Macromolecular crystallography evolved enormously from the pioneering days, when structures were solved by “wizards” performing all complicated procedures almost by hand. In the current situation crystal structures of large systems can be often solved very effectively by various powerful automatic programs in days or hours, or even minutes. Such progress is to a large extent coupled to the advances in many other fields, such as genetic engineering, computer technology, availability of synchrotron beam lines and many other techniques, creating the highly interdisciplinary science of macromolecular crystallography. Due to this unprecedented success crystallography is often treated as one of the analytical methods and practiced by researchers interested in structures of macromolecules, but not highly competent in the procedures involved in the process of structure determination. One should therefore take into account that the contemporary, highly automatic systems can produce results almost without human intervention, but the resulting structures must be carefully checked and validated before their release into the public domain.
Keywords: Automation, macromolecular crystallography, protein crystallography.