Current Green Chemistry

Author(s): Neha Kapoor, Richa Bhardwaj, Shreya Kotnala, Pankaj Kandwal, Divya Jain, Lokesh Gambhir* and Subhash Chandra*

DOI: 10.2174/0122133461351615241104145045

DownloadDownload PDF Flyer Cite As
Nano-resolutions for Environmental Salvation: Leaping to Sustainability

Page: [146 - 158] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Nanoparticles have emerged as a transformative technology in environmental remediation, addressing the pressing challenges of pollution across air, water, and soil. Nanoparticles, particularly metal oxides, carbon-based materials, and polymers, demonstrate remarkable capabilities in addressing water, air, and soil contamination. Their high surface area to volume ratio enhances their efficiency in pollutant removal while minimizing toxicity, making them suitable alternatives to conventional methods. As traditional remediation methods often carry their environmental risks, there is a pressing need for innovative and sustainable solutions. This review delves into the mechanisms and applications of nanoparticles in various remediation techniques, including photocatalysis, Nanoadsorption, and nanomembranes for water treatment, as well as their effectiveness in soil and air purification. The findings underscore the potential of nanomaterials to enhance remediation efficiency while reducing environmental toxicity. By integrating these innovative solutions into existing environmental management frameworks, nanoparticles can play a crucial role in achieving sustainable environmental practices and mitigating contamination. This review advocates for continued research, development, and application of nanotechnology as a promising avenue for fostering a cleaner, healthier environment and contributing to global sustainability goals.

Keywords: Nanomaterials, environment, sustainability, remediation, nanocatalyst, pollutants.

Graphical Abstract

[1]
Santhakumari, M.; Sagar, N. The environmental threats our world is facing today. In: Handbook of Environmental Materials Management; Hussain, C., Ed.; Springer: Cham, 2020.
[http://dx.doi.org/10.1007/978-3-319-58538-3_180-1]
[2]
Chu, E.; Karr, J.R. Environmental impact: Concept, consequences, measurement. In: Reference Module in Life Sciences; Elsevier: Amsterdam, 2017.
[http://dx.doi.org/10.1016/B978-0-12-809633-8.02380-3]
[3]
Arsenov, D.; Beljin, J.; Jović, D.; Maletić, S.; Borišev, M.; Borišev, I. Nanomaterials as endorsed environmental remediation tools for the next generation: Eco-safety and sustainability. J. Geochem. Explor., 2023, 253, 107283.
[http://dx.doi.org/10.1016/j.gexplo.2023.107283]
[4]
Ferreira, M.T.; Soldado, E.; Borsoi, G.; Mendes, M.P.; Flores-Colen, I. Nanomaterials applied in the construction sector: Environmental, human health, and economic indicators. Appl. Sci. (Basel), 2023, 13(23), 12896.
[http://dx.doi.org/10.3390/app132312896]
[5]
Nyabadza, A.; Makhesana, M.; Plouze, A.; Kumar, A.; Ramirez, I.; Krishnamurthy, S.; Vazquez, M.; Brabazon, D. Advanced nanomaterials and dendrimers in water treatment and the recycling of nanomaterials: A review. J. Environ. Chem. Eng., 2024, 12(3), 112643.
[http://dx.doi.org/10.1016/j.jece.2024.112643]
[6]
Tripathy, D.B.; Gupta, A. Nanomembranes-affiliated water remediation: Chronology, properties, classification, challenges and future prospects. Membranes (Basel), 2023, 13(8), 713.
[http://dx.doi.org/10.3390/membranes13080713] [PMID: 37623773]
[7]
Sharma, S.; Tiwari, S.; Hasan, A.; Saxena, V.; Pandey, L.M. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech., 2018, 8(4), 216.
[http://dx.doi.org/10.1007/s13205-018-1237-8] [PMID: 29651381]
[8]
Rani, N.U.; Sharma, P.; Sharma, R.K. The role of nanotechnology in environmental remediation opportunities and challenges. African J. Bio. Sci., 2014, 6(10), 1-22.
[http://dx.doi.org/10.33472/AFJBS.6.10.2024.4359-4380]
[9]
Rabinowitz, J. Physics and applications of nanoscale fluid flow. Doctor of Philosophy, Columbia University, 2021.
[10]
Rafeeq, H.; Hussain, A.; Ambreen, A.; Zill-e-Huma; Waqas, M.; Bilal, M.; Iqbal, H.M.N. Functionalized nanoparticles and their environmental remediation potential: A review. J. Nanostructure Chem., 2022, 12(6), 1007-1031.
[http://dx.doi.org/10.1007/s40097-021-00468-9]
[11]
Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 2019, 53, 101174.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[12]
Bhattacharya, R.; Mukherjee, P. Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev., 2008, 60(11), 1289-1306.
[http://dx.doi.org/10.1016/j.addr.2008.03.013] [PMID: 18501989]
[13]
Ling, D.; Lee, N.; Hyeon, T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res., 2015, 48(5), 1276-1285.
[http://dx.doi.org/10.1021/acs.accounts.5b00038] [PMID: 25922976]
[14]
Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process., 2015, 32, 55-61.
[http://dx.doi.org/10.1016/j.mssp.2014.12.053]
[15]
Stan, M.; Popa, A.; Toloman, D.; Dehelean, A.; Lung, I.; Katona, G. Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Mater. Sci. Semicond. Process., 2015, 39, 23-29.
[http://dx.doi.org/10.1016/j.mssp.2015.04.038]
[16]
Varadavenkatesan, T.; Selvaraj, R.; Vinayagam, R. Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J. Mol. Liq., 2016, 221, 1063-1070.
[http://dx.doi.org/10.1016/j.molliq.2016.06.064]
[17]
Thandapani, K.; Kathiravan, M.; Namasivayam, E.; Padiksan, I.A.; Natesan, G.; Tiwari, M.; Giovanni, B.; Perumal, V. Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10328-10339.
[http://dx.doi.org/10.1007/s11356-017-9177-0] [PMID: 28537028]
[18]
Annadhasan, M.; Muthukumarasamyvel, T.; Sankar Babu, V.R.; Rajendiran, N. Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustain. Chem. Eng., 2014, 2(4), 887-896.
[http://dx.doi.org/10.1021/sc400500z]
[19]
Maiti, S.; Barman, G.; Konar Laha, J. Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Appl. Nanosci., 2016, 6(4), 529-538.
[http://dx.doi.org/10.1007/s13204-015-0452-4]
[20]
Karthiga, D.; Anthony, S.P. Selective colorimetric sensing of toxic metal cations by green synthesized silver nanoparticles over a wide pH range. RSC Advances, 2013, 3(37), 16765-16774.
[http://dx.doi.org/10.1039/c3ra42308e]
[21]
Kumari, B.; Singh, D.P. A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol. Eng., 2016, 97, 98-105.
[http://dx.doi.org/10.1016/j.ecoleng.2016.08.006]
[22]
Zhong, L.S.; Hu, J.S.; Liang, H.P.; Cao, A.M.; Song, W-G.; Wan, L-J. Self‐Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater., 2006, 18(18), 2426-2431.
[http://dx.doi.org/10.1002/adma.200600504]
[23]
Yadav, M.; Khan, S. Nanotechnology: A new scientific outlook for bioremediation of dye effluents. In: Approaches in Bioremediation; Prasad, R.; Aranda, E., Eds.; Springer: Cham, 2018; pp. 355-368.
[http://dx.doi.org/10.1007/978-3-030-02369-0_16]
[24]
Ghosh, N.; Das, S.; Biswas, G.; Haldar, P.K. Review on some metal oxide nanoparticles as effective adsorbent in wastewater treatment. Water Sci. Technol., 2022, 85(12), 3370-3395.
[http://dx.doi.org/10.2166/wst.2022.153] [PMID: 35771052]
[25]
Afreen, S.; Omar, R.A.; Talreja, N.; Chauhan, D. Carbon-based nanostructured materials for energy and environmental remediation applications. In: Approaches in bioremediation; Prasad, R.; Aranda, E., Eds.; Springer: Cham, 2018; pp. 369-392.
[http://dx.doi.org/10.1007/978-3-030-02369-0_17]
[26]
Wu, Z.Y.; Li, C.; Liang, H.W.; Zhang, Y.N.; Wang, X.; Chen, J.F.; Yu, S.H. Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions. Sci. Rep., 2014, 4(1), 4079.
[http://dx.doi.org/10.1038/srep04079] [PMID: 24518262]
[27]
Kotal, M.; Kim, J.; Oh, J.; Oh, I.K. Recent progress in multifunctional graphene aerogels. Front. Mater., 2016, 3, 29.
[http://dx.doi.org/10.3389/fmats.2016.00029]
[28]
Kumar, R.; Khan, M.A.; Haq, N. Application of carbon nanotubes in heavy metals remediation. Crit. Rev. Environ. Sci. Technol., 2014, 44(9), 1000-1035.
[http://dx.doi.org/10.1080/10643389.2012.741314]
[29]
Gupta, V.K.; Moradi, O.; Tyagi, I.; Agarwal, S.; Sadegh, H.; Shahryari-Ghoshekandi, R.; Makhlouf, A.S.H.; Goodarzi, M.; Garshasbi, A. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification: A review. Crit. Rev. Environ. Sci. Technol., 2016, 46(2), 93-118.
[http://dx.doi.org/10.1080/10643389.2015.1061874]
[30]
Yadav, D.K.; Srivastava, S. Carbon nanotubes as adsorbent to remove heavy metal ion (Mn+7) in wastewater treatment. Mater. Today Proc., 2017, 4(2), 4089-4094.
[http://dx.doi.org/10.1016/j.matpr.2017.02.312]
[31]
Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J.M. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323), 549-552.
[http://dx.doi.org/10.1038/nature09579] [PMID: 21068724]
[32]
Sahoo, T.; Sahu, J.R.; Panda, J.; Hembram, M.; Sahoo, S.K. Nanotechnology: An efficient technique of contaminated water treatment. In: Contaminants in Drinking and Wastewater Sources; Kumar, M.; Snow, D.; Honda, R.; Mukherjee, S., Eds.; Springer: Singapore, 2021; pp. 251-270.
[http://dx.doi.org/10.1007/978-981-15-4599-3_11]
[33]
Gnanaprakasam, P.; Jeena, S.E.; Premnath, D.; Selvaraju, T. Simple and robust green synthesis of Au NPs on reduced graphene oxide for the simultaneous detection of toxic heavy metal ions and bioremediation using bacterium as the scavenger. Electroanalysis, 2016, 28(8), 1885-1893.
[http://dx.doi.org/10.1002/elan.201600002]
[34]
Luo, B.; Liu, S.; Zhi, L. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small, 2012, 8(5), 630-646.
[http://dx.doi.org/10.1002/smll.201101396] [PMID: 22121112]
[35]
Rizwan, K.; Rasheed, T.; Bilal, M. Chapter 21 - Alginate-based nanobiosorbents for bioremediation of environmental pollutants. In: Nano-Biosorbents for Decontamination of Water, Air, and Soil Pollution; 479-502. Elsevier, 2022; pp.
[http://dx.doi.org/10.1016/B978-0-323-90912-9.00021-6]
[36]
Sudhakar, M.S.; Aggarwal, A.; Sah, M.K. Engineering biomaterials for the bioremediation: Advances in nanotechnological approaches for heavy metals removal from natural resources. In: Emerging Technologies in Environmental Bioremediation; Elsevier, 2020; pp. 323-339.
[http://dx.doi.org/10.1016/B978-0-12-819860-5.00014-6]
[37]
Rajan, C.S.R. Nanotechnology in groundwater remediation. Int. J. Environ. Sci. Dev., 2011, 2, 182-187.
[http://dx.doi.org/10.7763/IJESD.2011.V2.121]
[38]
Pak, T.; Archilha, N.L.; de Lima Luz, L.F. Nanotechnology-based remediation of groundwater. In: Nanotechnology Characterization Tools for Environment, Health, and Safety; Kumar, C., Ed.; Springer: Berlin, Heidelberg, 2019.
[http://dx.doi.org/10.1007/978-3-662-59600-5_5]
[39]
Xu, H.; Hao, Z.; Feng, W.; Wang, T.; Li, Y. Mechanism of photodegradation of organic pollutants in seawater by TiO2-based photocatalysts and improvement in their performance. ACS Omega, 2021, 6(45), 30698-30707.
[http://dx.doi.org/10.1021/acsomega.1c04604] [PMID: 34805697]
[40]
Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Colloid Interface Sci., 2019, 272, 102009.
[http://dx.doi.org/10.1016/j.cis.2019.102009] [PMID: 31445351]
[41]
Marschall, R.; Wang, L. Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal. Today, 2014, 225, 111-135.
[http://dx.doi.org/10.1016/j.cattod.2013.10.088]
[42]
Noorimotlagh, Z.; Kazeminezhad, I.; Jaafarzadeh, N.; Ahmadi, M.; Ramezani, Z. Improved performance of immobilized TiO2 under visible light for the commercial surfactant degradation: Role of carbon doped TiO2 and anatase/rutile ratio. Catal. Today, 2020, 348, 277-289.
[http://dx.doi.org/10.1016/j.cattod.2019.08.051]
[43]
Liu, T.; Huang, J.; Huang, Z.; Luo, Q.; Wu, H.; Meng, Y.; He, C.; Li, H. Full-spectrum photocatalytic treatment and in situ upcycling of organophosphorus wastewater enabled by biomimetic urchin-like Bi2S3/CdS. Chem. Eng. J., 2024, 486, 150209.
[http://dx.doi.org/10.1016/j.cej.2024.150209]
[44]
Meng, Y.; Jian, Y.; Li, J.; Wu, H.; Zhang, H.; Saravanamurugan, S.; Yang, S.; Li, H. Surface-active site engineering: Synergy of photo- and supermolecular catalysis in hydrogen transfer enables biomass upgrading and H2 evolution. Chem. Eng. J., 2023, 452(3), 139477.
[http://dx.doi.org/10.1016/j.cej.2022.139477]
[45]
Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D.C.; Miotello, A. Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal. B, 2015, 168-169, 333-341.
[http://dx.doi.org/10.1016/j.apcatb.2014.12.053]
[46]
Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. Photochem. Rev., 2015, 25, 1-29.
[http://dx.doi.org/10.1016/j.jphotochemrev.2015.08.003]
[47]
Gao, S.; Li, W.; Dai, J.; Wang, Q.; Suo, Z. Effect of transition metals doping on electronic structure and optical properties of β-Ga2O3. Mater. Res. Express, 2021, 8(2), 025904.
[http://dx.doi.org/10.1088/2053-1591/abde10]
[48]
Ao, Y.; Xu, J.; Fu, D.; Yuan, C. Synthesis of C,N,S-tridoped mesoporous titania with enhanced visible light-induced photocatalytic activity. Microporous Mesoporous Mater., 2009, 122(1-3), 1-6.
[http://dx.doi.org/10.1016/j.micromeso.2008.11.010]
[49]
Negi, C.; Kandwal, P.; Rawat, J.; Sharma, M.; Sharma, H.; Dalapati, G.; Dwivedi, C. Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity. Appl. Surf. Sci., 2021, 554, 149553.
[http://dx.doi.org/10.1016/j.apsusc.2021.149553]
[50]
Aravind, M.; Amalanathan, M.; Sony, M.; Michael Mary, S.N. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. Appl. Sci. (Basel), 2021, 3, 409.
[51]
Agarwal, A.; Joshi, H. Application of nanotechnology in the remediation of contaminated groundwater: A short review. Rec. Res. Sci. Technol., 2010, 2(6), 51-57.
[52]
Xiao, Z.; Zhang, H.; Xu, Y.; Yuan, M.; Jing, X.; Huang, J.; Li, Q.; Sun, D. Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles. Separ. Purif. Tech., 2017, 174, 466-473.
[http://dx.doi.org/10.1016/j.seppur.2016.10.047]
[53]
Jain, K.; Patel, A.S.; Pardhi, V.P.; Flora, S.J.S. Nanotechnology in wastewater management: A new paradigm towards wastewater treatment. Molecules, 2021, 26(6), 1797.
[http://dx.doi.org/10.3390/molecules26061797] [PMID: 33806788]
[54]
Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M.A. Remediation of wastewater using various nano-materials. Arab. J. Chem., 2019, 12(8), 4897-4919.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.004]
[55]
Singha, I.; Kumar Mishrab, P. Nano-membrane filtration a novel application of nanotechnology for waste water treatment. Mater. Today Proc., 2020, 29(2), 327-332.
[http://dx.doi.org/10.1016/j.matpr.2020.07.284]
[56]
Kumar, P.S.; Venkatesh, K.; Gui, E.L.; Sundaramurthy, J.; Singh, G.; Arthanareeswaran, G. Electrospun carbon nanofibers/TiO2-PAN hybrid membranes for effective removal of metal ions and cationic dye. Environ. Nanotechnol. Monit. Manag., 2018, 10, 366-376.
[http://dx.doi.org/10.1016/j.enmm.2018.08.006]
[57]
Baruah, A.; Chaudhary, V.; Malik, R.; Tomer, V.K. Nanotechnology based solutions for wastewater treatment. In: Nanotechnology in Water and Wastewater Treatment; Elsevier, 2019; pp. 337-368.
[http://dx.doi.org/10.1016/B978-0-12-813902-8.00017-4]
[58]
Yin, Z.; Cui, C.; Chen, H.; Duoni; Yu, X.; Qian, W. The application of carbon nanotube/graphene‐based nanomaterials in wastewater treatment. Small, 2020, 16(15), 1902301.
[http://dx.doi.org/10.1002/smll.201902301] [PMID: 31788946]
[59]
Arora, B.; Attri, P. Carbon nanotubes (CNTs): A potential nanomaterial for water purification. J. Compos. Sci., 2020, 4(3), 135.
[http://dx.doi.org/10.3390/jcs4030135]
[60]
Aslam, M.M.A.; Kuo, H.W.; Den, W.; Usman, M.; Sultan, M.; Ashraf, H. Functionalized carbon nanotubes (Cnts) for water and wastewater treatment: Preparation to application. Sustainability (Basel), 2021, 13(10), 5717.
[http://dx.doi.org/10.3390/su13105717]
[61]
Wilson, M.E.; Rukh, M.G.; Ashraf, M.A. The role of nanotechnology, based on carbon nanotubes in water and wastewater treatment. Desalination Water Treat., 2021, 242, 12-21.
[http://dx.doi.org/10.5004/dwt.2021.27568]
[62]
R, J.; Gurunathan, B.; K, S.; Varjani, S.; Ngo, H.H.; Gnansounou, E. Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production. Environ. Res., 2022, 203, 111815.
[http://dx.doi.org/10.1016/j.envres.2021.111815] [PMID: 34352231]
[63]
Pandey, N.; Shukla, S.K.; Singh, N.B. Water purification by polymer nanocomposites: An overview. Nanocomposites, 2017, 3(2), 47-66.
[http://dx.doi.org/10.1080/20550324.2017.1329983]
[64]
Tlili, I.; Alkanhal, T.A. Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment. J. Water Reuse Desalin., 2019, 9(3), 232-248.
[http://dx.doi.org/10.2166/wrd.2019.057]
[65]
Madhura, L.; Singh, S. A review on the advancements of nanomembranes for water treatment. In: Nanotechnology in Environmental Science; Hussain, C.M.; Mishra, A.K., Eds.; , 2018.
[http://dx.doi.org/10.1002/9783527808854.ch12]
[66]
Mohamed Khalith, S.B.; Ramalingam, R.; Karuppannan, S.K.; Dowlath, M.J.H.; Kumar, R.; Vijayalakshmi, S.; Uma Maheshwari, R.; Arunachalam, K.D. Synthesis and characterization of polyphenols functionalized graphitic hematite nanocomposite adsorbent from an agro waste and its application for removal of Cs from aqueous solution. Chemosphere, 2022, 286(Pt 1), 131493.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131493] [PMID: 34346332]
[67]
Manikandan, S.; Subbaiya, R.; Saravanan, M.; Ponraj, M.; Selvam, M.; Pugazhendhi, A. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere, 2022, 289, 132867.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132867] [PMID: 34774910]
[68]
Agarwal, R.; Katiyar, V.K.; Tewari, P. Use of nanofilters for the control of polution from the industrial chimneys. Tech Connect Briefs., 2009, 1, 257-261.
[69]
Saleem, H.; Zaidi, S.J.; Ismail, A.F.; Goh, P.S. Advances of nanomaterials for air pollution remediation and their impacts on the environment. Chemosphere, 2022, 287(Pt 2), 132083.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132083] [PMID: 34488054]
[70]
Song, H.S.; Park, M.G.; Kwon, S.J.; Yi, K.B.; Croiset, E.; Chen, Z.; Nam, S.C. Hydrogen sulfide adsorption on nano-sized zinc oxide/reduced graphite oxide composite at ambient condition. Appl. Surf. Sci., 2013, 276, 646-652.
[http://dx.doi.org/10.1016/j.apsusc.2013.03.147]
[71]
Sekhavatjou, M.S.; Moradi, R.; Alhashemi, A.H.; Hejabi, A.T. A new method forsulfur components removal from sour gas through application of zinc and iron oxides nanoparticles. Int. J. Environ. Res., 2014, 8(2), 273-278.
[72]
Filiciotto, L.; Luque, R. Nanocatalysis for green chemistry. In: Green Chemistry and Chemical Engineering. Encyclopedia of Sustainability Science and Technology Series; Han, B.; Wu, T., Eds.; Springer: New York, 2019.
[http://dx.doi.org/10.1007/978-1-4939-9060-3_1007]
[73]
Singh, S.B.; Tandon, P.K. Catalysis: A brief review on nano-catalyst. J. Energy Chem. Eng., 2014, 2, 106-115.
[74]
Khan, M.M.; Adil, S.F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc., 2015, 19(5), 462-464.
[http://dx.doi.org/10.1016/j.jscs.2015.04.003]
[75]
Danish, M.S.S.; Estrella, L.L.; Alemaida, I.M.A.; Lisin, A.; Moiseev, N.; Ahmadi, M.; Nazari, M.; Wali, M.; Zaheb, H.; Senjyu, T. Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals, 2021, 11(1), 80.
[http://dx.doi.org/10.3390/met11010080]
[76]
Kadam, V.V.; Wang, L.; Padhye, R. Electrospun nanofibre materials to filter air pollutants – A review. J. Ind. Text., 2018, 47(8), 2253-2280.
[http://dx.doi.org/10.1177/1528083716676812]
[77]
Lyu, C.; Zhao, P.; Xie, J.; Dong, S.; Liu, J.; Rao, C.; Fu, J. Electrospinning of nanofibrous membrane and its applications in air filtration: A review. Nanomaterials (Basel), 2021, 11(6), 1501.
[http://dx.doi.org/10.3390/nano11061501] [PMID: 34204161]
[78]
Liang, W.; Xu, Y.; Li, X.; Wang, X.X.; Zhang, H.D.; Yu, M.; Ramakrishna, S.; Long, Y.Z. Transparent polyurethane nanofiber air filter for high-efficiency PM2.5 capture. Nanoscale Res. Lett., 2019, 14(1), 361.
[http://dx.doi.org/10.1186/s11671-019-3199-0] [PMID: 31792730]
[79]
Orlando, R.; Polat, M.; Afshari, A.; Johnson, M.S.; Fojan, P. Electrospun nanofibre air filters for particles and gaseous pollutants. Sustainability (Basel), 2021, 13(12), 6553.
[http://dx.doi.org/10.3390/su13126553]
[80]
Sanyal, A.; Sinha-Ray, S. Ultrafine PVDF nanofibers for filtration of air-borne particulate matters: A comprehensive review. Polymers (Basel), 2021, 13(11), 1864.
[http://dx.doi.org/10.3390/polym13111864] [PMID: 34205188]
[81]
Souzandeh, H.; Wang, Y.; Zhong, W.H. “Green” nano-filters: Fine nanofibers of natural protein for high efficiency filtration of particulate pollutants and toxic gases. RSC Advances, 2016, 6(107), 105948-105956.
[http://dx.doi.org/10.1039/C6RA24512A]
[82]
Muralikrishnan, R.; Swarnalakshmi, M.; Nakkeeran, E. Nanoparticle-membrane filtration of vehicular exhaust to reduce air pollution – A review. Int. Res. J. Environ. Sci., 2014, 3(4), 82-86.
[83]
Qian, Y.; Qin, C.; Chen, M.; Lin, S. Nanotechnology in soil remediation − Applications vs. implications. Ecotoxicol. Environ. Saf., 2020, 201, 110815.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110815] [PMID: 32559688]
[84]
Eyvazi, B.; Jamshidi-Zanjani, A.; Khodadadi Darban, A. Immobilization of hexavalent chromium in contaminated soil using nano-magnetic MnFe2O4. J. Hazard. Mater., 2019, 365, 813-819.
[http://dx.doi.org/10.1016/j.jhazmat.2018.11.041] [PMID: 30476805]
[85]
Hu, J.; Lo, I.M.; Chen, G. Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir, 2005, 21(24), 11173-11179.
[http://dx.doi.org/10.1021/la051076h] [PMID: 16285787]
[86]
Rajput, V.D.; Minkina, T.; Upadhyay, S.K.; Kumari, A.; Ranjan, A.; Mandzhieva, S.; Sushkova, S.; Singh, R.K.; Verma, K.K. Nanotechnology in the restoration of polluted soil. Nanomaterials (Basel), 2022, 12(5), 769.
[http://dx.doi.org/10.3390/nano12050769] [PMID: 35269257]
[87]
Salem, T.A.; Fetian, N.A.; Elsheery, N.I. Nanotechnology for polluted soil remediation. In: Nanotechnology for Agriculture; Panpatte, D.; Jhala, Y., Eds.; Springer: Singapore, 2019.
[http://dx.doi.org/10.1007/978-981-32-9370-0_15]
[88]
Mejias, J.H.; Salazar, F.; Pérez Amaro, L.; Hube, S.; Rodriguez, M.; Alfaro, M. Nanofertilizers: A cutting-edge approach to increase nitrogen use efficiency in grasslands. Front. Environ. Sci., 2021, 9, 635114.
[http://dx.doi.org/10.3389/fenvs.2021.635114]
[89]
Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci., 2019, 289, 110270.
[http://dx.doi.org/10.1016/j.plantsci.2019.110270] [PMID: 31623775]
[90]
Sharma, D.; Afzal, S.; Singh, N.K. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. J. Biotechnol., 2021, 336, 64-75.
[http://dx.doi.org/10.1016/j.jbiotec.2021.06.014] [PMID: 34116127]
[91]
Melanie, M.; Miranti, M.; Kasmara, H.; Malini, D.M.; Husodo, T.; Panatarani, C.; Joni, I.M.; Hermawan, W. Nanotechnology-based bioactive antifeedant for plant protection. Nanomaterials (Basel), 2022, 12(4), 630.
[http://dx.doi.org/10.3390/nano12040630] [PMID: 35214959]
[92]
Deka, B.; Babu, A.; Baruah, C.; Barthakur, M. Nanopesticides: A systematic review of their prospects with special reference to tea pest management. Front. Nutr., 2021, 8, 686131.
[http://dx.doi.org/10.3389/fnut.2021.686131] [PMID: 34447773]
[93]
de Oliveira, J.L.; Campos, E.V.R.; Camara, M.C.; Della Vechia, J.F.; de Matos, S.T.S.; de Andrade, D.J.; Gonçalves, K.C.; Nascimento, J.; Polanczyk, R.A.; de Araújo, D.R.; Fraceto, L.F. Hydrogels containing botanical repellents encapsulated in zein nanoparticles for crop protection. ACS Appl. Nano Mater., 2020, 3(1), 207-217.
[http://dx.doi.org/10.1021/acsanm.9b01917]
[94]
Jin, P.; Wiraja, C.; Zhao, J.; Zhang, J.; Zheng, L.; Xu, C. Nitric oxide nanosensors for predicting the development of osteoarthritis in rat model. ACS Appl. Mater. Interfaces, 2017, 9(30), 25128-25137.
[http://dx.doi.org/10.1021/acsami.7b06404] [PMID: 28691484]
[95]
Baysal, A.; Saygin, H. Smart nanosensors and methods for detection of nanoparticles and their potential toxicity in air. In: Nanomaterials for air remediation; Elsevier, 2020; pp. 33-59.
[http://dx.doi.org/10.1016/B978-0-12-818821-7.00003-8]
[96]
Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R. Exploring the potential of nanosensors: A brief overview. Sens. Int., 2021, 2, 100130.
[http://dx.doi.org/10.1016/j.sintl.2021.100130]
[97]
Vikesland, P.J. Nanosensors for water quality monitoring. Nat. Nanotechnol., 2018, 13(8), 651-660.
[http://dx.doi.org/10.1038/s41565-018-0209-9] [PMID: 30082808]
[98]
Chen, J.; Wei, X.D.; Liu, Y.S.; Ying, G.G.; Liu, S.S.; He, L.Y.; Su, H.C.; Hu, L.X.; Chen, F.R.; Yang, Y.Q. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading. Sci. Total Environ., 2016, 565, 240-248.
[http://dx.doi.org/10.1016/j.scitotenv.2016.04.176] [PMID: 27173842]
[99]
Verdian, A. Apta-nanosensors for detection and quantitative determination of acetamiprid – A pesticide residue in food and environment. Talanta, 2018, 176, 456-464.
[http://dx.doi.org/10.1016/j.talanta.2017.08.070] [PMID: 28917776]
[100]
Bazylewski, P.; Van Middelkoop, S.; Divigalpitiya, R.; Fanchini, G. Solid-state chemiresistors from two-dimensional MoS2 nanosheets functionalized with l-Cysteine for In-line sensing of Part-Per-Billion Cd2+ ions in drinking water. ACS Omega, 2020, 5(1), 643-649.
[http://dx.doi.org/10.1021/acsomega.9b03246] [PMID: 31956813]
[101]
Sha, R.; Bhattacharyya, T.K. MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochim. Acta, 2020, 349, 136370.
[http://dx.doi.org/10.1016/j.electacta.2020.136370]
[102]
Song, D.; Wang, Y.; Lu, X.; Gao, Y.; Li, Y.; Gao, F. Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2 nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides. Sens. Actuators B Chem., 2018, 267, 5-13.
[http://dx.doi.org/10.1016/j.snb.2018.04.016]