Current HIV Research

Author(s): Kunjing Geng, Wenchao Wei, Sisi Chen, Haoxi Shi and Weiguang Fan*

DOI: 10.2174/011570162X321660241127102018

DownloadDownload PDF Flyer Cite As
Genetic Characteristics of the Env Regions in HIV-1-Infected Subjects in Baoding City, Hebei Province, China

Page: [409 - 416] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Objectives: The envelope glycoprotein (Env) on the surface of the human immunodeficiency virus (HIV-1) is a crucial protein that mediates binding to host cell receptors and subsequent membrane fusion. Env, as the sole target for neutralizing antibodies, holds unique importance in vaccine design. Therefore, analyzing the genetic characteristics of the Env region offers reference data for vaccine and drug design.

Methods: From December 2021 to December 2022, 145 newly diagnosed, HIV-1-infected individuals in Baoding City were recruited into this study. The HIV-1 env gene sequence was successfully obtained from 142 of the 145 blood specimens, and the sequences were submitted to the Quality Control Tool (http//:HIV-DB Sequence Quality Control Tool (lanl.gov)) to analyze the viral subtype. The coreceptor tropism was predicted using the Geno2pheno web tool with falsepositive rate (FPR) values of 5%–15%, and the net charges of the third variable (V3) loop were calculated by Variable Region Characteristics (lanl.gov).

Results: The results showed that half of the patients were infected with the CCR5-tropic virus (50.0%, 71/142). In HIV-1 subtype CRF01_AE infection, the use of CXCR4 is expected to predominate, while in HIV-1 subtype CRF07_BC infection, CCR5 coreceptors are expected to be used predominantly. Sequence analysis of the V3 loop region revealed that subtypes CRF01_AE and CRF07_BC have similar median net charges (~3.0). Furthermore, GPGQ was found to be the major terminal tetrapeptide of the CRF07_ BC and CRF01_AE strains in this study.

Conclusion: These findings enhance our understanding of the characteristics of the HIV-1 epidemic and provide important implications for HIV-1 vaccine design and clinical treatment.

Keywords: HIV-1, Env, coreceptor tropism, CCR5-tropic virus, CXCR4, CRF01_AE, CRF07_BC.

Graphical Abstract

[1]
Bolivar H, Geffin R, Manzi G, et al. The challenge of HIV-1 genetic diversity: discordant CD4+ T-Cell count and viral load in an untreated patient infected with a subtype F strain. J Acquir Immune Defic Syndr 2009; 52(5): 659-61.
[http://dx.doi.org/10.1097/QAI.0b013e3181b72539] [PMID: 19935211]
[2]
Robertson DL, Anderson JP, Bradac JA, et al. HIV-1 nomenclature proposal. Science 2000; 288(5463): 55-6.
[http://dx.doi.org/10.1126/science.288.5463.55d] [PMID: 10766634]
[3]
Li X, Liu H, Liu L, et al. Tracing the epidemic history of HIV-1 CRF01_AE clusters using near-complete genome sequences. Sci Rep 2017; 7(1): 4024.
[http://dx.doi.org/10.1038/s41598-017-03820-8]
[4]
Feng Y, Takebe Y, Wei H, et al. Geographic origin and evolutionary history of China’s two predominant HIV-1 circulating recombinant forms, CRF07_BC and CRF08_BC. Sci Rep 2016; 6(1): 19279.
[http://dx.doi.org/10.1038/srep19279] [PMID: 26763952]
[5]
Nasir A, Dimitrijevic M, Romero-Severson E, Leitner T. Large evolutionary rate heterogeneity among and within HIV-1 subtypes and CRFs. Viruses 2021; 13(9): 1689.
[http://dx.doi.org/10.3390/v13091689] [PMID: 34578270]
[6]
Schlub TE, Grimm AJ, Smyth RP, et al. Fifteen to twenty percent of HIV substitution mutations are associated with recombination. J Virol 2014; 88(7): 3837-49.
[http://dx.doi.org/10.1128/JVI.03136-13] [PMID: 24453357]
[7]
Global HIV & AIDS statistics — Fact sheet.2021. 2021. Available from: https://www.unaids.org/en/resources/fact-sheet
[8]
Dumas F, Preira P, Salomé L. Membrane organization of virus and target cell plays a role in HIV entry. Biochimie 2014; 107(Pt A): 22-7.
[http://dx.doi.org/10.1016/j.biochi.2014.08.015]
[9]
Berger EA, Doms RW, Fenyö EM, et al. A new classification for HIV-1. Nature 1998; 391(6664): 240.
[http://dx.doi.org/10.1038/34571] [PMID: 9440686]
[10]
Wilen CB, Tilton JC, Doms RW. HIV: Cell binding and entry. Cold Spring Harb Perspect Med 2012; 2(8): a006866.
[http://dx.doi.org/10.1101/cshperspect.a006866] [PMID: 22908191]
[11]
Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease. Annu Rev Immunol 1999; 17(1): 657-700.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.657] [PMID: 10358771]
[12]
Connell BJ, Hermans LE, Wensing AMJ, et al. Immune activation correlates with and predicts CXCR4 co-receptor tropism switch in HIV-1 infection. Sci Rep 2020; 10(1): 15866.
[http://dx.doi.org/10.1038/s41598-020-71699-z] [PMID: 32985522]
[13]
Keele BF, Giorgi EE, Salazar-Gonzalez JF, et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci USA 2008; 105(21): 7552-7.
[http://dx.doi.org/10.1073/pnas.0802203105] [PMID: 18490657]
[14]
Naif HM. Pathogenesis of HIV infection. Infect Dis Rep 2013; 5(11) (Suppl. 1): e6.
[http://dx.doi.org/10.4081/idr.2013.s1.e6] [PMID: 24470970]
[15]
Gorry PR, Ancuta P. Coreceptors and HIV-1 pathogenesis. Curr HIV/AIDS Rep 2011; 8(1): 45-53.
[http://dx.doi.org/10.1007/s11904-010-0069-x] [PMID: 21188555]
[16]
Hayashida T, Tsuchiya K, Kikuchi Y, Oka S, Gatanaga H. Emergence of CXCR4-tropic HIV-1 variants followed by rapid disease progression in hemophiliac slow progressors. PLoS One 2017; 12(5): e0177033.
[http://dx.doi.org/10.1371/journal.pone.0177033] [PMID: 28472121]
[17]
Savkovic B, Symonds G, Murray JM. Stochastic model of in-vivo X4 emergence during HIV infection: Implications for the CCR5 inhibitor maraviroc. PLoS One 2012; 7(7): e38755.
[http://dx.doi.org/10.1371/journal.pone.0038755] [PMID: 22866173]
[18]
Weinberger AD, Perelson AS. Persistence and emergence of X4 virus in HIV infection. Math Biosci Eng 2011; 8(2): 605-26.
[http://dx.doi.org/10.3934/mbe.2011.8.605] [PMID: 21631149]
[19]
Pan R, Qin Y, Banasik M, et al. Increased epitope complexity correlated with antibody affinity maturation and a novel binding mode revealed by structures of rabbit antibodies against the third variable loop (V3) of HIV-1 gp120. J Virol 2018; 92(7): e01894-17.
[http://dx.doi.org/10.1128/JVI.01894-17] [PMID: 29343576]
[20]
Zhu R, Sang X, Zhou J, et al. CXCR4 recognition by L- and D-peptides containing the full-length V3 loop of HIV-1 gp120. Viruses 2023; 15(5): 1084.
[http://dx.doi.org/10.3390/v15051084] [PMID: 37243169]
[21]
Hill MD, Lorenzo E, Kumar A. Changes in the human immunodeficiency virus V3 region that correspond with disease progression: A meta-analysis. Virus Res 2004; 106(1): 27-33.
[http://dx.doi.org/10.1016/j.virusres.2004.05.013] [PMID: 15522444]
[22]
McKeating JA, Balfe P. The role of the viral glycoprotein in HIV-1 persistence. Immunol Lett 1999; 65(1-2): 63-70.
[http://dx.doi.org/10.1016/S0165-2478(98)00126-6] [PMID: 10065629]
[23]
Arrildt KT, Joseph SB, Swanstrom R. The HIV-1 Env protein: A coat of many colors. Curr HIV/AIDS Rep 2012; 9(1): 52-63.
[http://dx.doi.org/10.1007/s11904-011-0107-3] [PMID: 22237899]
[24]
Zhao C, Li H, Swartz TH, Chen BK. The HIV Env glycoprotein conformational states on cells and viruses. MBio 2022; 13(2): e01825-21.
[http://dx.doi.org/10.1128/mbio.01825-21] [PMID: 35323042]
[25]
Ladinsky MS, Gnanapragasam PNP, Yang Z, West AP, Kay MS, Bjorkman PJ. Electron tomography visualization of HIV-1 fusion with target cells using fusion inhibitors to trap the pre-hairpin intermediate. eLife 2020; 9: e58411.
[http://dx.doi.org/10.7554/eLife.58411] [PMID: 32697193]
[26]
Beitari S, Wang Y, Liu SL, Liang C. HIV-1 envelope glycoprotein at the interface of host restriction and virus evasion. Viruses 2019; 11(4): 311.
[http://dx.doi.org/10.3390/v11040311] [PMID: 30935048]
[27]
Perrin J, Bary A, Vernay A, Cosson P. Role of the HIV-1 envelope transmembrane domain in intracellular sorting. BMC Cell Biol 2018; 19(1): 3.
[http://dx.doi.org/10.1186/s12860-018-0153-4] [PMID: 29544440]
[28]
Derking R, Sanders RW. Structure-guided envelope trimer design in HIV-1 vaccine development: A narrative review. J Int AIDS Soc 2021; 24 (Suppl. 7): e25797.
[http://dx.doi.org/10.1002/jia2.25797]
[29]
Perdiguero B, Hauser A, Gómez CE, et al. Potency and durability of T and B cell immune responses after homologous and heterologous vector delivery of a trimer-stabilized, membrane-displayed HIV-1 clade ConC Env protein. Front Immunol 2023; 14: 1270908.
[http://dx.doi.org/10.3389/fimmu.2023.1270908] [PMID: 38045703]
[30]
Zhou T, Xu L, Dey B, et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 2007; 445(7129): 732-7.
[http://dx.doi.org/10.1038/nature05580] [PMID: 17301785]
[31]
Kwong PD, Doyle ML, Casper DJ, et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 2002; 420(6916): 678-82.
[http://dx.doi.org/10.1038/nature01188] [PMID: 12478295]
[32]
Scanlan CN, Pantophlet R, Wormald MR, et al. The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of alpha1->2 mannose residues on the outer face of gp120. J Virol 2002; 76(14): 7306-21.
[http://dx.doi.org/10.1128/JVI.76.14.7306-7321.2002] [PMID: 12072529]
[33]
Lu X, Zhang J, Wang Y, et al. Large transmission clusters of HIV-1 main genotypes among HIV-1 individuals before antiretroviral therapy in the Hebei province, China. AIDS Res Hum Retroviruses 2020; 36(5): 427-33.
[http://dx.doi.org/10.1089/aid.2019.0199] [PMID: 31595767]
[34]
Fan W, Wang X, Zhang Y, et al. Prevalence of resistance mutations associated with integrase inhibitors in therapy-naive HIV-positive patients in Baoding, Hebei province, China. Front Genet 2022; 13: 975397.
[http://dx.doi.org/10.3389/fgene.2022.975397] [PMID: 36186451]
[35]
Shi P, Chen Z, Meng J, et al. Molecular transmission networks and pre-treatment drug resistance among individuals with acute HIV-1 infection in Baoding, China. PLoS One 2021; 16(12): e0260670.
[http://dx.doi.org/10.1371/journal.pone.0260670] [PMID: 34855860]
[36]
Shi P, Wang X, Fan W, et al. Pre-treatment drug resistance analysis of HIV-1 infected patients in Baoding City, 2019-2020. Chin J Dermatovenereol 2021; 35(09): 1012-6.
[http://dx.doi.org/10.13735/j.cjdv.1001-7089.202103052]
[37]
Fan W, Xing Y, Han L, et al. HIV-1 genetic characteristics and pre-treatment drug resistance among newly diagnosed population in Baoding, Hebei Province. Chin J Microbiol Immunol 2022; 42(02): 88-93.
[http://dx.doi.org/10.3760/cma.j.cn112309-20210814-00272]
[38]
Ge Z, Feng Y, Zhang H, et al. HIV-1 CRF07_BC transmission dynamics in China: Two decades of national molecular surveillance. Emerg Microbes Infect 2021; 10(1): 1919-30.
[http://dx.doi.org/10.1080/22221751.2021.1978822] [PMID: 34498547]
[39]
Okuda K, Bukawa H, Kawamoto S, et al. A serologic analysis and the amino acid sequence of the V3 region of human immunodeficiency virus from carriers in Bangkok. J Infect Dis 1994; 169(1): 227-8.
[http://dx.doi.org/10.1093/infdis/169.1.227] [PMID: 8277190]
[40]
Shioda T, Levy JA, Cheng-Mayer C. Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1992; 89(20): 9434-8.
[http://dx.doi.org/10.1073/pnas.89.20.9434] [PMID: 1409653]
[41]
Isaka Y, Sato A, Miki S, et al. Small amino acid changes in the V3 loop of human immunodeficiency virus type 2 determines the coreceptor usage for CXCR4 and CCR5. Virology 1999; 264(1): 237-43.
[http://dx.doi.org/10.1006/viro.1999.0006] [PMID: 10544150]
[42]
Koito A, Stamatatos L, Cheng-Mayer C. Small amino acid sequence changes within the V2 domain can affect the function of a T-cell line-tropic human immunodeficiency virus type 1 envelope gp120. Virology 1995; 206(2): 878-84.
[http://dx.doi.org/10.1006/viro.1995.1010] [PMID: 7856100]
[43]
Ivanoff LA, Dubay JW, Morris JF, et al. V3 Loop region of the HIV-1 gpl20 envelope protein is essential for virus infectivity. Virology 1992; 187(2): 423-32.
[http://dx.doi.org/10.1016/0042-6822(92)90444-T] [PMID: 1546447]
[44]
Guo JL, Yan Y, Zhang JF, et al. Co-receptor tropism and genetic characteristics of the V3 regions in variants of antiretroviral-naive HIV-1 infected subjects. Epidemiol Infect 2019; 147: e181.
[http://dx.doi.org/10.1017/S0950268819000700] [PMID: 31063103]
[45]
Hu X, Feng Y, Li K, et al. Unique profile of predominant CCR5-tropic in CRF07_BC HIV-1 infections and discovery of an unusual CXCR4-tropic strain. Front Immunol 2022; 13: 911806.
[http://dx.doi.org/10.3389/fimmu.2022.911806] [PMID: 36211390]
[46]
Irlbeck DM, Amrine-Madsen H, Kitrinos KM, LaBranche CC, Demarest JF. Chemokine (C-C motif) receptor 5-using envelopes predominate in dual/mixed-tropic HIV from the plasma of drug-naive individuals. AIDS 2008; 22(12): 1425-31.
[http://dx.doi.org/10.1097/QAD.0b013e32830184ba] [PMID: 18614865]
[47]
Zhang L, Ma L, Wang Z, et al. Alterations in HIV-1 gp120 V3 region are necessary but not sufficient for coreceptor switching in CRF07_BC in China. PLoS One 2014; 9(3): e93426.
[http://dx.doi.org/10.1371/journal.pone.0093426] [PMID: 24676404]
[48]
Schuitemaker H, van ’t Wout AB, Lusso P. Clinical significance of HIV-1 coreceptor usage. J Transl Med 2011; 9 (Suppl. 1): S5.
[http://dx.doi.org/10.1186/1479-5876-9-S1-S5]
[49]
Gorry PR, Churchill M, Crowe SM, Cunningham AL, Gabuzda D. Pathogenesis of macrophage tropic HIV-1. Curr HIV Res 2005; 3(1): 53-60.
[http://dx.doi.org/10.2174/1570162052772951] [PMID: 15638723]
[50]
Gorry PR, Sterjovski J, Churchill M, et al. The role of viral coreceptors and enhanced macrophage tropism in human immunodeficiency virus type 1 disease progression. Sex Health 2004; 1(1): 23-34.
[http://dx.doi.org/10.1071/SH03006] [PMID: 16335478]
[51]
Maeda Y, Takemura T, Chikata T, et al. Existence of replication-competent minor variants with different coreceptor usage in plasma from HIV-1-infected individuals. J Virol 2020; 94(12): e00193-20.
[http://dx.doi.org/10.1128/JVI.00193-20] [PMID: 32295903]
[52]
Zhang C, Lan Y, Li L, et al. HIV-1 tropism in low-level viral load HIV-1 infections during HAART in Guangdong, China. Front Microbiol 2023; 14: 1159763.
[http://dx.doi.org/10.3389/fmicb.2023.1159763]
[53]
Gray L, Sterjovski J, Churchill M, et al. Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 2005; 337(2): 384-98.
[http://dx.doi.org/10.1016/j.virol.2005.04.034] [PMID: 15916792]
[54]
Cowley S. The biology of HIV infection. Lepr Rev 2001; 72(2): 212-20.
[http://dx.doi.org/10.5935/0305-7518.20010028] [PMID: 11495453]
[55]
Ceresola ER, Nozza S, Sampaolo M, et al. Performance of commonly used genotypic assays and comparison with phenotypic assays of HIV-1 coreceptor tropism in acutely HIV-1-infected patients. J Antimicrob Chemother 2015; 70(5): 1391-5.
[http://dx.doi.org/10.1093/jac/dku573] [PMID: 25608585]
[56]
Chen X, Wang ZX, Pan XM. HIV-1 tropism prediction by the XGboost and HMM methods. Sci Rep 2019; 9(1): 9997.
[http://dx.doi.org/10.1038/s41598-019-46420-4] [PMID: 31292462]
[57]
Phuphuakrat A, Phawattanakul S, Pasomsub E, Kiertiburanakul S, Chantratita W, Sungkanuparph S. Coreceptor tropism determined by genotypic assay in HIV -1 circulating in T hailand, where CRF01_AE predominates. HIV Med 2014; 15(5): 269-75.
[http://dx.doi.org/10.1111/hiv.12108] [PMID: 24215399]
[58]
Ferreira JLP, Coelho LPO, Rodrigues R, et al. Evaluation of genotypic prediction of HIV-1 tropism using population sequencing of replicates. J Virol Methods 2012; 179(2): 325-9.
[http://dx.doi.org/10.1016/j.jviromet.2011.11.018] [PMID: 22138669]
[59]
Riemenschneider M, Cashin KY, Budeus B, et al. Genotypic prediction of co-receptor tropism of HIV-1 subtypes A and C. Sci Rep 2016; 6(1): 24883.
[http://dx.doi.org/10.1038/srep24883] [PMID: 27126912]
[60]
Raymond S, Delobel P, Rogez S, et al. Genotypic prediction of HIV-1 CRF01-AE tropism. J Clin Microbiol 2013; 51(2): 564-70.
[http://dx.doi.org/10.1128/JCM.02328-12] [PMID: 23224099]
[61]
Delgado E, Fernández-García A, Vega Y, et al. Evaluation of genotypic tropism prediction tests compared with in vitro co-receptor usage in HIV-1 primary isolates of diverse subtypes. J Antimicrob Chemother 2012; 67(1): 25-31.
[http://dx.doi.org/10.1093/jac/dkr438] [PMID: 22010208]
[62]
Raymond S, Delobel P, Mavigner M, et al. Correlation between genotypic predictions based on V3 sequences and phenotypic determination of HIV-1 tropism. AIDS 2008; 22(14): F11-6.
[http://dx.doi.org/10.1097/QAD.0b013e32830ebcd4] [PMID: 18753930]
[63]
Garrido C, Roulet V, Chueca N, et al. Evaluation of eight different bioinformatics tools to predict viral tropism in different human immunodeficiency virus type 1 subtypes. J Clin Microbiol 2008; 46(3): 887-91.
[http://dx.doi.org/10.1128/JCM.01611-07] [PMID: 18199789]
[64]
Ghosn J, Bayan T, Meixenberger K, et al. CD4 T cell decline following HIV seroconversion in individuals with and without CXCR4-tropic virus. J Antimicrob Chemother 2017; 72(10): 2862-8.
[http://dx.doi.org/10.1093/jac/dkx247] [PMID: 29091208]
[65]
Sierra-Enguita R, Rodriguez C, Aguilera A, et al. X4 tropic viruses are on the rise in recent HIV-1 seroconverters in Spain. AIDS 2014; 28(11): 1603-9.
[http://dx.doi.org/10.1097/QAD.0000000000000269] [PMID: 24637545]
[66]
Brumme ZL, Goodrich J, Mayer HB, et al. Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals. J Infect Dis 2005; 192(3): 466-74.
[http://dx.doi.org/10.1086/431519] [PMID: 15995960]
[67]
Chalmet K, Dauwe K, Foquet L, et al. Presence of CXCR4-using HIV-1 in patients with recently diagnosed infection: correlates and evidence for transmission. J Infect Dis 2012; 205(2): 174-84.
[http://dx.doi.org/10.1093/infdis/jir714] [PMID: 22147802]
[68]
Li X, Xue Y, Zhou L, et al. Evidence that HIV-1 CRF01_AE is associated with low CD4+T cell count and CXCR4 co-receptor usage in recently infected young men who have sex with men (MSM) in Shanghai, China. PLoS One 2014; 9(2): e89462.
[http://dx.doi.org/10.1371/journal.pone.0089462] [PMID: 24586795]
[69]
To SWC, Chen JHK, Wong KH, Chan KCW, Chen Z, Yam WC. Determination of the high prevalence of Dual/Mixed- or X4-tropism among HIV type 1 CRF01_AE in Hong Kong by genotyping and phenotyping methods. AIDS Res Hum Retroviruses 2013; 29(8): 1123-8.
[http://dx.doi.org/10.1089/aid.2013.0067] [PMID: 23647565]
[70]
de Mendoza C, Rodriguez C, García F, et al. Prevalence of X4 tropic viruses in patients recently infected with HIV-1 and lack of association with transmission of drug resistance. J Antimicrob Chemother 2007; 59(4): 698-704.
[http://dx.doi.org/10.1093/jac/dkm012] [PMID: 17327295]
[71]
Smoleń-Dzirba J, Rosińska M, Kruszyński P, et al. Transmission patterns of HIV-1 non-R5 strains in Poland. Sci Rep 2019; 9(1): 4970.
[http://dx.doi.org/10.1038/s41598-019-41407-7] [PMID: 30899060]
[72]
Li K, Chen H, Li J, et al. Distinct genetic clusters in HIV-1 CRF01_AE-infected patients induced variable degrees of CD4 + T-cell loss. MBio 2024; 15(3): e03349-23.
[http://dx.doi.org/10.1128/mbio.03349-23] [PMID: 38385695]
[73]
Li Y, Han Y, Xie J, et al. CRF01_AE subtype is associated with X4 tropism and fast HIV progression in Chinese patients infected through sexual transmission. AIDS 2014; 28(4): 521-30.
[http://dx.doi.org/10.1097/QAD.0000000000000125] [PMID: 24472744]
[74]
Ng KY, Chew KK, Kaur P, et al. High prevalence of CXCR4 usage among treatment-naive CRF01_AE and CRF51_01B-infected HIV-1 subjects in Singapore. BMC Infect Dis 2013; 13(1): 90.
[http://dx.doi.org/10.1186/1471-2334-13-90] [PMID: 23421710]
[75]
Ge Z, Feng Y, Li K, et al. CRF01_AE and CRF01_AE Cluster 4 are associated with poor immune recovery in Chinese patients under combination antiretroviral therapy. Clin Infect Dis 2021; 72(10): 1799-809.
[http://dx.doi.org/10.1093/cid/ciaa380] [PMID: 32296820]
[76]
Vandekerckhove LPR, Wensing AMJ, Kaiser R, et al. European guidelines on the clinical management of HIV-1 tropism testing. Lancet Infect Dis 2011; 11(5): 394-407.
[http://dx.doi.org/10.1016/S1473-3099(10)70319-4] [PMID: 21429803]
[77]
Koot M, Keet IP, Vos AH, et al. Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med 1993; 118(9): 681-8.
[http://dx.doi.org/10.7326/0003-4819-118-9-199305010-00004] [PMID: 8096374]
[78]
Maas JJJ, Gange SJ, Schuitemaker H, Coutinho RA, Leeuwen R, Margolick JB. Strong association between failure of T cell homeostasis and the syncytium-inducing phenotype among HIV-1-infected men in the Amsterdam cohort study. AIDS 2000; 14(9): 1155-61.
[http://dx.doi.org/10.1097/00002030-200006160-00012] [PMID: 10894279]