Protein & Peptide Letters

Author(s): Demao Liang, Qiuli Zhang, Yanhua Pang, Rili Yan and Yi Ke*

DOI: 10.2174/0109298665341953240926041613

DownloadDownload PDF Flyer Cite As
SGSM2 in Uveal Melanoma: Implications for Survival, Immune Infiltration, and Drug Sensitivity

Page: [894 - 905] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: The abnormal expression of small G protein signaling modulator 2 (SGSM2) is related to the occurrence of thyroid cancer and breast cancer. However, the role of SGSM2 in uveal melanoma (UVM) is unclear.

Objects: To elucidate this ambiguity, our study utilized bioinformatics analysis and experimental validation.

Methods: The expression of SGSM2 was detected in UVM cell lines through quantitative real-- time PCR (qRT-PCR). We utilized the Cancer Genome Atlas (TCGA) database to assess the relationship between SGSM2 expression and clinical characteristics, as well as its prognostic significance in UVM. Furthermore, the study examined potential regulatory networks involving SGSM2 in relation to immune infiltration, immune checkpoint genes, microsatellite instability (MSI), and drug sensitivity in UVM. The study also examined SGSM2 expression in UVM single-cell sequencing data.

Results: SGSM2 was highly expressed in UVM cell lines. Moreover, elevated levels of SGSM2 in UVM patients were significantly linked to poorer overall survival (OS) (p < 0.001), progress- free survival (PFS) (p < 0.001), and disease-specific survival (DSS) (p < 0.001). Additionally, SGSM2 expression was identified as an independent prognostic factor in UVM patients (p < 0.001). SGSM2 was associated with several pathways, including the calcium signaling pathway, natural killer cell-mediated cytotoxicity, cell adhesion molecules (CAMs), and others. The study revealed that SGSM2 expression in UVM is linked to immune infiltration, immune checkpoint genes, and MSI. Additionally, a significant inverse correlation was observed between SGSM2 expression and the compounds GSK690693, TL-2-105, PHA-793887, Tubastatin A, and SB52334 in UVM patients.

Conclusion: SGSM2 may not only serve as an important indicator for prognostic assessment. Still, it may also be a key target for the development of new therapeutic approaches, providing new perspectives on the treatment of UVM patients.

Keywords: Uveal melanoma, SGSM2, prognosis, immunotherapeutic, MSI, calcium signaling pathway.

Graphical Abstract

[1]
Aronow, M.E.; Topham, A.K.; Singh, A.D. Uveal melanoma: 5-year update on incidence, treatment, and survival (SEER 1973-2013). Ocul. Oncol. Pathol., 2018, 4(3), 145-151.
[http://dx.doi.org/10.1159/000480640] [PMID: 29765944]
[2]
Foti, P.V.; Travali, M.; Farina, R.; Palmucci, S.; Spatola, C.; Liardo, R.L.E.; Milazzotto, R.; Raffaele, L.; Salamone, V.; Caltabiano, R.; Broggi, G.; Puzzo, L.; Russo, A.; Reibaldi, M.; Longo, A.; Vigneri, P.; Avitabile, T.; Ettorre, G.C.; Basile, A. Diagnostic methods and therapeutic options of uveal melanoma with emphasis on MR imaging-Part II: Treatment indications and complications. Insights Imaging, 2021, 12(1), 67.
[http://dx.doi.org/10.1186/s13244-021-01001-w] [PMID: 34085131]
[3]
Broggi, G.; Musumeci, G.; Puzzo, L.; Russo, A.; Reibaldi, M.; Ragusa, M.; Longo, A.; Caltabiano, R. Immunohistochemical expression of ABCB5 as a potential prognostic factor in uveal melanoma. Appl. Sci. (Basel), 2019, 9(7), 1316.
[http://dx.doi.org/10.3390/app9071316]
[4]
Jager, M.J.; Shields, C.L.; Cebulla, C.M.; Abdel-Rahman, M.H.; Grossniklaus, H.E.; Stern, M.H.; Carvajal, R.D.; Belfort, R.N.; Jia, R.; Shields, J.A.; Damato, B.E. Uveal melanoma. Nat. Rev. Dis. Primers, 2020, 6(1), 24.
[http://dx.doi.org/10.1038/s41572-020-0158-0] [PMID: 32273508]
[5]
Gallenga, C.E.; Franco, E.; Adamo, G.G.; Violanti, S.S.; Tassinari, P.; Tognon, M.; Perri, P. Genetic basis and molecular mechanisms of uveal melanoma metastasis: A focus on prognosis. Front. Oncol., 2022, 12, 828112.
[http://dx.doi.org/10.3389/fonc.2022.828112] [PMID: 35480119]
[6]
Lane, A.M.; Kim, I.K.; Gragoudas, E.S. Survival rates in patients after treatment for metastasis from uveal melanoma. JAMA Ophthalmol., 2018, 136(9), 981-986.
[http://dx.doi.org/10.1001/jamaophthalmol.2018.2466] [PMID: 29955797]
[7]
Marubashi, S.; Shimada, H.; Fukuda, M.; Ohbayashi, N. RUTBC1 functions as a GTPase-activating protein for Rab32/38 and regulates melanogenic enzyme trafficking in melanocytes. J. Biol. Chem., 2016, 291(3), 1427-1440.
[http://dx.doi.org/10.1074/jbc.M115.684043] [PMID: 26620560]
[8]
Jiang, P.; Pan, Y.; Liu, Z.; Liu, X. SGSM2, A putative Rab2a GAP, regulates lysozyme sorting in Paneth cells. Sci. China Life Sci., 2018, 61(7), 860-863.
[http://dx.doi.org/10.1007/s11427-017-9267-9] [PMID: 29527623]
[9]
Nottingham, R.M.; Ganley, I.G.; Barr, F.A.; Lambright, D.G.; Pfeffer, S.R. RUTBC1 protein, A Rab9A effector that activates GTP hydrolysis by Rab32 and Rab33B proteins. J. Biol. Chem., 2011, 286(38), 33213-33222.
[http://dx.doi.org/10.1074/jbc.M111.261115] [PMID: 21808068]
[10]
Yang, H.; Sasaki, T.; Minoshima, S.; Shimizu, N. Identification of three novel proteins (SGSM1, 2, 3) which modulate small G protein (RAP and RAB)-mediated signaling pathway. Genomics, 2007, 90(2), 249-260.
[http://dx.doi.org/10.1016/j.ygeno.2007.03.013] [PMID: 17509819]
[11]
Su, X.; Chen, D.; Zhu, L.; Jia, H.; Cai, J.; Li, P.; Han, B.; Wang, D.; Li, H.; Fan, J.; Gu, M.; Zhou, Y.; Guan, H.; Wei, W. SGSM2 inhibits thyroid cancer progression by activating RAP1 and enhancing competitive RAS inhibition. Cell Death Dis., 2022, 13(3), 218.
[http://dx.doi.org/10.1038/s41419-022-04598-y] [PMID: 35264562]
[12]
Lin, J.H.; Lee, W.J.; Wu, H.C.; Wu, C.H.; Chen, L.C.; Huang, C.C.; Chang, H.L.; Cheng, T.C.; Chang, H.W.; Ho, C.T.; Tu, S.H.; Ho, Y.S. Small G protein signalling modulator 2 (SGSM2) is involved in oestrogen receptor-positive breast cancer metastasis through enhancement of migratory cell adhesion via interaction with E-cadherin. Cell Adhes. Migr., 2019, 13(1), 121-138.
[http://dx.doi.org/10.1080/19336918.2019.1568139] [PMID: 30744493]
[13]
Lin, P.C.; Chen, H.O.; Lee, C.J.; Yeh, Y.M.; Shen, M.R.; Chiang, J.H. Comprehensive assessments of germline deletion structural variants reveal the association between prognostic MUC4 and CEP72 deletions and immune response gene expression in colorectal cancer patients. Hum. Genomics, 2021, 15(1), 3.
[http://dx.doi.org/10.1186/s40246-020-00302-3] [PMID: 33431054]
[14]
Zhuang, A.; Gu, X.; Ge, T.; Wang, S.; Ge, S.; Chai, P.; Jia, R.; Fan, X. Targeting histone deacetylase suppresses tumor growth through eliciting METTL14-modified m6A RNA methylation in ocular melanoma. Cancer Commun. (Lond.), 2023, 43(11), 1185-1206.
[http://dx.doi.org/10.1002/cac2.12471] [PMID: 37466203]
[15]
Ding, X.; Wan, A.; Qi, X.; Jiang, K.; Liu, Z.; Chen, B. ZNF695, A potential prognostic biomarker, correlates with immune infiltrates in cervical squamous cell carcinoma and endoce rvical adenocarcinoma: Bioinformatic analysis and experimental verification. Curr. Gene Ther., 2024, 24(5), 441-452.
[http://dx.doi.org/10.2174/0115665232285216240228071244] [PMID: 38441026]
[16]
He, H.; Yuan, F.; Li, Y.; Pi, G.; Shi, H.; Li, Y.; Han, G. Comprehensive analysis and experimental validation of FOXD2 as a novel potential prognostic biomarker associated with immune infiltration in head and neck squamous cell carcinoma. Curr. Computeraided Drug Des., 2024, 20
[http://dx.doi.org/10.2174/0115734099302492240405065505] [PMID: 38629358]
[17]
Ren, L.; Pan, X.; Ning, L.; Gong, D.; Huang, J.; Deng, K.; Xie, L.; Zhang, Y. Construction of a combined hypoxia-related genes model for hepatocellular carcinoma prognosis. Curr. Computeraided Drug Des., 2023, 19(2), 150-161.
[http://dx.doi.org/10.2174/1573409919666221223123610] [PMID: 36567292]
[18]
Yang, D.; Liu, M.; Jiang, J.; Luo, Y.; Wang, Y.; Chen, H.; Li, D.; Wang, D.; Yang, Z.; Chen, H. Comprehensive analysis of DMRT3 as a potential biomarker associated with the immune infiltration in a pan-cancer analysis and validation in lung adenocarcinoma. Cancers (Basel), 2022, 14(24), 6220.
[http://dx.doi.org/10.3390/cancers14246220] [PMID: 36551704]
[19]
Yi, W.; Shen, H.; Sun, D.; Xu, Y.; Feng, Y.; Li, D.; Wang, C. Low expression of long noncoding RNA SLC26A4 antisense RNA 1 is an independent prognostic biomarker and correlate of immune infiltrates in breast cancer. Med. Sci. Monit., 2021, 27, e934522.
[PMID: 34880202]
[20]
Hua, H.; Pan, S.; Diao, H.; Cao, Y.; Qian, X.; Zhang, J. Increased ACSL6 expression predicts a favorable prognosis in triple-negative breast cancer. Curr. Med. Chem., 2024, 31
[http://dx.doi.org/10.2174/0109298673278846231222103420] [PMID: 38310395]
[21]
Chen, L.; Ge, M.; Mo, S.; Shi, M.; Zhang, J.; Liu, J. Construction of a New Ferroptosis-related Prognosis Model for Survival Prediction in Colorectal Cancer. Curr. Med. Chem., 2024.
[PMID: 38362684]
[22]
Xu, Y.; Shen, Y.; Bhandari, A.; Hirachan, S.; Wang, O.; Xia, E. Serine Protease 27, A prognostic biomarker in pan-cancer and associated with the aggressive progression of breast cancer. Curr. Med. Chem., 2024, 31(15), 2073-2089.
[http://dx.doi.org/10.2174/0929867330666230324161329] [PMID: 37282654]
[23]
Chen, Y.; Xu, H.; Tang, H.; Li, H.; Zhang, C.; Jin, S.; Bai, D. miR-9-5p expression is associated with vascular invasion and prognosis in hepatocellular carcinoma, and in vitro verification. J. Cancer Res. Clin. Oncol., 2023, 149(16), 14657-14671.
[http://dx.doi.org/10.1007/s00432-023-05257-1] [PMID: 37584711]
[24]
Ren, Z.; Zhang, X.; Han, J. Expression and prognostic significance of ferroptosis-related proteins SLC7A11 and GPX4 in renal cell carcinoma. Protein Pept. Lett., 2023, 30(10), 868-876.
[http://dx.doi.org/10.2174/0109298665255704230920063254] [PMID: 37807410]
[25]
Yang, E.; Hong, Y.; Xuan, C.; Xu, J.; Ding, Q.; Zhao, S.; Ye, H.; Fan, X.; Jiang, Z.; Zhang, S.; Ding, X. Biomarker of pulmonary inflammatory response in LUAD: miR-584-5p targets RAB23 to suppress inflammation induced by LPS in A549 cells. Protein Pept. Lett., 2023, 30(10), 877-890.
[http://dx.doi.org/10.2174/0109298665248928231018070825] [PMID: 38093594]
[26]
Liang, W.; Lu, Y.; Pan, X.; Zeng, Y.; Zheng, W.; Li, Y.; Nie, Y.; Li, D.; Wang, D. Decreased expression of a novel lncRNA FAM181A-AS1 is associated with poor prognosis and immune infiltration in lung adenocarcinoma. Pharm. Genomics Pers. Med., 2022, 15, 985-998.
[http://dx.doi.org/10.2147/PGPM.S384901] [PMID: 36482943]
[27]
Liang, L.; Xu, H.; Dong, Q.; Qiu, L.; Lu, L.; Yang, Q.; Zhao, W.; Li, Y. WTAP is correlated with unfavorable prognosis, tumor cell proliferation, and immune infiltration in hepatocellular carcinoma. Front. Oncol., 2022, 12, 852000.
[http://dx.doi.org/10.3389/fonc.2022.852000] [PMID: 35480109]
[28]
Lin, Z.; Huang, W.; Yi, Y.; Li, D.; Xie, Z.; Li, Z.; Ye, M. LncRNA ADAMTS9-AS2 is a prognostic biomarker and correlated with immune infiltrates in lung adenocarcinoma. Int. J. Gen. Med., 2021, 14, 8541-8555.
[http://dx.doi.org/10.2147/IJGM.S340683] [PMID: 34849000]
[29]
Lu, X.; Jing, L.; Liu, S.; Wang, H.; Chen, B. miR-149-3p is a potential prognosis biomarker and correlated with immune infiltrates in uterine corpus endometrial carcinoma. Int. J. Endocrinol., 2022, 2022, 1-15.
[http://dx.doi.org/10.1155/2022/5006123] [PMID: 35719192]
[30]
Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; Bruneval, P.; Fridman, W.H.; Becker, C.; Pagès, F.; Speicher, M.R.; Trajanoski, Z.; Galon, J. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity, 2013, 39(4), 782-795.
[http://dx.doi.org/10.1016/j.immuni.2013.10.003] [PMID: 24138885]
[31]
Chen, B.; Lu, X.; Zhou, Q.; Chen, Q.; Zhu, S.; Li, G.; Liu, H. PAXIP1-AS1 is associated with immune infiltration and predicts poor prognosis in ovarian cancer. PLoS One, 2023, 18(8), e0290031.
[http://dx.doi.org/10.1371/journal.pone.0290031] [PMID: 37582104]
[32]
Du, Q.; Xing, N.; Guo, S.; Meng, X.; Zhang, Y.; Wang, S. Cycas revoluta leaves: As a potential flavonoids source for targeted regulation of immune-related markers in lung adenocarcinoma. Ind. Crops Prod., 2023, 202, 116967.
[http://dx.doi.org/10.1016/j.indcrop.2023.116967]
[33]
Lu, Z.M.; Pan, S.L.; Yuan, W.L.; Feng, J.L.; Tian, D.; Shang, X.Q. Molecular and immunological characteristics of patients with CMTM6 low expression colorectal cancer. Medicine (Baltimore), 2023, 102(50), e36480.
[http://dx.doi.org/10.1097/MD.0000000000036480] [PMID: 38115316]
[34]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[35]
Yuan, Z.; Wang, L.; Chen, C. Analysis of the prognostic, diagnostic and immunological role of HSP90α in malignant tumors. Front. Oncol., 2022, 12, 963719.
[http://dx.doi.org/10.3389/fonc.2022.963719] [PMID: 36158677]
[36]
Xu, Z.; Pei, C.; Cheng, H.; Song, K.; Yang, J.; Li, Y.; He, Y.; Liang, W.; Liu, B.; Tan, W.; Li, X.; Pan, X.; Meng, L. Comprehensive analysis of FOXM1 immune infiltrates, m6a, glycolysis and ceRNA network in human hepatocellular carcinoma. Front. Immunol., 2023, 14, 1138524.
[http://dx.doi.org/10.3389/fimmu.2023.1138524] [PMID: 37234166]
[37]
Chen, B.; Ding, X.; Wan, A.; Qi, X.; Lin, X.; Wang, H.; Mu, W.; Wang, G.; Zheng, J. Comprehensive analysis of TLX2 in pan cancer as a prognostic and immunologic biomarker and validation in ovarian cancer. Sci. Rep., 2023, 13(1), 16244.
[http://dx.doi.org/10.1038/s41598-023-42171-5] [PMID: 37758722]
[38]
Huang, Z.; Hu, X.; Wei, Y.; Lai, Y.; Qi, J.; Pang, J.; Huang, K.; Li, H.; Cai, P. ADAMTSL2 is a potential prognostic biomarker and immunotherapeutic target for colorectal cancer: Bioinformatic analysis and experimental verification. PLoS One, 2024, 19(5), e0303909.
[http://dx.doi.org/10.1371/journal.pone.0303909] [PMID: 38814950]
[39]
Shi, B.; Chu, J.; Huang, T.; Wang, X.; Li, Q.; Gao, Q.; Xia, Q.; Luo, S. The scavenger receptor MARCO expressed by tumor-associated macrophages are highly associated with poor pancreatic cancer prognosis. Front. Oncol., 2021, 11, 771488.
[http://dx.doi.org/10.3389/fonc.2021.771488] [PMID: 34778091]
[40]
Handzlik, G.; Szymańska, E.; Pękala, E.; Kędzierski, L.; Strzałkowska, D.; Duława, J. Low-sodium dietary approach in the management of resistant and refractory hypertension: Preliminary results. Pol. Arch. Intern. Med., 2021, 131(10), 16098.
[http://dx.doi.org/10.20452/pamw.16098]
[41]
Zhang, Y.; Zhou, Y.; Wei, F. circABCB10 promotes malignant progression of gastric cancer cells by preventing the degradation of MYC. J. Oncol., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/4625033] [PMID: 34950208]
[42]
Luo, J.; Li, H.; Xiu, J.; Zeng, J.; Feng, Z.; Zhao, H.; Li, Y.; Wei, W. Elevated ZNF704 expression is associated with poor prognosis of uveal melanoma and promotes cancer cell growth by regulating AKT/mTOR signaling. Biomark. Res., 2023, 11(1), 38.
[http://dx.doi.org/10.1186/s40364-023-00471-y] [PMID: 37038184]
[43]
Issam, N.I.; Marnissi, F.; Lakhdar, A.; Karkouri, M.; ElBelhadji, M.; Badou, A. The immune checkpoint VISTA is associated with prognosis in patients with malignant uveal melanoma. Front. Immunol., 2023, 14, 1225140.
[http://dx.doi.org/10.3389/fimmu.2023.1225140] [PMID: 37662962]
[44]
Gelmi, M.C.; Gezgin, G.; van der Velden, P.A.; Luyten, G.P.M.; Luk, S.J.; Heemskerk, M.H.M.; Jager, M.J. PRAME expression: A target for cancer immunotherapy and a prognostic factor in uveal melanoma. Invest. Ophthalmol. Vis. Sci., 2023, 64(15), 36.
[http://dx.doi.org/10.1167/iovs.64.15.36] [PMID: 38149971]
[45]
Zhu, R.; Chen, Y.T.; Wang, B.W.; You, Y.Y.; Wang, X.H.; Xie, H.T.; Jiang, F.G.; Zhang, M.C. TAP1, a potential immune-related prognosis biomarker with functional significance in uveal melanoma. BMC Cancer, 2023, 23(1), 146.
[http://dx.doi.org/10.1186/s12885-023-10527-9] [PMID: 36774490]
[46]
Liang, X.; Yin, Y.; Li, N. GOLM1 is related to the inflammatory/immune nature of uveal melanoma and acts as a promising indicator for prognosis and immunotherapy response. Front. Genet., 2022, 13, 1051168.
[http://dx.doi.org/10.3389/fgene.2022.1051168] [PMID: 36468024]
[47]
Ye, Y.; Chen, Z.; Shen, Y.; Qin, Y.; Wang, H. Development and validation of a four-lipid metabolism gene signature for diagnosis of pancreatic cancer. FEBS Open Bio., 2021, 11(11), 3153-3170.
[http://dx.doi.org/10.1002/2211-5463.13074] [PMID: 33386701]
[48]
Zhang, W.; Ye, Y.J.; Ren, X.W.; Huang, J.; Shen, Z.L. Detection of preoperative chemoradiotherapy sensitivity molecular characteristics of rectal cancer by transcriptome second generation sequencing. Beijing Da Xue Xue Bao Yi Xue Ban, 2019, 51(3), 542-547.
[http://dx.doi.org/10.19723/j.issn.1671-167X.2019.03.025.]
[49]
Ma, D.; Luyten, G.P.; Luider, T.M.; Niederkorn, J.Y. Relationship between natural killer cell susceptibility and metastasis of human uveal melanoma cells in a murine model. Invest. Ophthalmol. Vis. Sci., 1995, 36(2), 435-441.
[PMID: 7843912]
[50]
Baqai, U.; Purwin, T.J.; Bechtel, N.; Chua, V.; Han, A.; Hartsough, E.J.; Kuznetsoff, J.N.; Harbour, J.W.; Aplin, A.E. Multi-omics profiling shows BAP1 loss is associated with upregulated cell adhesion molecules in uveal melanoma. Mol. Cancer Res., 2022, 20(8), 1260-1271.
[http://dx.doi.org/10.1158/1541-7786.MCR-21-0657] [PMID: 35426938]
[51]
Cross, N.A.; Murray, A.K.; Rennie, I.G.; Ganesh, A.; Sisley, K. Instability of microsatellites is an infrequent event in uveal melanoma. Melanoma Res., 2003, 13(5), 435-440.
[http://dx.doi.org/10.1097/00008390-200310000-00001] [PMID: 14512784]