, H. Anticancer potential of phyto-alkaloids: a prospective review. Curr. Cancer Ther. Rev., 2016, 12(1), 66-75.
[21]
Pervaiz, A.; Khan, R.; Anwar, F.; Mushtaq, G.; Kamal, M.A.; Khan, H. Alkaloids: An emerging antibacterial modality against methicillin resistant Staphylococcus aureus. Curr. Pharm. Des., 2016, 22(28), 4420-4429.
[22]
Perviz, S.; Khan, H.; Pervaiz, A. Plant alkaloids as an emerging therapeutic alternative for the treatment of depression. Front. Pharmacol., 2016, 7, 28.
[23]
Rehman, S.; Khan, H. Advances in antioxidant potential of natural alkaloids. Curr. Bioact. Compd., 2017, 13(2), 101-108.
[24]
Ahmad, H.; Khan, I.; Wahid, A. Antiglycation and antioxidation properties of Juglans regia and Calendula officinalis: Possible role in reducing diabetic complications and slowing down ageing. J. Tradit. Chin. Med., 2012, 32(3), 411-414.
[25]
Li, Y.; Ding, Y. Minireview. Therapeutic potential of myricetin in diabetes mellitus. Food Sci. Human Wellness, 2012, 1(1), 19-25.
[26]
Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2003, 135C(3), 357-364.
[27]
Amarowicz, R.; Shahidi, F.; Wiczkowski, W. Separation of individual catechins from green tea using silica gel column chromatography and HPLC. J. Food Lipids, 2003, 10(2), 165-177.
[28]
Hsu, T.F.; Kusumoto, A.; Abe, K.; Hosoda, K.; Kiso, Y.; Wang, M.F.; Yamamoto, S. Polyphenol-enriched oolong tea increases fecal lipid excretion. Eur. J. Clin. Nutr., 2006, 60(11), 1330-1336.
[29]
Cho, S.Y.; Park, P.J.; Shin, H.J.; Kim, Y.K.; Shin, D.W.; Shin, E.S.; Lee, H.H.; Lee, B.G.; Baik, J.H.; Lee, T.R. (-)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells. Am. J. Physiol. Endocrinol. Metab., 2007, 292(4), E1166-E1172.