Protein & Peptide Letters

Author(s): Arshia Nazir*

DOI: 10.2174/0109298665330728241025082011

DownloadDownload PDF Flyer Cite As
Recent Trends in Development of Novel Therapeutics for Modulation of 14-3-3 Protein-Protein Interactions in Diseases

Page: [850 - 861] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

14-3-3s constitute a group of proteins belonging to the phosphoserine/phosphothreonine family that are involved in the regulation of several physiological pathways by interacting with several client proteins. All the eukaryotic cells are known to possess 14-3-3 isoforms. In addition, 14-3-3s isolated from different eukaryotic cells share high sequence homology with each other. Seven isoforms (β, γ, ε, η, ζ, σ, and τ/θ) have been yet identified in mammals. These proteins participate in several physiological processes by either stimulating or interfering with the enzymatic activities of binding partners. These proteins take part in several human diseases upon dysregulation which include cancer and neurodegenerative disorders. Recently, a number of evidences suggest that the interaction of 14-3-3s with either oncogenic or pro-apoptotic proteins can lead to cancer development in animals. In the case of neurodegenerative disorders, 14-3-3s interact with Lewy bodies and neurofibrillary tangles in Parkinson’s and Alzheimer’s diseases, respectively. The current review focuses on strategies to regulate 14-3-3s’ proteins in diseases. Potential strategies to regulate 14-3-3 interactions in disease conditions include the use of small interfering RNAs (siRNA), microRNA (miRNA), and modifications of 14-3-3s or their client proteins. In addition, some peptides or chemicals can also serve as potential inhibitors of 14-3-3. However, optimization of these therapeutic strategies is required for their practical implementations.

Keywords: 14-3-3 proteins, cancer, neurodegenerative disorders, siRNA, miRNA, 14-3-3 protein inhibitors.

Graphical Abstract

[1]
Pair, F.S.; Yacoubian, T.A. 14-3-3 Proteins: Novel pharmacological targets in neurodegenerative diseases. Trends Pharmacol. Sci., 2021, 42(4), 226-238.
[http://dx.doi.org/10.1016/j.tips.2021.01.001] [PMID: 33518287]
[2]
Sluchanko, N.N.; Bustos, D.M. Intrinsic disorder associated with 14-3-3 proteins and their partners. Prog. Mol. Biol. Transl. Sci., 2019, 166, 19-61.
[http://dx.doi.org/10.1016/bs.pmbts.2019.03.007] [PMID: 31521232]
[3]
Andersen, J.L.; Thompson, J.W.; Lindblom, K.R.; Johnson, E.S.; Yang, C.S.; Lilley, L.R.; Freel, C.D.; Moseley, M.A.; Kornbluth, S. A biotin switch-based proteomics approach identifies 14-3-3ζ as a target of Sirt1 in the metabolic regulation of caspase-2. Mol. Cell, 2011, 43(5), 834-842.
[http://dx.doi.org/10.1016/j.molcel.2011.07.028] [PMID: 21884983]
[4]
Pennington, K.L.; Chan, T.Y.; Torres, M.P.; Andersen, J.L. The dynamic and stress-adaptive signaling hub of 14-3-3: Emerging mechanisms of regulation and context-dependent protein–protein interactions. Oncogene, 2018, 37(42), 5587-5604.
[http://dx.doi.org/10.1038/s41388-018-0348-3] [PMID: 29915393]
[5]
Stevers, L.M.; Sijbesma, E.; Botta, M.; MacKintosh, C.; Obsil, T.; Landrieu, I.; Cau, Y.; Wilson, A.J.; Karawajczyk, A.; Eickhoff, J.; Davis, J.; Hann, M.; O’Mahony, G.; Doveston, R.G.; Brunsveld, L.; Ottmann, C. Modulators of 14-3-3 protein-protein interactions. J. Med. Chem., 2018, 61(9), 3755-3778.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00574] [PMID: 28968506]
[6]
Petosa, C.; Masters, S.C.; Bankston, L.A.; Pohl, J.; Wang, B.; Fu, H.; Liddington, R.C. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J. Biol. Chem., 1998, 273(26), 16305-16310.
[http://dx.doi.org/10.1074/jbc.273.26.16305] [PMID: 9632691]
[7]
Ooms, S.; Ju, Y.E. Treatment of sleep disorders in dementia. Curr. Treat. Options Neurol., 2016, 18(9), 40.
[http://dx.doi.org/10.1007/s11940-016-0424-3] [PMID: 27476067]
[8]
Bakthisaran, R.; Tangirala, R.; Rao, C.M. Small heat shock proteins: Role in cellular functions and pathology. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(4), 291-319.
[http://dx.doi.org/10.1016/j.bbapap.2014.12.019] [PMID: 25556000]
[9]
Sluchanko, N.N.; Beelen, S.; Kulikova, A.A.; Weeks, S.D.; Antson, A.A.; Gusev, N.B.; Strelkov, S.V. Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator. Structure, 2017, 25(2), 305-316.
[http://dx.doi.org/10.1016/j.str.2016.12.005] [PMID: 28089448]
[10]
Stavridi, E.S.; Chehab, N.H.; Malikzay, A.; Halazonetis, T.D. Substitutions that compromise the ionizing radiation-induced association of p53 with 14-3-3 proteins also compromise the ability of p53 to induce cell cycle arrest. Cancer Res., 2001, 61(19), 7030-7033.
[PMID: 11585729]
[11]
Ghosh, A.; Ratha, B.N.; Gayen, N.; Mroue, K.H.; Kar, R.K.; Mandal, A.K.; Bhunia, A. Biophysical characterization of essential phosphorylation at the flexible C-terminal region of C-Raf with 14-3-3 ζ protein. PLoS One, 2015, 10(8), e0135976.
[http://dx.doi.org/10.1371/journal.pone.0135976] [PMID: 26295714]
[12]
Fan, X.; Cui, L.; Zeng, Y.; Song, W.; Gaur, U.; Yang, M. 14-3-3 proteins are on the crossroads of cancer, aging, and age-related neurodegenerative disease. Int. J. Mol. Sci., 2019, 20(14), 3518.
[http://dx.doi.org/10.3390/ijms20143518] [PMID: 31323761]
[13]
Neal, C.L.; Yao, J.; Yang, W.; Zhou, X.; Nguyen, N.T.; Lu, J.; Danes, C.G.; Guo, H.; Lan, K.H.; Ensor, J.; Hittelman, W.; Hung, M.C.; Yu, D. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Res., 2009, 69(8), 3425-3432.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2765] [PMID: 19318578]
[14]
Neal, C.L.; Xu, J.; Li, P.; Mori, S.; Yang, J.; Neal, N.N.; Zhou, X.; Wyszomierski, S.L.; Yu, D. Overexpression of 14-3-3ζ in cancer cells activates PI3K via binding the p85 regulatory subunit. Oncogene, 2012, 31(7), 897-906.
[http://dx.doi.org/10.1038/onc.2011.284] [PMID: 21743495]
[15]
Lee, J-J.; Lee, J-S.; Cui, M.N.; Yun, H.H.; Kim, H.Y.; Lee, S.H.; Lee, J-H. BIS targeting induces cellular senescence through the regulation of 14-3-3 zeta/STAT3/SKP2/p27 in glioblastoma cells. Cell Death Dis., 2014, 5(11), e1537.
[http://dx.doi.org/10.1038/cddis.2014.501] [PMID: 25412315]
[16]
Avruch, J.; Khokhlatchev, A.; Kyriakis, J.M.; Luo, Z.; Tzivion, G.; Vavvas, D.; Zhang, X.F. Ras activation of the Raf kinase: Tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog. Horm. Res., 2001, 56(1), 127-156.
[http://dx.doi.org/10.1210/rp.56.1.127] [PMID: 11237210]
[17]
Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165.
[http://dx.doi.org/10.1186/s13045-020-00990-3] [PMID: 33276800]
[18]
Yan, L.; Gu, H.; Li, J.; Xu, M.; Liu, T.; Shen, Y.; Chen, B.; Zhang, G. RKIP and 14-3-3ε exert an opposite effect on human gastric cancer cells SGC7901 by regulating the ERK/MAPK pathway differently. Dig. Dis. Sci., 2013, 58(2), 389-396.
[http://dx.doi.org/10.1007/s10620-012-2341-y] [PMID: 22899242]
[19]
Holmes, T.R.; Al-Matouq, J.; Holmes, M.; Nicola, L.; Rudd, J.C.; Lovas, S.; Hansen, L.A. Targeting 14-3-3ε-CDC25A interactions to trigger apoptotic cell death in skin cancer. Oncotarget, 2020, 11(35), 3267-3278.
[http://dx.doi.org/10.18632/oncotarget.27700] [PMID: 32934772]
[20]
Umbricht, C.B.; Evron, E.; Gabrielson, E.; Ferguson, A.; Marks, J.; Sukumar, S. Hypermethylation of 14-3-3 σ (stratifin) is an early event in breast cancer. Oncogene, 2001, 20(26), 3348-3353.
[http://dx.doi.org/10.1038/sj.onc.1204438] [PMID: 11423985]
[21]
Li, Y.; Wu, Y.; Zhou, Y. Modulation of inactivation properties of CaV2.2 channels by 14-3-3 proteins. Neuron, 2006, 51(6), 755-771.
[http://dx.doi.org/10.1016/j.neuron.2006.08.014] [PMID: 16982421]
[22]
Hashiguchi, M.; Sobue, K.; Paudel, H.K. 14-3-3zeta is an effector of tau protein phosphorylation. J. Biol. Chem., 2000, 275(33), 25247-25254.
[http://dx.doi.org/10.1074/jbc.M003738200] [PMID: 10840038]
[23]
Kawamoto, Y.; Akiguchi, I.; Nakamura, S.; Honjyo, Y.; Shibasaki, H.; Budka, H. 14-3-3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease brains. J. Neuropathol. Exp. Neurol., 2002, 61(3), 245-253.
[http://dx.doi.org/10.1093/jnen/61.3.245] [PMID: 11895039]
[24]
Hermeking, H. The 14-3-3 cancer connection. Nat. Rev. Cancer, 2003, 3(12), 931-943.
[http://dx.doi.org/10.1038/nrc1230] [PMID: 14737123]
[25]
Young, G.M.; Radhakrishnan, V.M.; Centuori, S.M.; Gomes, C.J.; Martinez, J.D. Comparative analysis of 14-3-3 isoform expression and epigenetic alterations in colorectal cancer. BMC Cancer, 2015, 15(1), 826.
[http://dx.doi.org/10.1186/s12885-015-1856-y] [PMID: 26518883]
[26]
Lin, M.; Morrison, C.D.; Jones, S.; Mohamed, N.; Bacher, J.; Plass, C. Copy number gain and oncogenic activity of YWHAZ/14-3-3ζ in head and neck squamous cell carcinoma. Int. J. Cancer, 2009, 125(3), 603-611.
[http://dx.doi.org/10.1002/ijc.24346] [PMID: 19405126]
[27]
Qing, Y.; Sun, L.; Yang, C.; Jiang, J.; Yang, X.; Hu, X.; Cui, D.; Xu, Y.; He, L.; Han, D.; Wan, C. Dysregulated 14-3-3 family in peripheral blood leukocytes of patients with schizophrenia. Sci. Rep., 2016, 6(1), 23791.
[http://dx.doi.org/10.1038/srep23791] [PMID: 27030512]
[28]
Leivonen, S. K.; Rokka, A.; Ostling, P.; Kohonen, P.; Corthals, G. L.; Kallioniemi, O.; Perala, M. Identification of miR-193b targets in breast cancer cells and systems biological analysis of their functional impact. Mol. Cell. Proteomics., 2011, 10(7), 5322.
[http://dx.doi.org/10.1074/mcp.M110.005322]
[29]
Tsukamoto, Y.; Nakada, C.; Noguchi, T.; Tanigawa, M.; Nguyen, L.T.; Uchida, T.; Hijiya, N.; Matsuura, K.; Fujioka, T.; Seto, M.; Moriyama, M. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res., 2010, 70(6), 2339-2349.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2777] [PMID: 20215506]
[30]
Gong, X.; Yan, L.; Gu, H.; Mu, Y.; Tong, G.; Zhang, G. 14-3-3ɛ functions as an oncogene in SGC7901 gastric cancer cells through involvement of cyclin E and p27kip1. Mol. Med. Rep., 2014, 10(6), 3145-3150.
[http://dx.doi.org/10.3892/mmr.2014.2605] [PMID: 25310086]
[31]
Varlı, M.; Bhosle, S.R.; Kim, E.; Yang, Y.; Taş, İ.; Zhou, R.; Pulat, S.; Gamage, C.D.B.; Park, S.Y.; Ha, H.H.; Kim, H. Usnic acid targets 14-3-3 proteins and suppresses cancer progression by blocking substrate interaction. JACS Au, 2024, 4(4), 1521-1537.
[http://dx.doi.org/10.1021/jacsau.3c00774] [PMID: 38665668]
[32]
Moosavi-Movahedi, A.A.; Chamani, J.; Ghourchian, H.; Shafiey, H.; Sorenson, C.M.; Sheibani, N. Electrochemical evidence for the molten globule states of cytochrome c induced by N-alkyl sulfates at low concentrations. J. Protein Chem., 2003, 22(1), 23-30.
[http://dx.doi.org/10.1023/A:1023011609931] [PMID: 12739895]
[33]
Malek-Esfandiari, Z.; Rezvani-Noghani, A.; Sohrabi, T.; Mokaberi, P.; Amiri-Tehranizadeh, Z.; Chamani, J. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with Rebeccamycin: Apoptosis through the down regulation of pi3k/akt signaling pathway. J. Fluoresc., 2023, 33(4), 1537-1557.
[http://dx.doi.org/10.1007/s10895-023-03169-4] [PMID: 36787038]
[34]
Kaffash, M.; Tolou-Shikhzadeh-Yazdi, S.; Soleimani, S.; Hoseinpoor, S.; Saberi, M.R.; Chamani, J. Spectroscopy and molecular simulation on the interaction of Nano-Kaempferol prepared by oil-in-water with two carrier proteins: An investigation of protein–protein interaction. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2024, 309, 123815.
[http://dx.doi.org/10.1016/j.saa.2023.123815] [PMID: 38154302]
[35]
Edfeldt, F.N.B.; Folmer, R.H.A.; Breeze, A.L. Fragment screening to predict druggability (ligandability) and lead discovery success. Drug Discov. Today, 2011, 16(7-8), 284-287.
[http://dx.doi.org/10.1016/j.drudis.2011.02.002] [PMID: 21315179]
[36]
Surade, S.; Blundell, T.L. Structural biology and drug discovery of difficult targets: the limits of ligandability. Chem. Biol., 2012, 19(1), 42-50.
[http://dx.doi.org/10.1016/j.chembiol.2011.12.013] [PMID: 22284353]
[37]
Kalhori, F.; Yazdyani, H.; Khademorezaeian, F.; Hamzkanloo, N.; Mokaberi, P.; Hosseini, S.; Chamani, J. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence, 2022, 37(11), 1836-1845.
[http://dx.doi.org/10.1002/bio.4360] [PMID: 35946171]
[38]
Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res., 2023, 51(D1), D638-D646.
[http://dx.doi.org/10.1093/nar/gkac1000] [PMID: 36370105]
[39]
Sluchanko, N.N.; Artemova, N.V.; Sudnitsyna, M.V.; Safenkova, I.V.; Antson, A.A.; Levitsky, D.I.; Gusev, N.B. Monomeric 14-3-3ζ has a chaperone-like activity and is stabilized by phosphorylated HspB6. Biochemistry, 2012, 51(31), 6127-6138.
[http://dx.doi.org/10.1021/bi300674e] [PMID: 22794279]
[40]
Sunayama, J.; Tsuruta, F.; Masuyama, N.; Gotoh, Y. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J. Cell Biol., 2005, 170(2), 295-304.
[http://dx.doi.org/10.1083/jcb.200409117] [PMID: 16009721]
[41]
Wang, J.; Liu, S.; Yin, Y.; Li, M.; Wang, B.; Yang, L.; Jiang, Y. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis. Apoptosis, 2015, 20(3), 399-409.
[http://dx.doi.org/10.1007/s10495-014-1071-3] [PMID: 25501496]
[42]
Rommel, C.; Radziwill, G.; Lovrić, J.; Noeldeke, J.; Heinicke, T.; Jones, D.; Aitken, A.; Moelling, K. Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene, 1996, 12(3), 609-619.
[PMID: 8637718]
[43]
Dubois, T.; Rommel, C.; Howell, S.; Steinhussen, U.; Soneji, Y.; Morrice, N.; Moelling, K.; Aitken, A. 14-3-3 is phosphorylated by casein kinase I on residue 233. Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction. J. Biol. Chem., 1997, 272(46), 28882-28888.
[http://dx.doi.org/10.1074/jbc.272.46.28882] [PMID: 9360956]
[44]
Gao, C.; Wang, S.; Lu, J.; Chai, X.; Li, Y.; Zhang, P.; Huang, X.; Cai, J.; Zheng, Y.; Guo, X.; Shi, G.; Ke, A.; Fan, J. KSR2-14–3-3ζ complex serves as a biomarker and potential therapeutic target in sorafenib-resistant hepatocellular carcinoma. Biomark. Res., 2022, 10(1), 25.
[http://dx.doi.org/10.1186/s40364-022-00361-9] [PMID: 35468812]
[45]
Corradi, V.; Mancini, M.; Manetti, F.; Petta, S.; Santucci, M.A.; Botta, M. Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein–protein interactions able to drive sensitive and Imatinib-resistant leukemia cells to apoptosis. Bioorg. Med. Chem. Lett., 2010, 20(20), 6133-6137.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.019] [PMID: 20832303]
[46]
Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942), 834-840.
[http://dx.doi.org/10.1126/science.1175371] [PMID: 19608861]
[47]
Mortenson, J.B.; Heppler, L.N.; Banks, C.J.; Weerasekara, V.K.; Whited, M.D.; Piccolo, S.R.; Johnson, W.E.; Thompson, J.W.; Andersen, J.L. Histone deacetylase 6 (HDAC6) promotes the pro-survival activity of 14-3-3ζ via deacetylation of lysines within the 14-3-3ζ binding pocket. J. Biol. Chem., 2015, 290(20), 12487-12496.
[http://dx.doi.org/10.1074/jbc.M114.607580] [PMID: 25770209]
[48]
Depetter, Y.; Geurs, S.; De Vreese, R.; Goethals, S.; Vandoorn, E.; Laevens, A.; Steenbrugge, J.; Meyer, E.; de Tullio, P.; Bracke, M.; D’hooghe, M.; De Wever, O. Selective pharmacological inhibitors of HDAC6 reveal biochemical activity but functional tolerance in cancer models. Int. J. Cancer, 2019, 145(3), 735-747.
[http://dx.doi.org/10.1002/ijc.32169] [PMID: 30694564]
[49]
Johnson, C.; Crowther, S.; Stafford, M.J.; Campbell, D.G.; Toth, R.; MacKintosh, C. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J., 2010, 427(1), 69-78.
[http://dx.doi.org/10.1042/BJ20091834] [PMID: 20141511]
[50]
Zhu, P.; Nguyen, K.T.; Estelle, A.B.; Sluchanko, N.N.; Mehl, R.A.; Cooley, R.B. Genetic encoding of 3-nitro-tyrosine reveals the impacts of 14-3-3 nitration on client binding and dephosphorylation. Protein Sci., 2023, 32(3), e4574.
[http://dx.doi.org/10.1002/pro.4574] [PMID: 36691781]
[51]
Li, Z.; Huang, X.; Li, M.; Chen, Y.E.; Wang, Z.; Liu, L. A ubiquitination-mediated degradation system to target 14-3-3-binding phosphoproteins. Heliyon, 2023, 9(5), e16318.
[http://dx.doi.org/10.1016/j.heliyon.2023.e16318] [PMID: 37251884]
[52]
Sijbesma, E.; Skora, L.; Leysen, S.; Brunsveld, L.; Koch, U.; Nussbaumer, P.; Jahnke, W.; Ottmann, C. Identification of two secondary ligand binding sites in 14-3-3 proteins using fragment screening. Biochemistry, 2017, 56(30), 3972-3982.
[http://dx.doi.org/10.1021/acs.biochem.7b00153] [PMID: 28681606]
[53]
Wang, B.; Yang, H.; Liu, Y.C.; Jelinek, T.; Zhang, L.; Ruoslahti, E.; Fu, H. Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry, 1999, 38(38), 12499-12504.
[http://dx.doi.org/10.1021/bi991353h] [PMID: 10493820]
[54]
Obsilova, V.; Obsil, T. Structural insights into the functional roles of 14-3-3 proteins. Front. Mol. Biosci., 2022, 9, 1016071.
[http://dx.doi.org/10.3389/fmolb.2022.1016071] [PMID: 36188227]
[55]
Masters, S.C.; Fu, H. 14-3-3 proteins mediate an essential anti-apoptotic signal. J. Biol. Chem., 2001, 276(48), 45193-45200.
[http://dx.doi.org/10.1074/jbc.M105971200] [PMID: 11577088]
[56]
Cao, W.; Yang, X.; Zhou, J.; Teng, Z.; Cao, L.; Zhang, X.; Fei, Z. Targeting 14-3-3 protein, difopein induces apoptosis of human glioma cells and suppresses tumor growth in mice. Apoptosis, 2010, 15(2), 230-241.
[http://dx.doi.org/10.1007/s10495-009-0437-4] [PMID: 20033782]
[57]
Zhao, S.; Li, B.; Li, C.; Gao, H.; Miao, Y.; He, Y.; Wang, H.; Gong, L.; Li, D.; Zhang, Y.; Feng, J. The apoptosis regulator 14-3-3η and its potential as a therapeutic target in pituitary oncocytoma. Front. Endocrinol., 2019, 10, 797.
[http://dx.doi.org/10.3389/fendo.2019.00797] [PMID: 31849836]
[58]
Glas, A.; Bier, D.; Hahne, G.; Rademacher, C.; Ottmann, C.; Grossmann, T.N. Constrained peptides with target-adapted cross-links as inhibitors of a pathogenic protein-protein interaction. Angew. Chem. Int. Ed., 2014, 53(9), 2489-2493.
[http://dx.doi.org/10.1002/anie.201310082] [PMID: 24504455]
[59]
Cromm, P.M.; Wallraven, K.; Glas, A.; Bier, D.; Fürstner, A.; Ottmann, C.; Grossmann, T.N. Constraining an irregular peptide secondary structure through ring-closing alkyne metathesis. ChemBioChem, 2016, 17(20), 1915-1919.
[http://dx.doi.org/10.1002/cbic.201600362] [PMID: 27596722]
[60]
Sluchanko, N.N.; Seit-Nebi, A.S.; Gusev, N.B. Phosphorylation of more than one site is required for tight interaction of human tau protein with 14-3-3ζ. FEBS Lett., 2009, 583(17), 2739-2742.
[http://dx.doi.org/10.1016/j.febslet.2009.07.043] [PMID: 19647741]
[61]
Joo, Y.; Schumacher, B.; Landrieu, I.; Bartel, M.; Smet-Nocca, C.; Jang, A.; Choi, H.S.; Jeon, N.L.; Chang, K.A.; Kim, H.S.; Ottmann, C.; Suh, Y.H. Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau. FASEB J., 2015, 29(10), 4133-4144.
[http://dx.doi.org/10.1096/fj.14-265009] [PMID: 26103986]
[62]
Milroy, L.G.; Bartel, M.; Henen, M.A.; Leysen, S.; Adriaans, J.M.C.; Brunsveld, L.; Landrieu, I.; Ottmann, C. Stabilizer-guided inhibition of protein-protein interactions. Angew. Chem. Int. Ed., 2015, 54(52), 15720-15724.
[http://dx.doi.org/10.1002/anie.201507976] [PMID: 26537010]
[63]
Duffner, J.L.; Clemons, P.A.; Koehler, A.N. A pipeline for ligand discovery using small-molecule microarrays. Curr. Opin. Chem. Biol., 2007, 11(1), 74-82.
[http://dx.doi.org/10.1016/j.cbpa.2006.11.031] [PMID: 17169601]
[64]
Wu, H.; Ge, J.; Yao, S.Q. Microarray-assisted high-throughput identification of a cell-permeable small-molecule binder of 14-3-3 proteins. Angew. Chem. Int. Ed., 2010, 49(37), 6528-6532.
[http://dx.doi.org/10.1002/anie.201003257] [PMID: 20677307]
[65]
Arrendale, A.; Kim, K.; Choi, J.Y.; Li, W.; Geahlen, R.L.; Borch, R.F. Synthesis of a phosphoserine mimetic prodrug with potent 14-3-3 protein inhibitory activity. Chem. Biol., 2012, 19(6), 764-771.
[http://dx.doi.org/10.1016/j.chembiol.2012.05.011] [PMID: 22726690]
[66]
Mancini, M.; Corradi, V.; Petta, S.; Barbieri, E.; Manetti, F.; Botta, M.; Santucci, M.A. A new nonpeptidic inhibitor of 14-3-3 induces apoptotic cell death in chronic myeloid leukemia sensitive or resistant to imatinib. J. Pharmacol. Exp. Ther., 2011, 336(3), 596-604.
[http://dx.doi.org/10.1124/jpet.110.172536] [PMID: 21041536]
[67]
Valensin, D.; Cau, Y.; Calandro, P.; Vignaroli, G.; Dello Iacono, L.; Chiariello, M.; Mori, M.; Botta, M. Molecular insights to the bioactive form of BV02, a reference inhibitor of 14-3-3σ protein–protein interactions. Bioorg. Med. Chem. Lett., 2016, 26(3), 894-898.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.066] [PMID: 26774582]
[68]
Iralde-Lorente, L.; Cau, Y.; Clementi, L.; Franci, L.; Tassone, G.; Valensin, D.; Mori, M.; Angelucci, A.; Chiariello, M.; Botta, M. Chemically stable inhibitors of 14-3-3 protein–protein interactions derived from BV02. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 657-664.
[http://dx.doi.org/10.1080/14756366.2019.1574779] [PMID: 30727786]
[69]
Mori, M.; Vignaroli, G.; Cau, Y.; Dinić, J.; Hill, R.; Rossi, M.; Colecchia, D.; Pešić, M.; Link, W.; Chiariello, M.; Ottmann, C.; Botta, M. Discovery of 14-3-3 protein-protein interaction inhibitors that sensitize multidrug-resistant cancer cells to doxorubicin and the Akt inhibitor GSK690693. ChemMedChem, 2014, 9(5), 973-983.
[http://dx.doi.org/10.1002/cmdc.201400044] [PMID: 24715717]
[70]
Zhao, J.; Du, Y.; Horton, J.R.; Upadhyay, A.K.; Lou, B.; Bai, Y.; Zhang, X.; Du, L.; Li, M.; Wang, B.; Zhang, L.; Barbieri, J.T.; Khuri, F.R.; Cheng, X.; Fu, H. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor. Proc. Natl. Acad. Sci. USA, 2011, 108(39), 16212-16216.
[http://dx.doi.org/10.1073/pnas.1100012108] [PMID: 21908710]
[71]
Röglin, L.; Thiel, P.; Kohlbacher, O.; Ottmann, C. Covalent attachment of pyridoxal-phosphate derivatives to 14-3-3 proteins. Proc. Natl. Acad. Sci. USA, 2012, 109(18), E1051-E1053.
[http://dx.doi.org/10.1073/pnas.1116592109] [PMID: 22532669]
[72]
Takemoto, Y.; Watanabe, H.; Uchida, K.; Matsumura, K.; Nakae, K.; Tashiro, E.; Shindo, K.; Kitahara, T.; Imoto, M. Chemistry and biology of moverastins, inhibitors of cancer cell migration, produced by Aspergillus. Chem. Biol., 2005, 12(12), 1337-1347.
[http://dx.doi.org/10.1016/j.chembiol.2005.09.017] [PMID: 16356851]
[73]
Kobayashi, H.; Ogura, Y.; Sawada, M.; Nakayama, R.; Takano, K.; Minato, Y.; Takemoto, Y.; Tashiro, E.; Watanabe, H.; Imoto, M. Involvement of 14-3-3 proteins in the second epidermal growth factor-induced wave of Rac1 activation in the process of cell migration. J. Biol. Chem., 2011, 286(45), 39259-39268.
[http://dx.doi.org/10.1074/jbc.M111.255489] [PMID: 21868386]
[74]
Tashiro, E.; Imoto, M. Screening and target identification of bioactive compounds that modulate cell migration and autophagy. Bioorg. Med. Chem., 2016, 24(15), 3283-3290.
[http://dx.doi.org/10.1016/j.bmc.2016.04.014] [PMID: 27094149]
[75]
Shi, M.; Xu, D. Molecular dynamics investigations suggest a non-specific recognition strategy of 14-3-3σ protein by tweezer: Implication for the inhibition mechanism. Front Chem., 2019, 7, 237.
[http://dx.doi.org/10.3389/fchem.2019.00237] [PMID: 31058132]
[76]
Zhou, X.; Shi, M.; Wang, X.; Xu, D. Exploring the binding mechanism of a supramolecular tweezer CLR01 to 14-3-3 σ protein via well-tempered metadynamics. Front Chem., 2022, 10, 921695.
[http://dx.doi.org/10.3389/fchem.2022.921695] [PMID: 35646830]