The mature neuromuscular junction (NMJ) is the best characterized cholinergic synapse. The maintenance of a high number and density of nicotinic acetylcholine receptors (nAChRs) at the postsynaptic membrane adjacent to the nerve terminal are crucial for NMJ function. This density is maintained by several factors, ranging from synaptic activity to postsynaptic scaffold proteins. Decreases in postsynaptic nAChR density are related to myasthenic syndromes in the peripheral NMJ, but are also associated in central synapses with neurodegenerative diseases such as Alzheimer’s. In this review, we focus particularly on our increasing knowledge about the molecular dynamics of nAChR at the peripheral cholinergic NMJ and their regulation by the postsynaptic proteins of the dystrophin glycoprotein complex (DGC).
Keywords: Dystrobrevin, dystrophin glycoprotein complex, neuromuscular junction, nicotinic acetylcholine receptor, receptor dynamics, syntrophin.