Macrolides are important antibiotics used in treatment of respiratory tract infections in humans. Although some of these compounds have been in use for 50 years, it has not been until the last few years that their mechanism of action and the nature of ribosomal-based resistance could be more fully understood. With the advent of robust crystals of ribosomal 50S subunits, and structural resolution of macrolides and ketolides complexed to either Haloarcula marismortui or Deinococcus radiodurans 50S, the ability to dissect the binding modes and understand resistance at the level of the ribosome became possible. This review article compares the binding features of 14-, 15-, and 16-membered macrolides to that of ketolides telithromycin and ABT-773 as revealed at the atomistic level. Attempts to understand how modifications to 23S rRNA and / or mutations in ribosomal proteins L4 and L22 that have been found to confer resistance in Streptococcus pneumoniae, Streptococcus pyogenes, and Haemophilus influenzae are told from the perspective of the ribosome.
Keywords: macrolide, ketolide, antibiotic resistance, ribosome, streptococcus pneumoniae