With a lifetime prevalence of more than 16% worldwide, major depressive disorder is one of the most common psychiatric disorders. Only one third of patients experience a complete therapeutic improvement with the use of current antidepressant drugs, with a therapeutic effect appearing only after several weeks of treatment. Hence, a better understanding of the mechanisms of action of current antidepressant treatments is needed to ultimately identify new targets and enhance beneficial effects. Given the intimate relationships between astrocytes and neurons at synapses and the ability of astrocytes to “sense” neuronal communication and release gliotransmitters, an attractive hypothesis is emerging stating that the effects of antidepressants on brain function could be, at least in part, mediated by direct influences of astrocytes on neuronal networks. This review aims at highlighting the involvement of astrocytes and gliotransmission in the antidepressant effects of both non- and pharmacological therapies.
Keywords: Antidepressants, astrocytes, DBS, gliotransmission, tripartite synapse.