Current Pharmaceutical Design

Author(s): Tommy Seaborn, Olfa Masmoudi-Kouli, Alain Fournier, Hubert Vaudry and David Vaudry

DOI: 10.2174/138161211795049679

Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Apoptosis

Page: [204 - 214] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Apoptosis is a regulated process leading to cell death, which is implicated both in normal development and in various pathologies including heart failure, stroke and neurodegenerative diseases. Caspase-3, a key enzyme of the apoptotic pathway, is considered as a major target for the treatment of abnormal cell death. Many factors that inhibit cell death have been identified, but the mechanisms involved are not always fully understood. Pituitary adenylate cylase-activating polypeptide (PACAP) has been shown to exert neuroprotective activities during development. PACAP also inhibits apoptosis in cardiomyopathy, decreases glutamate-induced retinal injury, reduces neuronal loss in case of stroke, and prevents ethanol neurotoxicity. Most of the antiapoptotic effects of PACAP are mediated through the PAC1 receptor. This receptor activates a transduction cascade of second messengers to stimulate Bcl-2 expression which inhibits cytochrome c release and blocks in turn caspase activation. PACAP also acts through the PI3K/Akt pathway and inhibits the expression of proapoptotic factors such as c-Jun or Bax. The remarkable effect of PACAP on the apoptotic cascade suggests that innovative PACAP derivatives could potentially be useful for treatment of post-traumatic lesions, chronic neurodegenerative diseases, cardiac ischemia and/or retinopathy.

Keywords: Apoptosis, Bcl-2, caspase, neuroprotection, PACAP, PAC1