Current Chinese Science

Author(s): Behjat Pouramiri and Vajihe Nejadshafiee*

DOI: 10.2174/0122102981343947241125051855

DownloadDownload PDF Flyer Cite As
Caffeine-modified Magnetic Activated Carbon as Novel Bio Adsorbent for Removal of the Diazinon Pesticide in Aqueous Media

Page: [239 - 248] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Introduction: In this study, a novel composite was prepared using a combination of nanotechnology and biotechnology.

Method: This composite involved loading Fe3O4 NPs and immobilizing caffeine on the surface of activated carbon (CAF-MAC NCs), which was prepared from palm kernel source material. The adsorbent properties were characterized using FTIR, TEM, VSM, and TGA techniques.

Result: The adsorbent CAF-MAC NCs were investigated under ultrasound-assisted conditions for the removal of the pesticide diazinon from aqueous solutions. The Langmuir adsorption isotherm model indicated that the maximum adsorption of diazinon was 147.05 mg g-1.

Conclusion: The new bio-adsorbent offers several significant advantages, including high adsorption capacity, cost-effectiveness, green synthesis, recyclability, and easy separation.

Keywords: Magnetic activated carbon, Fe3O4 NPs, caffeine, adsorption capacity, diazinon, pesticides.

[1]
Fadaei, A.; Dehghani, M.H.; Nasseri, S.; Mahvi, A.H.; Rastkari, N.; Shayeghi, M. Organophosphorous pesticides in surface water of Iran. Bull. Environ. Contam. Toxicol., 2012, 88(6), 867-869.
[http://dx.doi.org/10.1007/s00128-012-0568-0] [PMID: 22349309]
[2]
Saeidi, M.; Naeimi, A.; Komeili, M. Magnetite nanoparticles coated with methoxy polyethylene glycol as an efficient adsorbent of diazinon pesticide from water. Adv. Environ. Technol., 2016, 2, 25-31.
[3]
Carson, R. Silent Spring; Fawcett Publications: Greenwich, Conn., 2002.
[4]
Bumpus, J.A.; Tien, M.; Wright, D.; Aust, S.D. Oxidation of persistent environmental pollutants by a white rot fungus. Science, 1985, 228(4706), 1434-1436.
[http://dx.doi.org/10.1126/science.3925550] [PMID: 3925550]
[5]
Hidayah, N.; Lubis, R.; Wiryawan, K.G.; Suharti, S.; Rita, W.; Zurina, R. The effect of native grass substitution using jengkol (Archidendron Jiringa) peel and leaves powder on in vitro rumen fermentation. Iran. J. Appl. Anim. Sci., 2020, 10, 421-427.
[6]
Wu, X.; Li, J.; Zhou, Z.; Lin, Z.; Pang, S.; Bhatt, P.; Mishra, S.; Chen, S. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. Front. Microbiol., 2021, 2021, 12.
[7]
Dehghani, M.H.; Kamalian, S.; Shayeghi, M.; Yousefi, M.; Heidarinejad, Z.; Agarwal, S.; Gupta, V.K. High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes. Microchem. J., 2019, 145, 486-491.
[http://dx.doi.org/10.1016/j.microc.2018.10.053]
[8]
Farkhondeh, T.; Aschner, M.; Sadeghi, M.; Mehrpour, O.; Naseri, K.; Amirabadizadeh, A.; Roshanravan, B.; Aramjoo, H.; Samarghandian, S. The effect of diazinon on blood glucose homeostasis: A systematic and meta-analysis study. Environ. Sci. Pollut. Res. Int., 2021, 28(4), 4007-4018.
[http://dx.doi.org/10.1007/s11356-020-11364-0] [PMID: 33175357]
[9]
Liu, G.; Li, L.; Huang, X.; Zheng, S.; Xu, X.; Liu, Z.; Zhang, Y.; Wang, J.; Lin, H.; Xu, D. Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8. J. Mater. Sci., 2018, 53(15), 10772-10783.
[http://dx.doi.org/10.1007/s10853-018-2352-y]
[11]
Jatoi, A.S.; Hashmi, Z.; Adriyani, R.; Yuniarto, A.; Mazari, S.A.; Akhter, F.; Mubarak, N.M. Recent trends and future challenges of pesticide removal techniques - A comprehensive review. J. Environ. Chem. Eng., 2021, 9(4), 105571-105579.
[http://dx.doi.org/10.1016/j.jece.2021.105571]
[12]
Ponnuchamy, M.; Kapoor, A.; Senthil Kumar, P.; Vo, D.V.N.; Balakrishnan, A.; Mariam Jacob, M.; Sivaraman, P. Sustainable adsorbents for the removal of pesticides from water: A review. Environ. Chem. Lett., 2021, 19(3), 2425-2463.
[http://dx.doi.org/10.1007/s10311-021-01183-1]
[13]
Kınaytürk, N.K.; Tunalı, B.; Türköz Altuğ, D. Eggshell as a biomaterial can have a sorption capability on its surface: A spectroscopic research. R. Soc. Open Sci., 2021, 8(6), 210100-210109.
[http://dx.doi.org/10.1098/rsos.210100] [PMID: 34150316]
[14]
Gebremedhin-Haile, T.; Olguín, M.T.; Solache-Ríos, M. Removal of mercury ions from mixed aqueous metal solutions by natural and modified zeolitic minerals. Water Air Soil Pollut., 2003, 148(1/4), 179-200.
[http://dx.doi.org/10.1023/A:1025474001939]
[15]
Wang, S.; She, Y.; Hong, S.; Du, X.; Yan, M.; Wang, Y.; Qi, Y.; Wang, M.; Jiang, W.; Wang, J. Dual-template imprinted polymers for class-selective solid-phase extraction of seventeen triazine herbicides and metabolites in agro-products. J. Hazard. Mater., 2019, 367, 686-693.
[http://dx.doi.org/10.1016/j.jhazmat.2018.12.089] [PMID: 30654286]
[16]
Mattigod, S.V.; Fryxell, G.E.; Feng, X.; Parker, K.E.; Piers, E.M. Removal of mercury from aqueous streams of fossil fuel power plants using novel functionalized nanoporous sorbents. In: Coal Combustion Byproducts and Environmental Issues; Sajwan, K.S.; Twardowska, I.; Punshon, T.; Alva, A.K., Eds.; Springer: New York, NY, 2006; pp. 99-104.
[http://dx.doi.org/10.1007/0-387-32177-2_10]
[17]
Pradeep, T. Anshup, Noble metal nanoparticles for water purification: A critical review. Thin Solid Films, 2009, 517(24), 6441-6478.
[http://dx.doi.org/10.1016/j.tsf.2009.03.195]
[18]
Cyr, P.J.; Suri, R.P.S.; Helmig, E.D. A pilot scale evaluation of removal of mercury from pharmaceutical wastewater using granular activated carbon. Water Res., 2002, 36(19), 4725-4734.
[http://dx.doi.org/10.1016/S0043-1354(02)00214-2] [PMID: 12448514]
[19]
Wahby, A.; Abdelouahab-Reddam, Z.; El Mail, R.; Stitou, M.; Silvestre-Albero, J.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. Mercury removal from aqueous solution by adsorption on activated carbons prepared from olive stones. Adsorption, 2011, 17(3), 603-609.
[http://dx.doi.org/10.1007/s10450-011-9334-6]
[20]
Khader, E.H.; Mohammed, T.J.; Albayati, T.M. Comparative performance between rice husk and granular activated carbon for the removal of azo tartrazine dye from aqueous solution. Desalination Water Treat., 2021, 229, 372-383.
[http://dx.doi.org/10.5004/dwt.2021.27374]
[21]
Dawood, S.; Sen, T.K.; Phan, C. Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: Kinetic, equilibrium, mechanism and thermodynamic. Bioresour. Technol., 2017, 246, 76-81.
[http://dx.doi.org/10.1016/j.biortech.2017.07.019] [PMID: 28711298]
[22]
Herrera-González, A.M.; Caldera-Villalobos, M.; Peláez-Cid, A.A. Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite. J. Environ. Manage., 2019, 234, 237-244.
[http://dx.doi.org/10.1016/j.jenvman.2019.01.012] [PMID: 30634116]
[23]
Islam, M.A.; Ahmed, M.J.; Khanday, W.A.; Asif, M.; Hameed, B.H. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicol. Environ. Saf., 2017, 138, 279-285.
[http://dx.doi.org/10.1016/j.ecoenv.2017.01.010] [PMID: 28081490]
[24]
Kosheleva, R.I.; Mitropoulos, A.C.; Kyzas, G.Z. Synthesis of activated carbon from food waste. Environ. Chem. Lett., 2019, 17(1), 429-438.
[http://dx.doi.org/10.1007/s10311-018-0817-5]
[25]
Abioye, A.M.; Ani, F.N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renew. Sustain. Energy Rev., 2015, 52, 1282-1293.
[http://dx.doi.org/10.1016/j.rser.2015.07.129]
[26]
Dil, E.A.; Ghaedi, M.; Asfaram, A. The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: Application of ultrasound wave, optimization and modeling. Ultrason. Sonochem., 2017, 34, 792-802.
[http://dx.doi.org/10.1016/j.ultsonch.2016.07.015] [PMID: 27773307]
[27]
Fayazi, M.; Ghanei-Motlagh, M.; Taher, M.A. The adsorption of basic dye (Alizarin red S) from aqueous solution onto activated carbon/γ-Fe2O3 nano-composite: Kinetic and equilibrium studies. Mater. Sci. Semicond. Process., 2015, 40, 35-43.
[http://dx.doi.org/10.1016/j.mssp.2015.06.044]
[28]
Shokry, H.; Elkady, M.; Hamad, H. Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: Operational parameters and mechanism study. J. Mater. Res. Technol., 2019, 8(5), 4477-4488.
[http://dx.doi.org/10.1016/j.jmrt.2019.07.061]
[29]
Kittappa, S.; Jais, F.M.; Ramalingam, M.; Mohd, N.S.; Ibrahim, S. Functionalized magnetic mesoporous palm shell activated carbon for enhanced removal of azo dyes. J. Environ. Chem. Eng., 2020, 8(5), 104081-104089.
[http://dx.doi.org/10.1016/j.jece.2020.104081]
[30]
Nejadshafiee, V.; Islami, M.R. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater. Sci. Eng. C, 2019, 101(101), 42-52.
[http://dx.doi.org/10.1016/j.msec.2019.03.081] [PMID: 31029336]
[31]
Nejadshafiee, V.; Islami, M.R. Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy metals from industrial waste of copper mine. Environ. Sci. Pollut. Res. Int., 2020, 27(2), 1625-1639.
[http://dx.doi.org/10.1007/s11356-019-06732-4] [PMID: 31755054]
[32]
Maghsoodi Goushki, F.; Reza Islami, M.; Nejadshafiee, V. Preparation of eco-friendly nanocomposites based on immobilization of magnetic activated carbon with tartaric acid: Application for adsorption of heavy metals and evaluation of their catalytic activity in C-C coupling reaction. Mater. Sci. Eng. B, 2022, 277, 115591-115601.
[http://dx.doi.org/10.1016/j.mseb.2021.115591]
[33]
Nejadshafiee, V.; Islami, M.R. Bioadsorbent from magnetic activated carbon hybrid for removal of dye and pesticide. ChemistrySelect, 2020, 5(28), 8814-8822.
[http://dx.doi.org/10.1002/slct.202001801]
[34]
Najdanović, S.M.; Petrović, M.M.; Kostić, M.M.; Velinov, N.D.; Radović Vučić, M.D.; Matović, B.Ž.; Bojić, A.L. New way of synthesis of basic bismuth nitrate by electrodeposition from ethanol solution: Characterization and application for removal of RB19 from water. Arab. J. Sci. Eng., 2019, 44(12), 9939-9950.
[http://dx.doi.org/10.1007/s13369-019-04177-y]
[35]
Petrović, M.; Jovanović, T.; Rančev, S.; Kovač, J.; Velinov, N.; Najdanović, S.; Kostić, M.; Bojić, A. Plasma modified electrosynthesized cerium oxide catalyst for plasma and photocatalytic degradation of RB 19 dye. J. Environ. Chem. Eng., 2022, 10(3), 107931.
[http://dx.doi.org/10.1016/j.jece.2022.107931]
[36]
Sohrabi, N.; Mohammadi, R.; Ghassemzadeh, H.R.; Heris, S.S.S. Equilibrium, kinetic and thermodynamic study of diazinon adsorption from water by clay/GO/Fe3O4: Modeling and optimization based on response surface methodology and artificial neural network. J. Mol. Liq., 2021, 328, 115384.
[http://dx.doi.org/10.1016/j.molliq.2021.115384]
[37]
Farmany, A.; Mortazavi, S.S.; Mahdavi, H. Ultrasond-assisted synthesis of Fe3O4/SiO2 core/shell with enhanced adsorption capacity for diazinon removal. J. Magn. Magn. Mater., 2016, 416, 75-80.
[http://dx.doi.org/10.1016/j.jmmm.2016.04.007]
[38]
Ryoo, K.S.; Jung, S.Y.; Sim, H.; Choi, J.H. Comparative study on adsorptive characteristics of diazinon in water by various adsorbents. Bull. Korean Chem. Soc., 2013, 34(9), 2753-2759.
[http://dx.doi.org/10.5012/bkcs.2013.34.9.2753]
[39]
Baharum, N.A.; Nasir, H.M.; Ishak, M.Y.; Isa, N.M.; Hassan, M.A.; Aris, A.Z. Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar. Arab. J. Chem., 2020, 13(7), 6106-6121.
[http://dx.doi.org/10.1016/j.arabjc.2020.05.011]
[40]
Moussavi, G.; Hosseini, H.; Alahabadi, A. The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chem. Eng. J., 2013, 214, 172-179.
[http://dx.doi.org/10.1016/j.cej.2012.10.034]
[41]
Akbarlou, Z.; Alipour, V.; Heidari, M.; Dindarloo, K. Adsorption of diazinon from aqueous solutions onto an activated carbon sample produced in Iran. Environmen. Health Eng. Manag., 2017, 4(2), 93-99.
[http://dx.doi.org/10.15171/EHEM.2017.13]