Mammalian organ regeneration is the “Holy Grail” of modern regenerative biology and medicine. The most dramatic organ replacement is known as epimorphic regeneration. To date our knowledge of epimorphic regeneration has come from studies of amphibians. Notably, these animals have the ability to reprogram phenotypically committed cells at the amputation plane toward an embryonic-like cell phenotype (dedifferentiation). The capability of mammals to initiate analogous regeneration, and whether similar mechanisms would be involved if it were to occur, remain unclear. Deer antlers are the only mammalian appendages capable of full renewal, and therefore offer a unique opportunity to explore how nature has solved the problem of mammalian epimorphic regeneration. Following casting of old hard antlers, new antlers regenerate from permanent bony protuberances, known as pedicles. Studies through morphological and histological examinations, tissue deletion and transplantation, and cellular and molecular techniques have demonstrated that antler renewal is markedly different from that of amphibian limb regeneration (dedifferentiation-based), being a stem cell-based epimorphic process. Antler stem cells reside in the pedicle periosteum. We envisage that epimorphic regeneration of mammalian appendages, other than antler, could be made possible by recreating comparable milieu to that which supports the elaboration of that structure from the pedicle periosteum.