The traditional consensus that matrix metalloproteinases (MMPs) has correlation with various pathological and physiological processes led to the exploitation of a vast number of natural or synthetic broad-spectrum MMP inhibitors (MMPIs) for the prophylaxis or treatment of various MMP-related disorders, such as autoimmune, inflammatory, cardiovascular, neurodegenerative, respiratory diseases, and malignant cancer as well. Yet the unsatisfactory preclinical and/or clinical results motivated further investigation of the physiological roles of certain MMP subtypes. Despite the intricate and complicated MMP functions in normal physiology and disease pathology, the effort of designing specific inhibitors that can selectively target certain MMP family members for individualized therapy is ongoing and remains an arduous task. Success will rely on continued insight into the biological roles of these multifaced proteases. In our previous effort, we summarized various MMPIs that have entered preclinical or clinical trials as well as the patents in regard to MMPIs (Recent Pat Anticancer Drug Discov. 2010; 5(2): 109-41). In our on-going review, to illustrate the major challenges in MMP validation as druggable targets, we highlighted the physiological and pathological roles of representative MMPs, with an emphasis on description of the newly emerging MMPI-based patents, in particular, the inhibitors containing sulfonamide or sulfone motif. By analyzing the structural characteristics and selectivity profiles of these supplementary inhibitors, we hereby described their pharmaceutical application, and also expanded the strategies for potent MMPI design.
Keywords: Drug design, matrix metalloproteinases (MMPs), MMPI, patent, specific, selectivity, Macrophage Elastase, Gelatinases, imidazolidinedione, thiadiazine