Protein & Peptide Letters

Author(s): Siddhant Tripathi, Yashika Sharma and Dileep Kumar*

DOI: 10.2174/0109298665335550241011080252

DownloadDownload PDF Flyer Cite As
Exploring the Therapeutic Potential of Noncoding RNAs in Alzheimer’s Disease

Page: [862 - 883] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Despite significant research efforts, Alzheimer's disease (AD), the primary cause of dementia in older adults worldwide, remains a neurological challenge for which there are currently no effective therapies. There are substantial financial, medical, and personal costs associated with this condition.Important pathological features of AD include hyperphosphorylated microtubule-associated protein Tau, the formation of amyloid β (Aβ) peptides from amyloid precursor protein (APP), and continuous inflammation that ultimately results in neuronal death. Important histological markers of AD, amyloid plaques, and neurofibrillary tangles are created when Aβ and hyperphosphorylated Tau build-up. Nevertheless, a thorough knowledge of the molecular players in AD pathophysiology is still elusive. Recent studies have shown how noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in a variety of diseases, including AD. There is increasing evidence to support the involvement of these ncRNAs in the genesis and progression of AD, making them promising as biomarkers and therapeutic targets. As a result, therapeutic approaches that target regulatory ncRNAs are becoming more popular as potential means of preventing the progression of AD. This review explores the posttranscriptional relationships between ncRNAs and the main AD pathways, highlighting the potential of ncRNAs to advance AD treatment. In AD, ncRNAs, especially miRNAs, change expression and present potential targets for therapy. MiR-346 raises Aβ through APP messenger Ribonucleic Acid (mRNA), whereas miR-107 may decrease Aβ by targeting beta-site amyloid precursor protein cleaving enzyme 1 (BACE1). They are promising early AD biomarkers due to their stability in cerebrospinal fluid (CSF) and blood. Furthermore, additional research is necessary to determine the role that RNA fragments present in AD-related protein deposits play in AD pathogenesis.

Keywords: Alzheimer’s disease, amyloid plaques, circRNA, lncRNA, miRNA, neurodegeneration, neurofibrillary tangles.

[1]
Palop, J.J.; Chin, J.; Mucke, L. A network dysfunction perspective on neurodegenerative diseases. Nature, 2006, 443(7113), 768-773.
[http://dx.doi.org/10.1038/nature05289] [PMID: 17051202]
[2]
Walsh, D.M.; Minogue, A.M.; Sala Frigerio, C.; Fadeeva, J.V.; Wasco, W.; Selkoe, D.J. The APP family of proteins: Similarities and differences. Biochem. Soc. Trans., 2007, 35(2), 416-420.
[http://dx.doi.org/10.1042/BST0350416] [PMID: 17371289]
[3]
Singer, O.; Marr, R.A.; Rockenstein, E.; Crews, L.; Coufal, N.G.; Gage, F.H.; Verma, I.M.; Masliah, E. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci., 2005, 8(10), 1343-1349.
[http://dx.doi.org/10.1038/nn1531] [PMID: 16136043]
[4]
Duyckaerts, C.; Delatour, B.; Potier, M.C. Classification and basic pathology of Alzheimer disease. Acta Neuropathol., 2009, 118(1), 5-36.
[http://dx.doi.org/10.1007/s00401-009-0532-1] [PMID: 19381658]
[5]
Palop, J.J.; Mucke, L. Amyloid-β–induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nat. Neurosci., 2010, 13(7), 812-818.
[http://dx.doi.org/10.1038/nn.2583] [PMID: 20581818]
[6]
Bertram, L.; Lill, C.M.; Tanzi, R.E. The genetics of Alzheimer disease: Back to the future. Neuron, 2010, 68(2), 270-281.
[http://dx.doi.org/10.1016/j.neuron.2010.10.013] [PMID: 20955934]
[7]
Genin, E.; Hannequin, D.; Wallon, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Bullido, M.J.; Engelborghs, S.; De Deyn, P.; Berr, C.; Pasquier, F.; Dubois, B.; Tognoni, G.; Fiévet, N.; Brouwers, N.; Bettens, K.; Arosio, B.; Coto, E.; Del Zompo, M.; Mateo, I.; Epelbaum, J.; Frank-Garcia, A.; Helisalmi, S.; Porcellini, E.; Pilotto, A.; Forti, P.; Ferri, R.; Scarpini, E.; Siciliano, G.; Solfrizzi, V.; Sorbi, S.; Spalletta, G.; Valdivieso, F.; Vepsäläinen, S.; Alvarez, V.; Bosco, P.; Mancuso, M.; Panza, F.; Nacmias, B.; Bossù, P.; Hanon, O.; Piccardi, P.; Annoni, G.; Seripa, D.; Galimberti, D.; Licastro, F.; Soininen, H.; Dartigues, J-F.; Kamboh, M.I.; Van Broeckhoven, C.; Lambert, J.C.; Amouyel, P.; Campion, D. APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Mol. Psychiatry, 2011, 16(9), 903-907.
[http://dx.doi.org/10.1038/mp.2011.52] [PMID: 21556001]
[8]
Logue, M.W.; Schu, M.; Vardarajan, B.N.; Buros, J.; Green, R.C.; Go, R.C.; Griffith, P.; Obisesan, T.O.; Shatz, R.; Borenstein, A.; Cupples, L.A.; Lunetta, K.L.; Fallin, M.D.; Baldwin, C.T.; Farrer, L.A. A comprehensive genetic association study of Alzheimer disease in African Americans. Arch. Neurol., 2011, 68(12), 1569-1579.
[http://dx.doi.org/10.1001/archneurol.2011.646] [PMID: 22159054]
[9]
Vollmar, P.; Kullmann, J.S.; Thilo, B.; Claussen, M.C.; Rothhammer, V.; Jacobi, H.; Sellner, J.; Nessler, S.; Korn, T.; Hemmer, B. Active immunization with amyloid-beta 1-42 impairs memory performance through TLR2/4-dependent activation of the innate immune system. J. Immunol., 2010, 185(10), 6338-6347.
[http://dx.doi.org/10.4049/jimmunol.1001765] [PMID: 20943998]
[10]
Morales, I.; Farías, G.; Maccioni, R.B. Neuroimmunomodulation in the pathogenesis of Alzheimer’s disease. Neuroimmunomodulation, 2010, 17(3), 202-204.
[http://dx.doi.org/10.1159/000258724] [PMID: 20134203]
[11]
Jones, L.; Holmans, P.A.; Hamshere, M.L.; Harold, D.; Moskvina, V.; Ivanov, D.; Pocklington, A.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Pahwa, J.S.; Jones, N.; Stretton, A.; Morgan, A.R.; Lovestone, S.; Powell, J.; Proitsi, P.; Lupton, M.K.; Brayne, C.; Rubinsztein, D.C.; Gill, M.; Lawlor, B.; Lynch, A.; Morgan, K.; Brown, K.S.; Passmore, P.A.; Craig, D.; McGuinness, B.; Todd, S.; Holmes, C.; Mann, D.; Smith, A.D.; Love, S.; Kehoe, P.G.; Mead, S.; Fox, N.; Rossor, M.; Collinge, J.; Maier, W.; Jessen, F.; Schürmann, B.; van den Bussche, H.; Heuser, I.; Peters, O.; Kornhuber, J.; Wiltfang, J.; Dichgans, M.; Frölich, L.; Hampel, H.; Hüll, M.; Rujescu, D.; Goate, A.M.; Kauwe, J.S.K.; Cruchaga, C.; Nowotny, P.; Morris, J.C.; Mayo, K.; Livingston, G.; Bass, N.J.; Gurling, H.; McQuillin, A.; Gwilliam, R.; Deloukas, P.; Al-Chalabi, A.; Shaw, C.E.; Singleton, A.B.; Guerreiro, R.; Mühleisen, T.W.; Nöthen, M.M.; Moebus, S.; Jöckel, K-H.; Klopp, N.; Wichmann, H-E.; Rüther, E.; Carrasquillo, M.M.; Pankratz, V.S.; Younkin, S.G.; Hardy, J.; O’Donovan, M.C.; Owen, M.J.; Williams, J.; Owen, M.J.; Williams, J. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One, 2010, 5(11), e13950.
[http://dx.doi.org/10.1371/journal.pone.0013950] [PMID: 21085570]
[12]
Boutajangout, A.; Quartermain, D.; Sigurdsson, E.M. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci., 2010, 30(49), 16559-16566.
[http://dx.doi.org/10.1523/JNEUROSCI.4363-10.2010] [PMID: 21147995]
[13]
Zivari-Ghader, T.; Valioglu, F.; Eftekhari, A.; Aliyeva, I.; Beylerli, O.; Davran, S.; Cho, W.C.; Beilerli, A.; Khalilov, R.; Javadov, S. Recent progresses in natural based therapeutic materials for Alzheimer’s disease. Heliyon, 2024, 10(4), e26351.
[http://dx.doi.org/10.1016/j.heliyon.2024.e26351] [PMID: 38434059]
[14]
Karadağ, M. Use of Prunus armeniaca L. seed oil and pulp in health and cosmetic products. Adv. Biol. Earth Sci., 2024, 9(Special Issue), 105-110.
[http://dx.doi.org/10.62476/abess105]
[15]
Ahmadian, E.; Eftekhari, A.; Samiei, M.; Maleki Dizaj, S.; Vinken, M. The role and therapeutic potential of connexins, pannexins and their channels in Parkinson’s disease. Cell. Signal., 2019, 58, 111-118.
[http://dx.doi.org/10.1016/j.cellsig.2019.03.010] [PMID: 30877035]
[16]
Kapranov, P.; Cheng, J.; Dike, S.; Nix, D.A.; Duttagupta, R.; Willingham, A.T.; Stadler, P.F.; Hertel, J.; Hackermüller, J.; Hofacker, I.L.; Bell, I.; Cheung, E.; Drenkow, J.; Dumais, E.; Patel, S.; Helt, G.; Ganesh, M.; Ghosh, S.; Piccolboni, A.; Sementchenko, V.; Tammana, H.; Gingeras, T.R. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007, 316(5830), 1484-1488.
[http://dx.doi.org/10.1126/science.1138341] [PMID: 17510325]
[17]
Berretta, J.; Morillon, A. Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep., 2009, 10(9), 973-982.
[http://dx.doi.org/10.1038/embor.2009.181] [PMID: 19680288]
[18]
Pollard, K.S.; Salama, S.R.; Lambert, N.; Lambot, M.A.; Coppens, S.; Pedersen, J.S.; Katzman, S.; King, B.; Onodera, C.; Siepel, A.; Kern, A.D.; Dehay, C.; Igel, H.; Ares, M., Jr; Vanderhaeghen, P.; Haussler, D. An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 2006, 443(7108), 167-172.
[http://dx.doi.org/10.1038/nature05113] [PMID: 16915236]
[19]
Majer, A.; Booth, S.A. Computational methodologies for studying non-coding RNAs relevant to central nervous system function and dysfunction. Brain Res., 2010, 1338, 131-145.
[http://dx.doi.org/10.1016/j.brainres.2010.03.095] [PMID: 20381467]
[20]
Yang, J.H.; Shao, P.; Zhou, H.; Chen, Y.Q.; Qu, L.H. deepBase: A database for deeply annotating and mining deep sequencing data. Nucleic Acids Res., 2010, 38(Database issue)(Suppl. 1), D123-D130.
[http://dx.doi.org/10.1093/nar/gkp943] [PMID: 19966272]
[21]
Brosius, J. Waste not, want not – transcript excess in multicellular eukaryotes. Trends Genet., 2005, 21(5), 287-288.
[http://dx.doi.org/10.1016/j.tig.2005.02.014] [PMID: 15851065]
[22]
Faghihi, M.A.; Modarresi, F.; Khalil, A.M.; Wood, D.E.; Sahagan, B.G.; Morgan, T.E.; Finch, C.E.; St Laurent, G., III; Kenny, P.J.; Wahlestedt, C. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med., 2008, 14(7), 723-730.
[http://dx.doi.org/10.1038/nm1784] [PMID: 18587408]
[23]
Cao, X.; Yeo, G.; Muotri, A.R.; Kuwabara, T.; Gage, F.H. Noncoding RNAs in the mammalian central nervous system. Annu. Rev. Neurosci., 2006, 29(1), 77-103.
[http://dx.doi.org/10.1146/annurev.neuro.29.051605.112839] [PMID: 16776580]
[24]
Mehler, M.F.; Mattick, J.S. Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol. Rev., 2007, 87(3), 799-823.
[http://dx.doi.org/10.1152/physrev.00036.2006] [PMID: 17615389]
[25]
Mercer, T.R.; Dinger, M.E.; Mariani, J.; Kosik, K.S.; Mehler, M.F.; Mattick, J.S. Noncoding RNAs in Long-Term Memory Formation. Neuroscientist, 2008, 14(5), 434-445.
[http://dx.doi.org/10.1177/1073858408319187] [PMID: 18997122]
[26]
Tsurudome, K.; Tsang, K.; Liao, E.H.; Ball, R.; Penney, J.; Yang, J.S.; Elazzouzi, F.; He, T.; Chishti, A.; Lnenicka, G.; Lai, E.C.; Haghighi, A.P. The Drosophila miR-310 cluster negatively regulates synaptic strength at the neuromuscular junction. Neuron, 2010, 68(5), 879-893.
[http://dx.doi.org/10.1016/j.neuron.2010.11.016] [PMID: 21145002]
[27]
Gao, F.B. Context-dependent functions of specific microRNAs in neuronal development. Neural Dev., 2010, 5(1), 25.
[http://dx.doi.org/10.1186/1749-8104-5-25] [PMID: 20920300]
[28]
Qureshi, I.A.; Mehler, M.F. Non-coding RNA networks underlying cognitive disorders across the lifespan. Trends Mol. Med., 2011, 17(6), 337-346.
[http://dx.doi.org/10.1016/j.molmed.2011.02.002] [PMID: 21411369]
[29]
Siegel, G.; Saba, R.; Schratt, G. microRNAs in neurons: Manifold regulatory roles at the synapse. Curr. Opin. Genet. Dev., 2011, 21(4), 491-497.
[http://dx.doi.org/10.1016/j.gde.2011.04.008] [PMID: 21561760]
[30]
Pauli, A.; Rinn, J.L.; Schier, A.F. Non-coding RNAs as regulators of embryogenesis. Nat. Rev. Genet., 2011, 12(2), 136-149.
[http://dx.doi.org/10.1038/nrg2904] [PMID: 21245830]
[31]
Mattick, J.S.; Amaral, P.P.; Dinger, M.E.; Mercer, T.R.; Mehler, M.F. RNA regulation of epigenetic processes. BioEssays, 2009, 31(1), 51-59.
[http://dx.doi.org/10.1002/bies.080099] [PMID: 19154003]
[32]
Suh, N.; Blelloch, R. Small RNAs in early mammalian development: From gametes to gastrulation. Development, 2011, 138(9), 1653-1661.
[http://dx.doi.org/10.1242/dev.056234] [PMID: 21486922]
[33]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[34]
Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004, 23(20), 4051-4060.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[35]
Cai, X.; Hagedorn, C.H.; Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004, 10(12), 1957-1966.
[http://dx.doi.org/10.1261/rna.7135204] [PMID: 15525708]
[36]
Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA Translation and Stability by microRNAs. Annu. Rev. Biochem., 2010, 79(1), 351-379.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[37]
Eulalio, A.; Huntzinger, E.; Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell, 2008, 132(1), 9-14.
[http://dx.doi.org/10.1016/j.cell.2007.12.024] [PMID: 18191211]
[38]
Vasudevan, S.; Tong, Y.; Steitz, J.A. Switching from repression to activation: MicroRNAs can up-regulate translation. Science, 2007, 318(5858), 1931-1934.
[http://dx.doi.org/10.1126/science.1149460] [PMID: 18048652]
[39]
Place, R.F.; Li, L.C.; Pookot, D.; Noonan, E.J.; Dahiya, R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1608-1613.
[http://dx.doi.org/10.1073/pnas.0707594105] [PMID: 18227514]
[40]
Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[41]
Amaral, P.P.; Clark, M.B.; Gascoigne, D.K.; Dinger, M.E.; Mattick, J.S. lncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Res., 2011, 39(Database issue), D146-D151.
[http://dx.doi.org/10.1093/nar/gkq1138] [PMID: 21112873]
[42]
Wilusz, J.E.; Sunwoo, H.; Spector, D.L. Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev., 2009, 23(13), 1494-1504.
[http://dx.doi.org/10.1101/gad.1800909] [PMID: 19571179]
[43]
Magistri, M.; Faghihi, M.A.; St Laurent, G., III; Wahlestedt, C. Regulation of chromatin structure by long noncoding RNAs: Focus on natural antisense transcripts. Trends Genet., 2012, 28(8), 389-396.
[http://dx.doi.org/10.1016/j.tig.2012.03.013] [PMID: 22541732]
[44]
Lam, J.K.W.; Chow, M.Y.T.; Zhang, Y.; Leung, S.W.S. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids, 2015, 4(9), e252.
[http://dx.doi.org/10.1038/mtna.2015.23] [PMID: 26372022]
[45]
Sempere, L.F.; Freemantle, S.; Pitha-Rowe, I.; Moss, E.; Dmitrovsky, E.; Ambros, V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol., 2004, 5(3), R13.
[http://dx.doi.org/10.1186/gb-2004-5-3-r13] [PMID: 15003116]
[46]
Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.; Landthaler, M.; Lin, C.; Socci, N.D.; Hermida, L.; Fulci, V.; Chiaretti, S.; Foà, R.; Schliwka, J.; Fuchs, U.; Novosel, A.; Müller, R.U.; Schermer, B.; Bissels, U.; Inman, J.; Phan, Q.; Chien, M.; Weir, D.B.; Choksi, R.; De Vita, G.; Frezzetti, D.; Trompeter, H.I.; Hornung, V.; Teng, G.; Hartmann, G.; Palkovits, M.; Di Lauro, R.; Wernet, P.; Macino, G.; Rogler, C.E.; Nagle, J.W.; Ju, J.; Papavasiliou, F.N.; Benzing, T.; Lichter, P.; Tam, W.; Brownstein, M.J.; Bosio, A.; Borkhardt, A.; Russo, J.J.; Sander, C.; Zavolan, M.; Tuschl, T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007, 129(7), 1401-1414.
[http://dx.doi.org/10.1016/j.cell.2007.04.040] [PMID: 17604727]
[47]
Bak, M.; Silahtaroglu, A.; Møller, M.; Christensen, M.; Rath, M.F.; Skryabin, B.; Tommerup, N.; Kauppinen, S. MicroRNA expression in the adult mouse central nervous system. RNA, 2008, 14(3), 432-444.
[http://dx.doi.org/10.1261/rna.783108] [PMID: 18230762]
[48]
Lugli, G.; Torvik, V.I.; Larson, J.; Smalheiser, N.R. Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J. Neurochem., 2008, 106(2), 650-661.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05413.x] [PMID: 18410515]
[49]
Natera-Naranjo, O.; Aschrafi, A.; Gioio, A.E.; Kaplan, B.B. Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA, 2010, 16(8), 1516-1529.
[http://dx.doi.org/10.1261/rna.1833310] [PMID: 20584895]
[50]
Suh, M.R.; Lee, Y.; Kim, J.Y.; Kim, S.K.; Moon, S.H.; Lee, J.Y.; Cha, K.Y.; Chung, H.M.; Yoon, H.S.; Moon, S.Y.; Kim, V.N.; Kim, K.S. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol., 2004, 270(2), 488-498.
[http://dx.doi.org/10.1016/j.ydbio.2004.02.019] [PMID: 15183728]
[51]
Ventura, A.; Young, A.G.; Winslow, M.M.; Lintault, L.; Meissner, A.; Erkeland, S.J.; Newman, J.; Bronson, R.T.; Crowley, D.; Stone, J.R.; Jaenisch, R.; Sharp, P.A.; Jacks, T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell, 2008, 132(5), 875-886.
[http://dx.doi.org/10.1016/j.cell.2008.02.019] [PMID: 18329372]
[52]
Makeyev, E.V.; Zhang, J.; Carrasco, M.A.; Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell, 2007, 27(3), 435-448.
[http://dx.doi.org/10.1016/j.molcel.2007.07.015] [PMID: 17679093]
[53]
Dajas-Bailador, F.; Bonev, B.; Garcez, P.; Stanley, P.; Guillemot, F.; Papalopulu, N. microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat. Neurosci., 2012, 15(5), 697-699.
[http://dx.doi.org/10.1038/nn.3082] [PMID: 22484572]
[54]
Radhakrishnan, B.; Anand, A. A. P. Role of miRNA-9 in brain development. J Exp Neurosci., 2016, 10, 101-120.
[http://dx.doi.org/10.4137/JEN.S32843]
[55]
Shenoy, A.; Danial, M.; Blelloch, R.H. Let-7 and miR-125 cooperate to prime progenitors for astrogliogenesis. EMBO J., 2015, 34(9), 1180-1194.
[http://dx.doi.org/10.15252/embj.201489504] [PMID: 25715649]
[56]
Lau, P.; Verrier, J.D.; Nielsen, J.A.; Johnson, K.R.; Notterpek, L.; Hudson, L.D. Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J. Neurosci., 2008, 28(45), 11720-11730.
[http://dx.doi.org/10.1523/JNEUROSCI.1932-08.2008] [PMID: 18987208]
[57]
Konopka, W.; Kiryk, A.; Novak, M.; Herwerth, M.; Parkitna, J.R.; Wawrzyniak, M.; Kowarsch, A.; Michaluk, P.; Dzwonek, J.; Arnsperger, T.; Wilczynski, G.; Merkenschlager, M.; Theis, F.J.; Köhr, G.; Kaczmarek, L.; Schütz, G. MicroRNA loss enhances learning and memory in mice. J. Neurosci., 2010, 30(44), 14835-14842.
[http://dx.doi.org/10.1523/JNEUROSCI.3030-10.2010] [PMID: 21048142]
[58]
Gao, J.; Wang, W.Y.; Mao, Y.W.; Gräff, J.; Guan, J.S.; Pan, L.; Mak, G.; Kim, D.; Su, S.C.; Tsai, L.H. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature, 2010, 466(7310), 1105-1109.
[http://dx.doi.org/10.1038/nature09271] [PMID: 20622856]
[59]
Taganov, K.D.; Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA, 2006, 103(33), 12481-12486.
[http://dx.doi.org/10.1073/pnas.0605298103] [PMID: 16885212]
[60]
Su, W.; Aloi, M.S.; Garden, G.A. MicroRNAs mediating CNS inflammation: Small regulators with powerful potential. Brain Behav. Immun., 2016, 52, 1-8.
[http://dx.doi.org/10.1016/j.bbi.2015.07.003] [PMID: 26148445]
[61]
Beeri, M.S.; Sonnen, J. Brain BDNF expression as a biomarker for cognitive reserve against Alzheimer disease progression. Neurology, 2016, 86(8), 702-703.
[http://dx.doi.org/10.1212/WNL.0000000000002389] [PMID: 26819454]
[62]
Lima Giacobbo, B.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; de Vries, E.F.J. Brain-derived neurotrophic factor in brain disorders: Focus on neuroinflammation. Mol. Neurobiol., 2019, 56(5), 3295-3312.
[http://dx.doi.org/10.1007/s12035-018-1283-6] [PMID: 30117106]
[63]
Tian, N.; Cao, Z.; Zhang, Y. MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease. Neurosci. Bull., 2014, 30(2), 191-197.
[http://dx.doi.org/10.1007/s12264-013-1419-7] [PMID: 24604632]
[64]
Somkuwar, S.S.; Fannon, M.J.; Staples, M.C.; Zamora-Martinez, E.R.; Navarro, A.I.; Kim, A.; Quigley, J.A.; Edwards, S.; Mandyam, C.D. Alcohol dependence-induced regulation of the proliferation and survival of adult brain progenitors is associated with altered BDNF-TrkB signaling. Brain Struct. Funct., 2016, 221(9), 4319-4335.
[http://dx.doi.org/10.1007/s00429-015-1163-z] [PMID: 26659122]
[65]
Rosa, J.M.; Pazini, F.L.; Olescowicz, G.; Camargo, A.; Moretti, M.; Gil-Mohapel, J.; Rodrigues, A.L.S. Prophylactic effect of physical exercise on Aβ1–40-induced depressive-like behavior: Role of BDNF, mTOR signaling, cell proliferation and survival in the hippocampus. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 94, 109646.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109646] [PMID: 31078612]
[66]
Arancibia, S.; Silhol, M.; Moulière, F.; Meffre, J.; Höllinger, I.; Maurice, T.; Tapia-Arancibia, L. Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol. Dis., 2008, 31(3), 316-326.
[http://dx.doi.org/10.1016/j.nbd.2008.05.012] [PMID: 18585459]
[67]
Liu, X.H.; Geng, Z.; Yan, J.; Li, T.; Chen, Q.; Zhang, Q.Y.; Chen, Z.Y. Blocking GSK3β-mediated dynamin1 phosphorylation enhances BDNF-dependent TrkB endocytosis and the protective effects of BDNF in neuronal and mouse models of Alzheimer’s disease. Neurobiol. Dis., 2015, 74, 377-391.
[http://dx.doi.org/10.1016/j.nbd.2014.11.020] [PMID: 25484286]
[68]
Li, W.; Li, X.; Xin, X.; Kan, P.C.; Yan, Y. MicroRNA-613 regulates the expression of brain-derived neurotrophic factor in Alzheimer’s disease. Biosci. Trends, 2016, 10(5), 372-377.
[http://dx.doi.org/10.5582/bst.2016.01127] [PMID: 27545218]
[69]
Yang, Q.; Zhao, Q.; Yin, Y. miR‑133b is a potential diagnostic biomarker for Alzheimer’s disease and has a neuroprotective role. Exp. Ther. Med., 2019, 18(4), 2711-2718.
[http://dx.doi.org/10.3892/etm.2019.7855] [PMID: 31572518]
[70]
Bruban, J.; Voloudakis, G.; Huang, Q.; Kajiwara, Y.; Al Rahim, M.; Yoon, Y.; Shioi, J.; Gama Sosa, M.A.; Shao, Z.; Georgakopoulos, A.; Robakis, N.K. Presenilin 1 is necessary for neuronal, but not glial, EGFR expression and neuroprotection via γ-secretase-independent transcriptional mechanisms. FASEB J., 2015, 29(9), 3702-3712.
[http://dx.doi.org/10.1096/fj.15-270645] [PMID: 25985800]
[71]
Liu, L.; Jiang, X.; Yu, W. Dracohodin perochlorate stimulates fibroblast proliferation via EGFR activation and downstream ERK/CREB and PI3K/Akt/mTOR pathways in vitro. Evid Based Complement Alternat Med., 2019, 2019, 6027186.
[72]
Wang, X.; Xu, Y.; Zhu, H.; Ma, C.; Dai, X.; Qin, C. Downregulated microRNA-222 is correlated with increased p27Kip1 expression in a double transgenic mouse model of Alzheimer’s disease. Mol. Med. Rep., 2015, 12(5), 7687-7692.
[http://dx.doi.org/10.3892/mmr.2015.4339] [PMID: 26398571]
[73]
Li, B.; Chohan, M.O.; Grundke-Iqbal, I.; Iqbal, K. Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol., 2007, 113(5), 501-511.
[http://dx.doi.org/10.1007/s00401-007-0207-8] [PMID: 17372746]
[74]
Hernandez-Rapp, J.; Rainone, S.; Goupil, C.; Dorval, V.; Smith, P.Y.; Saint-Pierre, M.; Vallée, M.; Planel, E.; Droit, A.; Calon, F.; Cicchetti, F.; Hébert, S.S. microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Sci. Rep., 2016, 6(1), 30953.
[http://dx.doi.org/10.1038/srep30953] [PMID: 27484949]
[75]
Wang, G.; Huang, Y.; Wang, L.L.; Zhang, Y.F.; Xu, J.; Zhou, Y.; Lourenco, G.F.; Zhang, B.; Wang, Y.; Ren, R.J.; Halliday, G.M.; Chen, S.D. MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease. Sci. Rep., 2016, 6(1), 26697.
[http://dx.doi.org/10.1038/srep26697] [PMID: 27221467]
[76]
Hu, C.; Zhou, H.; Liu, Y.; Huang, J.; Liu, W.; Zhang, Q.; Tang, Q.; Sheng, F.; Li, G.; Zhang, R. ROCK1 promotes migration and invasion of non‑small‑cell lung cancer cells through the PTEN/PI3K/FAK pathway. Int. J. Oncol., 2019, 55(4), 833-844.
[http://dx.doi.org/10.3892/ijo.2019.4864] [PMID: 31485605]
[77]
Mezache, L.; Mikhail, M.; Garofalo, M.; Nuovo, G.J. Reduced miR-512 and the elevated expression of its targets cFLIP and MCL1 localize to neurons with hyperphosphorylated tau protein in Alzheimer disease. Appl. Immunohistochem. Mol. Morphol., 2015, 23(9), 615-623.
[http://dx.doi.org/10.1097/PAI.0000000000000147] [PMID: 26258756]
[78]
Jiang, Y.; Xu, B.; Chen, J.; Sui, Y.; Ren, L.; Li, J.; Zhang, H.; Guo, L.; Sun, X. Micro-RNA-137 inhibits tau hyperphosphorylation in Alzheimer’s disease and targets the CACNA1C gene in transgenic mice and human neuroblastoma SH-SY5Y cells. Med. Sci. Monit., 2018, 24, 5635-5644.
[http://dx.doi.org/10.12659/MSM.908765] [PMID: 30102687]
[79]
Yang, L.B.; Lindholm, K.; Yan, R.; Citron, M.; Xia, W.; Yang, X.L.; Beach, T.; Sue, L.; Wong, P.; Price, D.; Li, R.; Shen, Y. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med., 2003, 9(1), 3-4.
[http://dx.doi.org/10.1038/nm0103-3] [PMID: 12514700]
[80]
Yang, G.; Song, Y.; Zhou, X.; Deng, Y.; Liu, T.; Weng, G.; Yu, D.; Pan, S. MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol. Med. Rep., 2015, 12(2), 3081-3088.
[http://dx.doi.org/10.3892/mmr.2015.3728] [PMID: 25955795]
[81]
Lei, X.; Lei, L.; Zhang, Z.; Zhang, Z.; Cheng, Y. Downregulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer’s disease. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1565-1574.
[PMID: 25973041]
[82]
Zong, Y.; Wang, H.; Dong, W.; Quan, X.; Zhu, H.; Xu, Y.; Huang, L.; Ma, C.; Qin, C. miR-29c regulates BACE1 protein expression. Brain Res., 2011, 1395, 108-115.
[http://dx.doi.org/10.1016/j.brainres.2011.04.035] [PMID: 21565331]
[83]
Hébert, S.S.; Horré, K.; Nicolaï, L.; Papadopoulou, A.S.; Mandemakers, W.; Silahtaroglu, A.N.; Kauppinen, S.; Delacourte, A.; De Strooper, B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc. Natl. Acad. Sci. USA, 2008, 105(17), 6415-6420.
[http://dx.doi.org/10.1073/pnas.0710263105] [PMID: 18434550]
[84]
Zhu, H.C.; Wang, L.M.; Wang, M.; Song, B.; Tan, S.; Teng, J.F.; Duan, D.X. MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res. Bull., 2012, 88(6), 596-601.
[http://dx.doi.org/10.1016/j.brainresbull.2012.05.018] [PMID: 22721728]
[85]
Wang, W.X.; Rajeev, B.W.; Stromberg, A.J.; Ren, N.; Tang, G.; Huang, Q.; Rigoutsos, I.; Nelson, P.T. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci., 2008, 28(5), 1213-1223.
[http://dx.doi.org/10.1523/JNEUROSCI.5065-07.2008] [PMID: 18234899]
[86]
Chang, F.; Zhang, L.H.; Xu, W.P.; Jing, P.; Zhan, P.Y. microRNA-9 attenuates amyloidβ-induced synaptotoxicity by targeting calcium/calmodulin-dependent protein kinase kinase 2. Mol. Med. Rep., 2014, 9(5), 1917-1922.
[http://dx.doi.org/10.3892/mmr.2014.2013] [PMID: 24603903]
[87]
Yan, C.; Chen, J.; Li, M.; Xuan, W.; Su, D.; You, H.; Huang, Y.; Chen, N.; Liang, X. A decrease in hepatic microRNA-9 expression impairs gluconeogenesis by targeting FOXO1 in obese mice. Diabetologia, 2016, 59(7), 1524-1532.
[http://dx.doi.org/10.1007/s00125-016-3932-5] [PMID: 27003684]
[88]
Janson, J.; Laedtke, T.; Parisi, J.E.; O’Brien, P.; Petersen, R.C.; Butler, P.C. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes, 2004, 53(2), 474-481.
[http://dx.doi.org/10.2337/diabetes.53.2.474] [PMID: 14747300]
[89]
Cheng, C.; Li, W.; Zhang, Z.; Yoshimura, S.; Hao, Q.; Zhang, C.; Wang, Z. MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J. Biol. Chem., 2013, 288(19), 13748-13761.
[http://dx.doi.org/10.1074/jbc.M112.381392] [PMID: 23546882]
[90]
Marttinen, M.; Takalo, M.; Natunen, T.; Wittrahm, R.; Gabbouj, S.; Kemppainen, S.; Leinonen, V.; Tanila, H.; Haapasalo, A.; Hiltunen, M. Molecular mechanisms of synaptotoxicity and neuroinflammation in Alzheimer’s disease. Front. Neurosci., 2018, 12, 963.
[http://dx.doi.org/10.3389/fnins.2018.00963] [PMID: 30618585]
[91]
Liu, D.; Zhao, D.; Zhao, Y.; Wang, Y.; Zhao, Y.; Wen, C. Inhibition of microRNA-155 Alleviates Cognitive Impairment in Alzheimer’s Disease and Involvement of Neuroinflammation. Curr. Alzheimer Res., 2019, 16(6), 473-482.
[http://dx.doi.org/10.2174/1567205016666190503145207] [PMID: 31456514]
[92]
Guedes, J.R.; Custódia, C.M.; Silva, R.J.; de Almeida, L.P.; Pedroso de Lima, M.C.; Cardoso, A.L. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model. Hum. Mol. Genet., 2014, 23(23), 6286-6301.
[http://dx.doi.org/10.1093/hmg/ddu348] [PMID: 24990149]
[93]
Hadar, A.; Milanesi, E.; Walczak, M.; Puzianowska-Kuźnicka, M.; Kuźnicki, J.; Squassina, A.; Niola, P.; Chillotti, C.; Attems, J.; Gozes, I.; Gurwitz, D. SIRT1, miR-132 and miR-212 link human longevity to Alzheimer’s Disease. Sci. Rep., 2018, 8(1), 8465.
[http://dx.doi.org/10.1038/s41598-018-26547-6] [PMID: 29855513]
[94]
Jiao, F.; Gong, Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid. Med. Cell. Longev., 2020, 2020, 1-19.
[http://dx.doi.org/10.1155/2020/6782872] [PMID: 33014276]
[95]
Yuan, H.; Jiang, C.; Zhao, J.; Zhao, Y.; Zhang, Y.; Xu, Y.; Gao, X.; Guo, L.; Liu, Y.; Liu, K.; Xu, B.; Sun, G. Euxanthone attenuates Aβ1–42-induced oxidative stress and apoptosis by triggering autophagy. J. Mol. Neurosci., 2018, 66(4), 512-523.
[http://dx.doi.org/10.1007/s12031-018-1175-2] [PMID: 30345461]
[96]
Wu, D.C.; Zhang, M.F.; Su, S.G.; Fang, H.Y.; Wang, X.H.; He, D.; Xie, Y.Y.; Liu, X.H. HEY2, a target of miR-137, indicates poor outcomes and promotes cell proliferation and migration in hepatocellular carcinoma. Oncotarget, 2016, 7(25), 38052-38063.
[http://dx.doi.org/10.18632/oncotarget.9343] [PMID: 27191260]
[97]
Bai, Y.; Fang, F.; Jiang, J.; Xu, F. Extrinsic calcitonin gene-related peptide inhibits hyperoxia-induced alveolar epithelial type II cells apoptosis, oxidative stress, and reactive oxygen species (ROS) production by enhancing notch 1 and homocysteine-induced endoplasmic reticulum protein (HERP) expression. Med. Sci. Monit., 2017, 23, 5774-5782.
[http://dx.doi.org/10.12659/MSM.904549] [PMID: 29206808]
[98]
Yuan, H.; Du, S.; Deng, Y.; Xu, X.; Zhang, Q.; Wang, M.; Wang, P.; Su, Y.; Liang, X.; Sun, Y.; An, Z. Effects of microRNA-208a on inflammation and oxidative stress in ketamine-induced cardiotoxicity through Notch/NF-κB signal pathways by CHD9. Biosci. Rep., 2019, 39(5), BSR20182381.
[http://dx.doi.org/10.1042/BSR20182381]
[99]
Chen, F.Z.; Zhao, Y.; Chen, H.Z. MicroRNA-98 reduces amyloid β-protein production and improves oxidative stress and mitochondrial dysfunction through the Notch signaling pathway via HEY2 in Alzheimer’s disease mice. Int. J. Mol. Med., 2019, 43(1), 91-102.
[PMID: 30365070]
[100]
Garcia, J.L.; Couceiro, J.; Gomez-Moreta, J.A.; Gonzalez Valero, J.M.; Briz, A.S.; Sauzeau, V.; Lumbreras, E.; Delgado, M.; Robledo, C.; Almunia, M.L.; Bustelo, X.R.; Hernandez, J.M. Expression of VAV1 in the tumour microenvironment of glioblastoma multiforme. J. Neurooncol., 2012, 110(1), 69-77.
[http://dx.doi.org/10.1007/s11060-012-0936-y] [PMID: 22864683]
[101]
Fry, A.L.; Laboy, J.T.; Norman, K.R. VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans. Nat. Commun., 2014, 5(1), 5579.
[http://dx.doi.org/10.1038/ncomms6579] [PMID: 25412913]
[102]
Yang, W.N.; Ma, K.G.; Chen, X.L.; Shi, L.L.; Bu, G.; Hu, X.D.; Han, H.; Liu, Y.; Qian, Y.H. Mitogen-activated protein kinase signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor-mediated amyloid-β uptake in SH-SY5Y cells. Neuroscience, 2014, 278, 276-290.
[http://dx.doi.org/10.1016/j.neuroscience.2014.08.013] [PMID: 25168732]
[103]
Zhou, Y.; Wang, Z.F.; Li, W.; Hong, H.; Chen, J.; Tian, Y.; Liu, Z.Y. Retracted : Protective effects of microRNA-330 on amyloid β-protein production, oxidative stress, and mitochondrial dysfunction in Alzheimer’s disease by targeting VAV1 via the MAPK signaling pathway. J. Cell. Biochem., 2018, 119(7), 5437-5448.
[http://dx.doi.org/10.1002/jcb.26700] [PMID: 29369410]
[104]
Zhong, Z.; Yuan, K.; Tong, X.; Hu, J.; Song, Z.; Zhang, G.; Fang, X.; Zhang, W. MiR-16 attenuates β-amyloid-induced neurotoxicity through targeting β-site amyloid precursor protein-cleaving enzyme 1 in an Alzheimer’s disease cell model. Neuroreport, 2018, 29(16), 1365-1372.
[http://dx.doi.org/10.1097/WNR.0000000000001118] [PMID: 30142113]
[105]
Kim, J.; Yoon, H.; Chung, D.; Brown, J.L.; Belmonte, K.C.; Kim, J. miR-186 is decreased in aged brain and suppresses BACE 1 expression. J. Neurochem., 2016, 137(3), 436-445.
[http://dx.doi.org/10.1111/jnc.13507] [PMID: 26710318]
[106]
Zhang, Y.; Zhao, Y.; Ao, X.; Yu, W.; Zhang, L.; Wang, Y.; Chang, W. The role of non-coding RNAs in Alzheimer’s disease: From regulated mechanism to therapeutic targets and diagnostic biomarkers. Front. Aging Neurosci., 2021, 13, 654978.
[http://dx.doi.org/10.3389/fnagi.2021.654978] [PMID: 34276336]
[107]
Liu, C.; Wang, J.; Li, L.; Xue, L.; Zhang, Y.; Wang, P. MicroRNA-135a and -200b, potential Biomarkers for Alzheimer׳s disease, regulate β secretase and amyloid precursor protein. Brain Res., 2014, 1583, 55-64.
[http://dx.doi.org/10.1016/j.brainres.2014.04.026] [PMID: 25152461]
[108]
Long, J.M.; Maloney, B.; Rogers, J.T.; Lahiri, D.K. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: Implications in Alzheimer’s disease. Mol. Psychiatry, 2019, 24(3), 345-363.
[http://dx.doi.org/10.1038/s41380-018-0266-3] [PMID: 30470799]
[109]
Xie, B.; Zhou, H.; Zhang, R.; Song, M.; Yu, L.; Wang, L.; Liu, Z.; Zhang, Q.; Cui, D.; Wang, X.; Xu, S. Serum miR-206 and miR-132 as potential circulating biomarkers for mild cognitive impairment. J. Alzheimers Dis., 2015, 45(3), 721-731.
[http://dx.doi.org/10.3233/JAD-142847] [PMID: 25589731]
[110]
Zeng, Q.; Zou, L.; Qian, L.; Zhou, F.; Nie, H.; Yu, S.; Jiang, J.; Zhuang, A.; Wang, C.; Zhang, H. Expression of microRNA-222 in serum of patients with Alzheimer’s disease. Mol. Med. Rep., 2017, 16(4), 5575-5579.
[http://dx.doi.org/10.3892/mmr.2017.7301] [PMID: 28849039]
[111]
Hérard, A.S.; Besret, L.; Dubois, A.; Dauguet, J.; Delzescaux, T.; Hantraye, P.; Bonvento, G.; Moya, K.L. siRNA targeted against amyloid precursor protein impairs synaptic activity in vivo. Neurobiol. Aging, 2006, 27(12), 1740-1750.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.10.020] [PMID: 16337035]
[112]
Miller, V.M.; Gouvion, C.M.; Davidson, B.L.; Paulson, H.L. Targeting Alzheimer’s disease genes with RNA interference: An efficient strategy for silencing mutant alleles. Nucleic Acids Res., 2004, 32(2), 661-668.
[http://dx.doi.org/10.1093/nar/gkh208] [PMID: 14754988]
[113]
Drewes, G.; Trinczek, B.; Illenberger, S.; Biernat, J.; Schmitt-Ulms, G.; Meyer, H.E.; Mandelkow, E.M.; Mandelkow, E. Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J. Biol. Chem., 1995, 270(13), 7679-7688.
[PMID: 7706316]
[114]
Peel, A.; Bredesen, D.E. Activation of the cell stress kinase PKR in Alzheimer’s disease and human amyloid precursor protein transgenic mice. Neurobiol. Dis., 2003, 14(1), 52-62.
[http://dx.doi.org/10.1016/S0969-9961(03)00086-X] [PMID: 13678666]
[115]
Azorsa, D.O.; Robeson, R.H.; Frost, D.; hoovet, B.M.; Brautigam, G.R.; Dickey, C.; Beaudry, C.; Basu, G.D.; Holz, D.R.; Hernandez, J.A.; Bisanz, K.M.; Gwinn, L.; Grover, A.; Rogers, J.; Reiman, E.M.; Hutton, M.; Stephan, D.A.; Mousses, S.; Dunckley, T. High-content siRNA screening of the kinome identifies kinases involved in Alzheimer’s disease-related tau hyperphosphorylation. BMC Genomics, 2010, 11(1), 25.
[http://dx.doi.org/10.1186/1471-2164-11-25] [PMID: 20067632]
[116]
Olufunmilayo, E.O.; Holsinger, R.M.D. Roles of Non-Coding RNA in Alzheimer’s Disease Pathophysiology. Int. J. Mol. Sci., 2023, 24(15), 12498.
[http://dx.doi.org/10.3390/ijms241512498] [PMID: 37569871]
[117]
Holsinger, R.M.D.; McLean, C.A.; Beyreuther, K.; Masters, C.L.; Evin, G. Increased expression of the amyloid precursor β-secretase in Alzheimer’s disease. Ann. Neurol., 2002, 51(6), 783-786.
[http://dx.doi.org/10.1002/ana.10208] [PMID: 12112088]
[118]
Holsinger, R.M.D.; Lee, J.S.; Boyd, A.; Masters, C.L.; Collins, S.J. CSF BACE1 activity is increased in CJD and Alzheimer disease versus other dementias. Neurology, 2006, 67(4), 710-712.
[http://dx.doi.org/10.1212/01.wnl.0000229925.52203.4c] [PMID: 16924032]
[119]
Holsinger, R.M.D.; McLean, C.A.; Collins, S.J.; Masters, C.L.; Evin, G. Increased β-Secretase activity in cerebrospinal fluid of Alzheimer’s disease subjects. Ann. Neurol., 2004, 55(6), 898-899.
[http://dx.doi.org/10.1002/ana.20144] [PMID: 15174031]
[120]
Zhang, W.; Zhao, H.; Wu, Q.; Xu, W.; Xia, M. Knockdown of BACE1‑AS by siRNA improves memory and learning behaviors in Alzheimer’s disease animal model. Exp. Ther. Med., 2018, 16(3), 2080-2086.
[http://dx.doi.org/10.3892/etm.2018.6359] [PMID: 30186443]
[121]
Roy, J.; Sarkar, A.; Parida, S.; Ghosh, Z.; Mallick, B. Small RNA sequencing revealed dysregulated piRNAs in Alzheimer’s disease and their probable role in pathogenesis. Mol. Biosyst., 2017, 13(3), 565-576.
[http://dx.doi.org/10.1039/C6MB00699J] [PMID: 28127595]
[122]
Sun, Z.; Wu, T.; Zhao, F.; Lau, A.; Birch, C.M.; Zhang, D.D. KPNA6 (Importin alpha7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Mol. Cell. Biol., 2011, 31(9), 1800-1811.
[http://dx.doi.org/10.1128/MCB.05036-11] [PMID: 21383067]
[123]
Shao, Y.; Chen, Y. Roles of circular RNAs in neurologic disease. Front. Mol. Neurosci., 2016, 9, 25.
[http://dx.doi.org/10.3389/fnmol.2016.00025] [PMID: 27147959]
[124]
Tatro, E.T.; Risbrough, V.; Soontornniyomkij, B.; Young, J.; Shumaker-Armstrong, S.; Jeste, D.V.; Achim, C.L. Short-term recognition memory correlates with regional CNS expression of microRNA-138 in mice. Am. J. Geriatr. Psychiatry, 2013, 21(5), 461-473.
[http://dx.doi.org/10.1016/j.jagp.2012.09.005] [PMID: 23570889]
[125]
Schröder, J.; Ansaloni, S.; Schilling, M.; Liu, T.; Radke, J.; Jaedicke, M.; Schjeide, B.M.; Mashychev, A.; Tegeler, C.; Radbruch, H.; Papenberg, G.; Düzel, S.; Demuth, I.; Bucholtz, N.; Lindenberger, U.; Li, S.C.; Steinhagen-Thiessen, E.; Lill, C.M.; Bertram, L. MicroRNA-138 is a potential regulator of memory performance in humans. Front. Hum. Neurosci., 2014, 8, 501.
[PMID: 25071529]
[126]
Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441), 384-388.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[127]
Xu, H.; Guo, S.; Li, W.; Yu, P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci. Rep., 2015, 5(1), 12453.
[http://dx.doi.org/10.1038/srep12453] [PMID: 26211738]
[128]
Fernández-de Frutos, M.; Galán-Chilet, I.; Goedeke, L.; Kim, B.; Pardo-Marqués, V.; Pérez-García, A.; Herrero, J.I.; Fernández-Hernando, C.; Kim, J.; Ramírez, C.M. MicroRNA 7 impairs insulin signaling and regulates a β levels through posttranscriptional regulation of the insulin receptor substrate 2, insulin receptor, insulin-degrading enzyme, and liver x receptor pathway. Mol. Cell. Biol., 2019, 39(22), e00170-19.
[http://dx.doi.org/10.1128/MCB.00170-19] [PMID: 31501273]
[129]
Zhao, Y.; Alexandrov, P.; Jaber, V.; Lukiw, W. Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Genes (Basel), 2016, 7(12), 116.
[http://dx.doi.org/10.3390/genes7120116] [PMID: 27929395]
[130]
Lonskaya, I.; Shekoyan, A.R.; Hebron, M.L.; Desforges, N.; Algarzae, N.K.; Moussa, C.E.H. Diminished parkin solubility and co-localization with intraneuronal amyloid-β are associated with autophagic defects in Alzheimer’s disease. J. Alzheimers Dis., 2012, 33(1), 231-247.
[http://dx.doi.org/10.3233/JAD-2012-121141] [PMID: 22954671]
[131]
Lukiw, W.J. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front. Genet., 2013, 4, 307.
[http://dx.doi.org/10.3389/fgene.2013.00307] [PMID: 24427167]
[132]
Shi, Z.; Chen, T.; Yao, Q.; Zheng, L.; Zhang, Z.; Wang, J.; Hu, Z.; Cui, H.; Han, Y.; Han, X.; Zhang, K.; Hong, W. The circular RNA ci RS -7 promotes APP and BACE 1 degradation in an NF -κB-dependent manner. FEBS J., 2017, 284(7), 1096-1109.
[http://dx.doi.org/10.1111/febs.14045] [PMID: 28296235]
[133]
Huang, J.L.; Xu, Z.H.; Yang, S.M.; Yu, C.; Zhang, F.; Qin, M.C.; Zhou, Y.; Zhong, Z.G.; Wu, D.P. Identification of Differentially Expressed Profiles of Alzheimer’s Disease Associated Circular RNAs in a Panax Notoginseng Saponins-Treated Alzheimer’s Disease Mouse Model. Comput. Struct. Biotechnol. J., 2018, 16, 523-531.
[http://dx.doi.org/10.1016/j.csbj.2018.10.010] [PMID: 30524667]
[134]
Huang, J.L.; Jing, X.; Tian, X.; Qin, M.C.; Xu, Z.H.; Wu, D.P.; Zhong, Z.G. Neuroprotective properties of Panax notoginseng saponins via preventing oxidative stress injury in SAMP8 Mice. Evid. Based Complement. Alternat. Med., 2017, 2017(1), 8713561.
[http://dx.doi.org/10.1155/2017/8713561] [PMID: 28250796]
[135]
Yang, H.; Wang, H.; Shang, H.; Chen, X.; Yang, S.; Qu, Y.; Ding, J.; Li, X. Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer’s disease. Cell Cycle, 2019, 18(18), 2197-2214.
[http://dx.doi.org/10.1080/15384101.2019.1629773] [PMID: 31373242]
[136]
Diling, C.; Yinrui, G.; Longkai, Q.; Xiaocui, T.; Yadi, L.; Xin, Y.; Guoyan, H.; Ou, S.; Tianqiao, Y.; Dongdong, W.; Yizhen, X.; Yang, B.B.; Qingping, W.; Circular, R.N.A. Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. Aging (Albany NY), 2019, 11(24), 12002-12031.
[http://dx.doi.org/10.18632/aging.102529] [PMID: 31860870]
[137]
Zhang, N.; Gao, Y.; Yu, S.; Sun, X.; Shen, K. Berberine attenuates Aβ42-induced neuronal damage through regulating circHDAC9/miR-142-5p axis in human neuronal cells. Life Sci., 2020, 252, 117637.
[http://dx.doi.org/10.1016/j.lfs.2020.117637] [PMID: 32251633]
[138]
Magistri, M.; Velmeshev, D.; Makhmutova, M.; Faghihi, M.A. Transcriptomics profiling of Alzheimer’s disease reveal neurovascular defects, altered amyloid-β homeostasis, and deregulated expression of long noncoding RNAs. J. Alzheimers Dis., 2015, 48(3), 647-665.
[http://dx.doi.org/10.3233/JAD-150398] [PMID: 26402107]
[139]
Zhang, J.; Zhang, Y.; Tan, X.; Zhang, Q.; Liu, C.; Zhang, Y. MiR-23b-3p induces the proliferation and metastasis of esophageal squamous cell carcinomas cells through the inhibition of EBF3. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(6), 605-614.
[http://dx.doi.org/10.1093/abbs/gmy049] [PMID: 29750239]
[140]
Gu, C.; Chen, C.; Wu, R.; Dong, T.; Hu, X.; Yao, Y.; Zhang, Y.; Long Noncoding, R.N.A. Long noncoding RNA EBF3-AS promotes neuron apoptosis in Alzheimer’s disease. DNA Cell Biol., 2018, 37(3), 220-226.
[http://dx.doi.org/10.1089/dna.2017.4012] [PMID: 29298096]
[141]
Parenti, R.; Paratore, S.; Torrisi, A.; Cavallaro, S. A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during β-amyloid-induced apoptosis. Eur. J. Neurosci., 2007, 26(9), 2444-2457.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05864.x] [PMID: 17970741]
[142]
Huang, W.; Li, Z.; Zhao, L.; Zhao, W. Simvastatin ameliorate memory deficits and inflammation in clinical and mouse model of Alzheimer’s disease via modulating the expression of miR-106b. Biomed. Pharmacother., 2017, 92, 46-57.
[http://dx.doi.org/10.1016/j.biopha.2017.05.060] [PMID: 28528185]
[143]
Zeng, T.; Ni, H.; Yu, Y.; Zhang, M.; Wu, M.; Wang, Q.; Wang, L.; Xu, S.; Xu, Z.; Xu, C.; Xiong, J.; Jiang, J.; Luo, Y.; Wang, Y.; Liu, H. BACE1-AS prevents BACE1 mRNA degradation through the sequestration of BACE1-targeting miRNAs. J. Chem. Neuroanat., 2019, 98, 87-96.
[http://dx.doi.org/10.1016/j.jchemneu.2019.04.001] [PMID: 30959172]
[144]
Modarresi, F.; Faghihi, M.A.; Patel, N.S.; Sahagan, B.G.; Wahlestedt, C.; Lopez-Toledano, M.A. Knockdown of BACE1-AS nonprotein-coding transcript modulates beta-amyloid-related hippocampal neurogenesis. Int. J. Alzheimers Dis., 2011, 2011(1), 929042.
[http://dx.doi.org/10.4061/2011/929042] [PMID: 21785702]
[145]
Mus, E.; Hof, P.R.; Tiedge, H. Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2007, 104(25), 10679-10684.
[http://dx.doi.org/10.1073/pnas.0701532104] [PMID: 17553964]
[146]
Li, H.; Zheng, L.; Jiang, A.; Mo, Y.; Gong, Q. Identification of the biological affection of long noncoding RNA BC200 in Alzheimer’s disease. Neuroreport, 2018, 29(13), 1061-1067.
[http://dx.doi.org/10.1097/WNR.0000000000001057] [PMID: 29979260]
[147]
Puthiyedth, N.; Riveros, C.; Berretta, R.; Moscato, P. Identification of differentially expressed genes through integrated study of Alzheimer’s disease affected brain regions. PLoS One, 2016, 11(4), e0152342.
[http://dx.doi.org/10.1371/journal.pone.0152342] [PMID: 27050411]
[148]
Zhao, M.Y.; Wang, G.Q.; Wang, N.N.; Yu, Q.Y.; Liu, R.L.; Shi, W.Q. The long-non-coding RNA NEAT1 is a novel target for Alzheimer’s disease progression via miR-124/BACE1 axis. Neurol. Res., 2019, 41(6), 489-497.
[http://dx.doi.org/10.1080/01616412.2018.1548747] [PMID: 31014193]
[149]
Yin, R.H.; Yu, J.T.; Tan, L. The Role of SORL1 in Alzheimer’s Disease. Mol. Neurobiol., 2015, 51(3), 909-918.
[http://dx.doi.org/10.1007/s12035-014-8742-5] [PMID: 24833601]
[150]
Rogaeva, E.; Meng, Y.; Lee, J.H.; Gu, Y.; Kawarai, T.; Zou, F.; Katayama, T.; Baldwin, C.T.; Cheng, R.; Hasegawa, H.; Chen, F.; Shibata, N.; Lunetta, K.L.; Pardossi-Piquard, R.; Bohm, C.; Wakutani, Y.; Cupples, L.A.; Cuenco, K.T.; Green, R.C.; Pinessi, L.; Rainero, I.; Sorbi, S.; Bruni, A.; Duara, R.; Friedland, R.P.; Inzelberg, R.; Hampe, W.; Bujo, H.; Song, Y.Q.; Andersen, O.M.; Willnow, T.E.; Graff-Radford, N.; Petersen, R.C.; Dickson, D.; Der, S.D.; Fraser, P.E.; Schmitt-Ulms, G.; Younkin, S.; Mayeux, R.; Farrer, L.A.; St George-Hyslop, P. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet., 2007, 39(2), 168-177.
[http://dx.doi.org/10.1038/ng1943] [PMID: 17220890]
[151]
Ciarlo, E.; Massone, S.; Penna, I.; Nizzari, M.; Gigoni, A.; Dieci, G.; Russo, C.; Florio, T.; Cancedda, R.; Pagano, A. An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer’s disease brain samples. Dis. Model. Mech., 2013, 6(2), 424-433.
[PMID: 22996644]
[152]
Zlokovic, B.V.; Deane, R.; Sagare, A.P.; Bell, R.D.; Winkler, E.A. Low-density lipoprotein receptor-related protein-1: A serial clearance homeostatic mechanism controlling Alzheimer’s amyloid β-peptide elimination from the brain. J. Neurochem., 2010, 115(5), 1077-1089.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07002.x] [PMID: 20854368]
[153]
Storck, S.E.; Kurtyka, M.; Pietrzik, C.U. Brain endothelial LRP1 maintains blood–brain barrier integrity. Fluids Barriers CNS, 2021, 18(1), 27.
[http://dx.doi.org/10.1186/s12987-021-00260-5] [PMID: 34147102]
[154]
Van Gool, B.; Storck, S.E.; Reekmans, S.M.; Lechat, B.; Gordts, P.L.S.M.; Pradier, L.; Pietrzik, C.U.; Roebroek, A.J.M. LRP1 has a predominant role in production over clearance of Aβ in a mouse model of Alzheimer’s disease. Mol. Neurobiol., 2019, 56(10), 7234-7245.
[http://dx.doi.org/10.1007/s12035-019-1594-2] [PMID: 31004319]
[155]
Yamanaka, Y.; Faghihi, M.A.; Magistri, M.; Alvarez-Garcia, O.; Lotz, M.; Wahlestedt, C. Antisense RNA controls LRP1 Sense transcript expression through interaction with a chromatin-associated protein, HMGB2. Cell Rep., 2015, 11(6), 967-976.
[http://dx.doi.org/10.1016/j.celrep.2015.04.011] [PMID: 25937287]
[156]
Kickstein, E.; Krauss, S.; Thornhill, P.; Rutschow, D.; Zeller, R.; Sharkey, J.; Williamson, R.; Fuchs, M.; Köhler, A.; Glossmann, H.; Schneider, R.; Sutherland, C.; Schweiger, S. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21830-21835.
[http://dx.doi.org/10.1073/pnas.0912793107] [PMID: 21098287]
[157]
Lan, Z.; Chen, Y.; Jin, J.; Xu, Y.; Zhu, X. Long non-coding RNA: Insight into mechanisms of Alzheimer’s disease. Front. Mol. Neurosci., 2022, 14, 821002.
[http://dx.doi.org/10.3389/fnmol.2021.821002] [PMID: 35095418]
[158]
Ransohoff, J.D.; Wei, Y.; Khavari, P.A. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol., 2018, 19(3), 143-157.
[http://dx.doi.org/10.1038/nrm.2017.104] [PMID: 29138516]
[159]
Yan, Y.; Yan, H.; Teng, Y.; Wang, Q.; Yang, P.; Zhang, L.; Cheng, H.; Fu, S. Long non-coding RNA 00507/miRNA-181c-5p/TTBK1/MAPT axis regulates tau hyperphosphorylation in Alzheimer’s disease. J. Gene Med., 2020, 22(12), e3268.
[http://dx.doi.org/10.1002/jgm.3268] [PMID: 32891070]
[160]
Lloyd, A.G.; Tateishi, S.; Bieniasz, P.D.; Muesing, M.A.; Yamaizumi, M.; Mulder, L.C.F. Effect of DNA repair protein Rad18 on viral infection. PLoS Pathog., 2006, 2(5), e40.
[http://dx.doi.org/10.1371/journal.ppat.0020040] [PMID: 16710452]
[161]
Harvey, S.H.; Sheedy, D.M.; Cuddihy, A.R.; O’Connell, M.J. Coordination of DNA damage responses via the Smc5/Smc6 complex. Mol. Cell. Biol., 2004, 24(2), 662-674.
[http://dx.doi.org/10.1128/MCB.24.2.662-674.2004] [PMID: 14701739]
[162]
Meng, J.; Ding, T.; Chen, Y.; Long, T.; Xu, Q.; Lian, W.; Liu, W. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int. Immunopharmacol., 2021, 90, 107141.
[http://dx.doi.org/10.1016/j.intimp.2020.107141] [PMID: 33189612]
[163]
Yi, J.; Chen, B.; Yao, X.; Lei, Y.; Ou, F.; Huang, F. Upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in Alzheimer’s disease through inactivating the PI3K/Akt signaling pathway. J. Cell. Biochem., 2019, 120(10), 18053-18065.
[http://dx.doi.org/10.1002/jcb.29108] [PMID: 31190362]
[164]
Tateishi, S.; Sakuraba, Y.; Masuyama, S.; Inoue, H.; Yamaizumi, M. Dysfunction of human Rad18 results in defective postreplication repair and hypersensitivity to multiple mutagens. Proc. Natl. Acad. Sci. USA, 2000, 97(14), 7927-7932.
[http://dx.doi.org/10.1073/pnas.97.14.7927] [PMID: 10884424]
[165]
Zhang, X.; Hamblin, M.H.; Yin, K.J. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol., 2017, 14(12), 1705-1714.
[http://dx.doi.org/10.1080/15476286.2017.1358347] [PMID: 28837398]
[166]
Zhang, L.; Wang, H. Long Non-coding RNA in CNS Injuries: A new target for therapeutic intervention. Mol. Ther. Nucleic Acids, 2019, 17, 754-766.
[http://dx.doi.org/10.1016/j.omtn.2019.07.013] [PMID: 31437654]
[167]
Ma, P.; Li, Y.; Zhang, W.; Fang, F.; Sun, J.; Liu, M.; Li, K.; Dong, L. Long non-coding RNA MALAT1 inhibits neuron apoptosis and neuroinflammation while stimulates neurite outgrowth and its correlation with MiR-125b mediates PTGS2, CDK5 and FOXQ1 in Alzheimer’s disease. Curr. Alzheimer Res., 2019, 16(7), 596-612.
[http://dx.doi.org/10.2174/1567205016666190725130134] [PMID: 31345147]
[168]
Guo, F.; Tang, C.; Li, Y.; Liu, Y.; Lv, P.; Wang, W.; Mu, Y. The interplay of Lnc RNA ANRIL and miR-181b on the inflammation-relevant coronary artery disease through mediating NF-κB signalling pathway. J. Cell. Mol. Med., 2018, 22(10), 5062-5075.
[http://dx.doi.org/10.1111/jcmm.13790] [PMID: 30079603]
[169]
Wei, J.C.; Shi, Y.L.; Wang, Q. LncRNA ANRIL knockdown ameliorates retinopathy in diabetic rats by inhibiting the NF-κB pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(18), 7732-7739.
[PMID: 31599399]
[170]
Zhou, B.; Li, L.; Qiu, X.; Wu, J.; Xu, L.; Shao, W. Long non-coding RNA ANRIL knockdown suppresses apoptosis and pro-inflammatory cytokines while enhancing neurite outgrowth via binding microRNA-125a in a cellular model of Alzheimer’s disease. Mol. Med. Rep., 2020, 22(2), 1489-1497.
[http://dx.doi.org/10.3892/mmr.2020.11203] [PMID: 32626959]
[171]
Li, H.; Qi, J.; Wei, J.; Xu, B.; Min, S.; Wang, L.; Si, Y.; Qiu, H. Long non-coding RNA ANRIL mitigates neonatal hypoxic-ischemic brain damage via targeting the miR-378b/ATG3 axis. Am. J. Transl. Res., 2021, 13(10), 11585-11596.
[PMID: 34786084]
[172]
Massone, S.; Vassallo, I.; Fiorino, G.; Castelnuovo, M.; Barbieri, F.; Borghi, R.; Tabaton, M.; Robello, M.; Gatta, E.; Russo, C.; Florio, T.; Dieci, G.; Cancedda, R.; Pagano, A. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol. Dis., 2011, 41(2), 308-317.
[http://dx.doi.org/10.1016/j.nbd.2010.09.019] [PMID: 20888417]
[173]
Zhang, C.; Li, B. The correlation between LncRNA-17A expression in peripheral blood mononuclear cells and Wnt/β-catenin signaling pathway and cognitive function in patients with Alzheimer disease. Am. J. Transl. Res., 2021, 13(10), 11981-11986.
[PMID: 34786131]
[174]
Wang, M.; Qin, L.; Tang, B. MicroRNAs in Alzheimer’s Disease. Front. Genet., 2019, 10, 153.
[http://dx.doi.org/10.3389/fgene.2019.00153] [PMID: 30881384]
[175]
Zhang, J.; Wang, R. Deregulated lncRNA MAGI2-AS3 in Alzheimer’s disease attenuates amyloid-β induced neurotoxicity and neuroinflammation by sponging miR-374b-5p. Exp. Gerontol., 2021, 144, 111180.
[http://dx.doi.org/10.1016/j.exger.2020.111180] [PMID: 33279663]
[176]
Li, D.; Wang, J.; Zhang, M.; Hu, X.; She, J.; Qiu, X.; Zhang, X.; Xu, L.; Liu, Y.; Qin, S. LncRNA MAGI2-AS3 Is Regulated by BRD4 and Promotes Gastric Cancer Progression via Maintaining ZEB1 Overexpression by Sponging miR-141/200a. Mol. Ther. Nucleic Acids, 2020, 19, 109-123.
[http://dx.doi.org/10.1016/j.omtn.2019.11.003] [PMID: 31837602]
[177]
Tang, C.; Cai, Y.; Jiang, H.; Lv, Z.; Yang, C.; Xu, H.; Li, Z.; Li, Y. LncRNA MAGI2-AS3 inhibits bladder cancer progression by targeting the miR-31-5p/TNS1 axis. Aging (Albany NY), 2020, 12(24), 25547-25563.
[http://dx.doi.org/10.18632/aging.104162] [PMID: 33231563]
[178]
Kumar, S.; Vijayan, M.; Reddy, P.H. MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer’s disease. Hum. Mol. Genet., 2017, 26(19), 3808-3822.
[http://dx.doi.org/10.1093/hmg/ddx267] [PMID: 28934394]
[179]
Müller, M.; Kuiperij, H.B.; Claassen, J.A.; Küsters, B.; Verbeek, M.M. MicroRNAs in Alzheimer’s disease: Differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol. Aging, 2014, 35(1), 152-158.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.07.005] [PMID: 23962497]
[180]
Wong, H.K.A.; Veremeyko, T.; Patel, N.; Lemere, C.A.; Walsh, D.M.; Esau, C.; Vanderburg, C.; Krichevsky, A.M. De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum. Mol. Genet., 2013, 22(15), 3077-3092.
[http://dx.doi.org/10.1093/hmg/ddt164] [PMID: 23585551]
[181]
Pichler, S.; Gu, W.; Hartl, D.; Gasparoni, G.; Leidinger, P.; Keller, A.; Meese, E.; Mayhaus, M.; Hampel, H.; Riemenschneider, M. The miRNome of Alzheimer’s disease: Consistent downregulation of the miR-132/212 cluster. Neurobiol. Aging, 2017, 50, 167.e1-167.e10.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.09.019] [PMID: 27816213]
[182]
Long, J.M.; Lahiri, D.K. MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem. Biophys. Res. Commun., 2011, 404(4), 889-895.
[http://dx.doi.org/10.1016/j.bbrc.2010.12.053] [PMID: 21172309]
[183]
Long, J.M.; Ray, B.; Lahiri, D.K. MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J. Biol. Chem., 2012, 287(37), 31298-31310.
[http://dx.doi.org/10.1074/jbc.M112.366336] [PMID: 22733824]
[184]
Kumar, S.; Reddy, P.H. Are circulating microRNAs peripheral biomarkers for Alzheimer’s disease? Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(9), 1617-1627.
[http://dx.doi.org/10.1016/j.bbadis.2016.06.001] [PMID: 27264337]
[185]
Shmookler Reis, R.J.; Atluri, R.; Balasubramaniam, M.; Johnson, J.; Ganne, A.; Ayyadevara, S. “Protein aggregates” contain RNA and DNA, entrapped by misfolded proteins but largely rescued by slowing translational elongation. Aging Cell, 2021, 20(5), e13326.
[http://dx.doi.org/10.1111/acel.13326] [PMID: 33788386]
[186]
Fakhri, S.; Darvish, E.; Narimani, F.; Moradi, S.Z.; Abbaszadeh, F.; Khan, H. The regulatory role of non-coding RNAs and their interactions with phytochemicals in neurodegenerative diseases: A systematic review. Brief. Funct. Genomics, 2023, 22(2), 143-160.
[http://dx.doi.org/10.1093/bfgp/elac055] [PMID: 36722043]
[187]
Swaminathan, G.; Shigna, A.; Kumar, A.; Byroju, V.V.; Durgempudi, V.R.; Dinesh Kumar, L. RNA interference and nanotechnology: A promising alliance for next generation cancer therapeutics. Front. Nanotechnol., 2021, 3, 694838.
[http://dx.doi.org/10.3389/fnano.2021.694838]
[188]
Samuel, M.S.; Ravikumar, M.; John J, A.; Selvarajan, E.; Patel, H.; Chander, P.S.; Soundarya, J.; Vuppala, S.; Balaji, R.; Chandrasekar, N. A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts, 2022, 12(5), 459.
[http://dx.doi.org/10.3390/catal12050459]
[189]
Wu, X.; Xia, P.; Yang, L.; Lu, C.; Lu, Z. The roles of long non-coding RNAs in Alzheimer’s disease diagnosis, treatment, and their involvement in Alzheimer’s disease immune responses. Noncoding RNA Res., 2024, 9(3), 659-666.
[http://dx.doi.org/10.1016/j.ncrna.2024.03.008] [PMID: 38577023]
[190]
Eldakhakhny, B.; Sutaih, A.M.; Siddiqui, M.A.; Aqeeli, Y.M.; Awan, A.Z.; Alsayegh, M.Y.; Elsamanoudy, S.A.; Elsamanoudy, A. Exploring the role of noncoding RNAs in cancer diagnosis, prognosis, and precision medicine. Noncoding RNA Res., 2024, 9(4), 1315-1323.
[http://dx.doi.org/10.1016/j.ncrna.2024.06.015]
[191]
Nemeth, K.; Bayraktar, R.; Ferracin, M.; Calin, G.A. Non-coding RNAs in disease: From mechanisms to therapeutics. Nat. Rev. Genet., 2024, 25(3), 211-232.
[http://dx.doi.org/10.1038/s41576-023-00662-1] [PMID: 37968332]
[192]
Bougea, A.; Gourzis, P. Biomarker-based precision therapy for Alzheimer’s Disease: Multidimensional evidence leading a new breakthrough in personalized medicine. J. Clin. Med., 2024, 13(16), 4661.
[http://dx.doi.org/10.3390/jcm13164661] [PMID: 39200803]
[193]
Spinelli, C.; Adnani, L.; Choi, D.; Rak, J. Extracellular Vesicles as Conduits of Non-Coding RNA Emission and Intercellular Transfer in Brain Tumors. Noncoding RNA, 2018, 5(1), 1.
[http://dx.doi.org/10.3390/ncrna5010001] [PMID: 30585246]
[194]
Hueso, M.; Mallén, A.; Suñé-Pou, M.; Aran, J.M.; Suñé-Negre, J.M.; Navarro, E. ncRNAs in therapeutics: Challenges and limitations in nucleic acid-based drug delivery. Int. J. Mol. Sci., 2021, 22(21), 11596.
[http://dx.doi.org/10.3390/ijms222111596] [PMID: 34769025]
[195]
Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics-challenges and potential solutions. Nat. Rev. Drug Discov., 2021, 20(8), 629-651.
[http://dx.doi.org/10.1038/s41573-021-00219-z] [PMID: 34145432]
[196]
Svob Strac, D.; Konjevod, M.; Sagud, M.; Nikolac Perkovic, M.; Nedic Erjavec, G.; Vuic, B.; Simic, G.; Vukic, V.; Mimica, N.; Pivac, N. Pharmacogenomics of dementia: Personalizing the treatment of cognitive and neuropsychiatric symptoms. Genes, 2023, 14(11), 2048.