Current Nanoscience

Author(s): J. X. Chen, Y. C. Liang, X. L. Hu, Z. G. Wang and Q. L. Wang

DOI: 10.2174/1573413711208010084

Atomic Simulation of Multi-tool Nanomachining Process

Page: [84 - 88] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Multi-tool nanocutting single crystal copper processes are simulated by molecular dynamics. Then, nanomachining mechanism and removal processes are analyzed by atoms energy, and local atomic structures of the workpiece atoms are identified in the nanomachining process. The results show that local atomic structures of stacking atoms near the tool come to phase transition, which transforms from ideal FCC to icosahedra-like structure, closed-packed structure and defective FCC structure. In addition, the cutting force of two-side tools is high in the multi-tool nanocutting process during the preliminary phase of the cutting process. And then, the force of middle tool is higher than others. The removal atoms numbers increase with the increasing tools and the removal ratio of atoms increases when the distance between the tools increases.

Keywords: Molecular dynamics, nanocutting, multi tools, dislocation, spherical harmonics, nano-fabrication process