Current Protein & Peptide Science

Author(s): Jian Ren, Xinjiao Gao, Zexian Liu, Jun Cao, Qian Ma and Yu Xue

DOI: 10.2174/1389203711109070591

DownloadDownload PDF Flyer Cite As
Computational Analysis of Phosphoproteomics: Progresses and Perspectives

Page: [591 - 601] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Phosphorylation is one of the most essential post-translational modifications (PTMs) of proteins, regulates a variety of cellular signaling pathways, and at least partially determines the biological diversity. Recent progresses in phosphoproteomics have identified more than 100,000 phosphorylation sites, while this number will easily exceed one million in the next decade. In this regard, how to extract useful information from flood of phosphoproteomics data has emerged as a great challenge. In this review, we summarized the leading edges on computational analysis of phosphoproteomics, including discovery of phosphorylation motifs from phosphoproteomics data, systematic modeling of phosphorylation network, analysis of genetic variation that influences phosphorylation, and phosphorylation evolution. Based on existed knowledge, we also raised several perspectives for further studies. We believe that integration of experimental and computational analyses will propel the phosphoproteomics research into a new phase.

Keywords: Post-translational modification, phosphorylation, phosphorylation motif, phosphorylation network, phosGV, phosphorylation evolution, PTMs, PKs, HTP-MS, BRCT